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Abstract: This paper proposes a high-speed continuous wavelet transform (CWT) processor to
analyze vital signals extracted from a frequency-modulated continuous wave (FMCW) radar sensor.
The proposed CWT processor consists of a fast Fourier transform (FFT) module, complex multiplier
module, and inverse FFT (IFFT) module. For high-throughput processing, the FFT and IFFT modules
are designed with the pipeline FFT architecture of radix-2 single-path delay feedback (R2SDF) and
mixed-radix multipath delay commutator (MRMDC) architecture, respectively. In addition, the
IFFT module and the complex multiplier module perform a four-channel operation to reduce the
processing time from repeated operations. Simultaneously, the MRMDC IFFT module minimizes
the circuit area by reducing the number of non-trivial multipliers by using a mixed-radix algorithm.
In addition, the proposed CWT processor can support variable lengths of 8, 16, 32, 64, 128, 256,
512, and 1024 to analyze various vital signals. The proposed CWT processor was implemented in a
field-programmable gate array (FPGA) device and verified through the measurement of heartbeat
and respiration from an FMCW radar sensor. Experimental results showed that the proposed CWT
processor can reduce the processing time by 48.4-fold and 40.7-fold compared to MATLAB software
with Intel i7 CPU. Moreover, it can be confirmed that the proposed CWT processor can reduce the
processing time by 73.3% compared to previous FPGA-based implementations.

Keywords: frequency-modulated continuous wave (FMCW); vital signal measurement; radix-2
single-path delay feedback (R2SDF); mixed-radix multipath delay commutator (MRMDC)

1. Introduction

The invasive measurement of human vital signals severely limits independence and
mobility and may cause pain owing to the electrodes of patches and sensors. Moreover,
attachment is difficult in burn victims or injured patients [1–3]. Owing to this problem,
long-term monitoring during sleep and healthcare is difficult to accomplish using this
technique [4,5]. Non-invasive measurement is an attractive alternative to vital signal
measurement to overcome this limitation. There are various approaches such as depth
cameras, infrared thermal sensors, and radar. For instance, depth cameras can estimate
movement of the body’s trunk during breathing [6]. Infrared thermal sensors can show the
temperature profile associated with the inspiration and expiration phases [7], and radar
sensors can detect Doppler shifts produced by the movement of the breathing and beating
heart [8–15]. Radar sensors are widely applied in vital signal monitoring because of their
ability to penetrate nonmetallic obstacles and their insensitivity to environmental factors
such as light and temperature [16,17]. In addition, they can be implemented with low
power and in a small area [18–23].
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Radar-based vital signal processing requires time-frequency analysis to detect non-
stationary signals. A continuous wavelet transform (CWT) can obtain the time-frequency
representation of an input signal with a high time and frequency resolution [14,24–27].
However, vital-signal measurement using time-domain CWT has the issue of long process-
ing time owing to computational complexity, which occurs by convolution operations [28].
On the other hand, the frequency-domain processing of the CWT is appropriate for real-
time implementation because it requires less computation. The CWT operation in the
frequency domain requires fast Fourier transform (FFT) and inverse FFT (IFFT) operations
for the transition between time and frequency domains. A hardware CWT accelerator is
required to accelerate these operations [29,30].

The frequency-domain CWT uses the characteristics of FFT to replace the complex
convolution in the time domain with simple multiplication in the frequency domain. FFT
processors can be implemented using a single butterfly architecture, pipeline architecture,
and parallel architecture. The pipeline architecture has a good tradeoff between hardware
area and speed [31,32]. The pipeline architecture is divided into single-path delay feedback
(SDF) and multipath delay commutator (MDC) architectures. The SDF architecture is
simple, as it provides the lowest number of non-trivial multiplications in a single-channel
FFT [33]. However, when using multiple channels, it has the disadvantage of linearly
increasing hardware complexity in proportion to the number of channels, because it should
be implemented in each channel. In the case of multichannel FFT, it is known that the MDC
architecture can be implemented in a smaller area than the SDF architecture [34].

The structure of the proposed CWT processor is as follows: The FFT module for
transitioning the input data to the frequency domain is designed as a radix-2 SDF (R2SDF)
architecture to minimize the area. For high-speed operation, the multiplier and IFFT
module after the FFT are configured in a four-channel structure to reduce the processing
time from the repeated operation. The IFFT module is designed with a mixed-radix MDC
(MRMDC) architecture to decrease the number of non-trivial multiplications to perform
high-speed operations while minimizing the module area. The length of the vital signal
can vary depending on the measurement target, such as the electroencephalogram (EEG),
respiration, and heart rate [23–25]. Therefore, the FFT/IFFT modules of the R2SDF and
MRMDC architectures are designed to support variable lengths of 8, 16, 32, 64, 128, 256,
512, and 1024, so they can be applied to various applications. The novel contribution of this
work is that the proposed CWT processor proved to be effective for real-time vital signal
measurement requiring high speeds and flexibility in the wavelet type, signal length, and
number of daughter wavelets.

The remainder of this paper is organized as follows: Section 2 describes the CWT
algorithm and basic hardware architecture. Section 3 describes the hardware architecture
of the proposed CWT processor. Section 4 presents the design and implementation of the
proposed CWT processor. Finally, Section 5 concludes the paper.

2. CWT Algorithm and Hardware Architecture
2.1. CWT Algorithm

CWT uses a convolution operation to compare the input signal to a daughter wavelet,
which is a compressed or stretched version of the mother wavelet. Wavelets are signals
that oscillate around zero and behave like bandpass filters. Figures 1 and 2 show Morlet,
Paul, and Mexican hat wavelets in the time and frequency domain, respectively.
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Figure 1. Time-domain wavelet function: (a) Morlet; (b) Paul; (c) Mexican hat.
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Figure 2. Frequency-domain wavelet function (a) Morlet; (b) Paul; (c) Mexican hat.

The scaling factor is used to compress or stretch the mother wavelet to produce a
daughter wavelet. Low scales compress the wavelet in the time domain and effectively
analyze the high-frequency components in the signal. On the other hand, high scales stretch
the wavelet and are suitable for analyzing low-frequency components. Mathematically,
CWT is defined in Equation (1) in the time domain.

Wψ(s, t) =
∫ ∞

−∞
ψ∗
(

τ − t
s

)
x(τ)dτ (1)

where x(t) is the input signal, ψ(t) is the mother wavelet, (·)* is a complex conjugate, and s
is the scale factor.

The CWT can select an appropriate wavelet according to the shape of the signal to be
analyzed; therefore, it has good applicability to the measurement of vital signals where the
shape of the signal is important. The two-dimensional stacking of absolute values obtained
through the calculation of Equation (1) using daughter wavelets of various scales is called
a scalogram, and time-frequency analysis can be performed using this. Compared with the
short-time Fourier transform (STFT), the CWT provides a multi-resolution measurement
between the time and frequency resolutions. In addition, compared with the Fourier
transform, it has the advantage that a higher frequency resolution can be obtained even
with a shorter time window [14]. However, CWT operations are challenging to apply in
real-time applications owing to their high computational complexity. The computational
amount of the time-domain CWT is proportional to the square of the signal length owing
to the convolution operation. This complexity problem can be solved using the relation
defined in Equation (2).

x(t) ∗ y(t) ⇔ X(w)×Y(w) (2)

where x(t) and y(t) denote time-domain signals, and X(w) and Y(w) denote frequency-
domain signals. The convolution operation in the time domain can be treated as a multi-
plication in the frequency domain and vice versa. In other words, CWT can significantly
reduce the computational complexity by changing the convolution operation to a multi-
plication operation after transitioning the time-domain input signal and wavelet to the
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frequency domain. This is called FFT-based CWT, which enables the CWT to be operated
in real time, even in applications using multiple scales.

2.2. FFT-Based CWT Hardware Architecture

The FFT-based CWT is mainly performed in three steps: (1) FFT operation for the
input signal, (2) multiplications between the wavelet and the FFT result of the input signal,
and (3) IFFT operation of the multiplication results. Figure 3 shows the data flow of the
basic FFT-based CWT operations. In the figure, the FFT operation is performed once, and
multiplication and IFFT are repeated according to the number of scales used.

Wavelet SRAM

Input

data

Output

data
FFT

Repeat for the number of scale

SRAM IFFT

Figure 3. Date flow of FFT-based CWT processor.

When the FFT and IFFT modules are implemented with a single butterfly architecture
based on the radix-2 algorithm, Nlog2N cycles are required to compute the FFT and IFFT,
where N denotes the FFT length. In previous studies, a CWT processor was implemented
using a single butterfly architecture based on the radix-4 algorithm [29,30]. This radix-
4 based architecture provides a higher throughput than the radix-2 based architecture.
However, owing to the limitations of the single-butterfly architecture, many cycles are
still required. This makes it unsuitable for applications requiring high-speed processing,
such as monitoring respiration or heartbeat rate, indicating sleep apnea and congestive
heart failure.

Among the pipeline architectures of the FFT, R2SDF has an N computation cycles.
If FFT and IFFT operations are performed with R2SDF, a total of 3N + MN cycles are
required for the CWT operation. This is a very short computation cycle compared with a
single butterfly architecture. However, considering the iterations of the IFFT operation,
it is difficult to expect a good acceleration effect owing to the one-channel operation. For
better acceleration, it is desirable to suppress the number of iterations using the MDC
architecture specialized for multichannel operation. The CWT processor proposed in this
study is accelerated by reducing the number of iterations by performing multichannel
multiplication and IFFT operations. The architecture of the proposed processor is described
in Section 3.

3. Hardware Architecture of the Proposed CWT Processor

Figure 4 shows the hardware architecture of the proposed CWT processor for high-
speed vital signal processing. It consists of an R2SDF FFT module for the FFT of the
input signal, four FFT static random access memories (SRAMs) for data reordering, and
dividing the FFT result into four-channel, four wavelet SRAMs with loaded daughter
wavelet values in the frequency domain, four multipliers, and an MRMDC IFFT module
for the four-channel IFFT.

Figure 5 shows the hardware architecture of the R2SDF FFT module, which is known
to satisfy the trade-off between the throughput and hardware area for a one-channel FFT.
The module can support 8, 16, 32, 64, 128, 256, 512, and 1024-point lengths by selecting the
input signal for the operation in each stage.
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Figure 4. Hardware architecture of the proposed CWT processor.
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Figure 5. Hardware architecture of R2SDF FFT module.

As mentioned, the SDF architecture has the disadvantage of linearly increasing the
hardware complexity in proportion to the number of channels. In the case of a four-channel
FFT operation, one radix-4 MDC (R4MDC) architecture is implemented with a smaller
area than the four R2SDF architectures [35]. However, if the existing MDC architecture is
applied, there is a problem that the overall computational latency and the processor area
will also increase. This is because of the many delay elements of the first data mapping
module (DMM) that align the data from the input stage [36]. The first DMM for the 1024-
point FFT has 3072 delay elements, which corresponds to a memory size of approximately
12.3 KB based on 32-bit complex data. To reduce this resource, the proposed CWT processor
imitates the data alignment process of the first DMM using four FFT SRAMs to store the
FFT results. The proposed processor removes the first DMM by storing the FFT results in
four FFT SRAMs and performing the aligning function for MDC IFFT. Figure 6 shows the
timing diagram for storing the 64-point FFT results in the four FFT SRAMs and the final
memory map of the FFT SRAMs.

After the FFT result is written to all four SRAMs, four-channel multiplication is
performed. For multiplication, the proposed processor has four wavelet SRAMs that
can load daughter wavelets in the frequency domain. At most, 24 wavelet signals with
1024 points can be loaded. The output values of the four FFT SRAMs and wavelet SRAM
are multiplied and used as the input of the IFFT module. Figure 7 shows the timing
diagram of the proposed processor’s four-channel multiplication and IFFT operations. In
Figure 7, FFT SRAM is the output of FFT SRAM, and wavelet SRAM denotes the output of
wavelet SRAM.

The four-channel IFFT module, in which the first DMM has been removed, is designed
using the MRMDC architecture. Compared with the R4MDC architecture, the MRMDC
architecture has a smaller area because some non-trivial multipliers can be replaced with
trivial multipliers [37]. Unlike the radix-4 algorithm, which supports variable lengths
limited to a power of 4, it can support various variable lengths, such as the radix-2 algo-
rithm [38,39]. The IFFT module is designed to support 8, 16, 32, 64, 128, 256, 512, and
1024 points of variable length data by selecting input signals from each stage, such as the
R2SDF FFT module within the same processor. Figure 8 shows the MRMDC IFFT module
of the proposed CWT processor.
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When the input data and wavelet data have N-point length CWT operations using M
scales, there are 3N + (M/4)N computation cycles. In this case, M is a multiple of 4. Be-
cause 3N + MN cycles are required by the R2SDF(FFT)–R2SDF(IFFT) architecture, it can be
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confirmed that the proposed processor can support higher-speed CWT operation compared
to the other aforementioned architectures. Because the proposed CWT architecture uses
multichannel multiplication and IFFT operations, it can reduce the number of iterations. If
the number of scales to be used increases, the number of iterations also increases. Therefore,
there will be a more significant gap in the total number of computation cycles between
the proposed CWT architecture and other architectures. Therefore, the proposed CWT
processor can maintain high-speed operation, even in applications that use many scales.

4. Implementation Results

The proposed CWT processor was designed using the Verilog hardware description
language (HDL) and implemented on a Xilinx Zynq UltraScale+ field programmable gate
array (FPGA) device [40]. The CWT processor could process at a maximum operating
frequency of 302 MHz. Table 1 summarizes the resource usage of the proposed CWT
processor. The proposed CWT processor was implemented using 89,941 look up tables
(LUTs), 108,598 flip flops (FFs), and 92 digital signal processors (DSPs).

Table 1. Implementation results of the proposed CWT processor.

Block No. of LUT No. of FF DSP Block

R2SDF 41,179 38,789 16
Complex multiplier 611 435 16

MRMDC 47,394 69,299 40
Others 757 75 0
Total 89,941 108,598 92

Table 2 summarizes the computation cycles and processing time required for the
proposed CWT processor when using four scales and 24 scales for inputs using 512-point
and 1024-point length signals. When the operating frequency is set to 302 MHz, the
processing time of a 512-point length using four scales is 7 µs, and the 1024-point length
using 24 scales is 31 µs.

Table 2. Processing cycles and time for the design in two different ranges of wavelet scales.

Task Cycles for 512-Point Signal
(4 Scales)

Cycles for 1024-Point Signal
(24 Scales)

FFT (R2SDF) Compute 530 1060
SRAM Writing 512 1024

IFFT (MRMDC) Compute 531 1047
Data output 512 6144

Total number of cycles 2085 9275
Total processing time 7 µs @302 MHz 31 µs @302 MHz

The proposed CWT processor was configured on the FPGA-based verification platform
using the advanced extensible interface (AXI) bus interface, as shown in Figure 9. The
verification platform consists of the proposed CWT processor, external double data rate
(DDR) memory, AXI master interface for data load and store in DDR, and AXI slave
interface for interaction between the micro-processor (MP) and the CWT processor by
setting the predefined registers. First, input data and wavelet data for the verification of
the CWT processor are loaded in external DDR memory. In addition, several parameters
such as the FFT-point length and the number of wavelets are set by MP through an AXI
slave interface. When MP initiates the CWT operation, the proposed CWT processor reads
the wavelet data and input data and stores them in four wavelet SRAMs and input buffer,
respectively. After the CWT operation is completed, the results are stored in external DDR
memory through an AXI master interface. Figure 10 shows the verification environment
using the FPGA platform.
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To verify the vital signal measurement function of the proposed CWT processor,
Infineon’s BGT60TR13C frequency modulated continuous wave (FMCW) radar sensor with
a center frequency of 60 GHz was used [41], as shown in Figure 11. The FMCW radar signal
was irradiated to the subject’s chest to acquire Doppler shifts of the chest due to heartbeat
and respiration. Table 3 shows the main parameters of the FMCW radar sensor.
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Figure 9. FPGA platform configuration for the verification of the proposed CWT processor.

Figure 10. Verification environment using FPGA platform.

Table 3. Main parameters of FMCW radar sensor.

Parameter Value

Center frequency 60 GHz
Bandwidth 5.5 GHz

Antenna gain (single TX / RX) 5 dBi
Maximum distance 15 m

FoV (half power beam width) 90°
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Figure 11. Infineon’s FMCW radar sensor for the vital signal measurement.

Figure 12 shows the heartbeat and respiration signals acquired for the verification of
the proposed CWT processor. The data of each signal were sampled at 20 Hz and divided
to have a length of 512-point (12.8 s).
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Figure 12. The vital signals for the verification of the proposed CWT processor: (a) heartbeat;
(b) respiration.

A morlet wavelet was used as a mother wavelet for the CWT analysis of vital signals.
Since each vital signal has a different main frequency component, a different scale should
be used for the analysis. A total of 24 daughter wavelets of scale from 5.8 to 28.7 were used
for the heartbeat signal, which corresponds to a frequency range of from 0.7 to 3.44 Hz.
Since the respiration signal has a lower frequency component than the heartbeat signal,
a larger scale should be used. A total of 20 scales ranging from 23.3 to 86.9 with 0.23 to
0.86 Hz were used to analyze the respiration signal. The heartbeat, respiration signal,
and daughter wavelet were oversampled to 1024-points length with zero padding for the
smoother CWT results.

The vital signal acquired from the FMCW radar sensor was used as the input of the
proposed CWT processor, and the result of the CWT processor was compared with that of
the CWT function implemented in software (MATLAB R2020a [42]). Figure 13 shows the
scalograms from the proposed CWT processor, and Figure 14 shows the scalograms from
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MATLAB software. The peak frequency and temporal location of the scalogram from the
proposed CWT processor and MATLAB software were analyzed, and the same evaluation
results were obtained: The heartbeat signal has a peak frequency of 1.5 Hz at 1.2 s, and the
respiration signal has a peak frequency of 0.3 Hz at 3.1 s. The slight difference between
Figure 13 and Figure 14 is due to the different number systems used. The proposed CWT
processor uses a 16-bit fixed-point number system, while MATLAB software uses a 64-bit
floating-point number system. The proposed CWT processor has a signal-to-quantization
noise ratio (SQNR) of about 32.1 dB in the effective data range.

The processing time for the proposed CWT processor was compared with that for
the MATLAB software. The proposed CWT processor consumes 0.031 ms for the CWT
operation of heartbeat signal using 24 scales, and 0.027 ms for respiration signal using
20 scales. In the case of MATLAB software using Intel i7 CPU at 3.6 GHz [43] with
32 GB RAM, about 1.5 ms and 1.1 ms were used to process heartbeat and respiration
signals, respectively. These results shows that the proposed CWT processor can reduce the
processing time for a CWT operation by 48.4-fold and 40.7-fold, respectively, compared to
the MATLAB software. Table 4 summarizes the comparison results for the processing time
between the proposed CWT processor and MATLAB software operation.
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Figure 13. The CWT scalogram from the proposed CWT processor: (a) heartbeat; (b) respiration.

Table 4. Comparison of the processing time between the proposed CWT processor and MATLAB software.

Signal
Input Data

No. of Scales
Processing Time (ms) Reduction

Length MATLAB Proposed (Fold)

Heartbeat 1024-point 24 1.5 0.031 48.4
Respiration 20 1.1 0.027 40.7

A comparison was made with previous research to confirm that the proposed CWT
processor has high-speed processing capabilities. When comparing the implemented CWT
processor, it excludes the implementation of a general-purpose processor (GPP), DSP, and
2-D CWT implementation [44–47]. Qasim et al. implemented a CWT processor using the
radix-4 burst I/O of the Xilinx FFT core V.5 for EEG function extraction [29,30]. For the
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fairest possible comparison, the processing time was normalized using the Tnorm expressed
in Equation (3).

Tnorm =
16nm
Tech

× 1024
Signal length

× 24
# o f scales

× Processing Time (3)

The ‘Tech’ in Equation (3) represents the CMOS process technology of the FPGA. The
‘Signal length’ of the equation is the length of input data, which affects the FFT computation
time. Finally, the number of scales was normalized to reduce the effect of the number of
scales used. Table 5 compares the proposed CWT processor and the CWT processor
described in [30], which is more recent than that in [29].
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Figure 14. The CWT scalogram from MATLAB: (a) heartbeat; (b) respiration.

Table 5. Comparison of the proposed CWT processor with the previous research results.

Work [30] This Work

FPGA device Spartan-3AN Zynq UltraScale+
Technology (nm) 90 16
Signal point (N) 1024 8/16/32/64/128/256/512/1024

No. of scale 21 24
Max. Freq (MHz) 1 133 302

Processing time (ms) 0.57 0.031 (max)
Tnorm (ms) 0.116 0.031

1 Maximum operating frequency.

The proposed processor can reduce the operation time of the CWT processor in
reference [30] by 73.3%. In this case, the proposed processor focused on various vital signal
measurements; therefore, the wavelet could not be fixed at the constant values. On the other
hand, the reference processor focuses only on EEG feature extraction; therefore, the wavelet
that can be used for observation is a fixed type. Consequently, the reference processor was
able to reduce the number of cycles by skipping unnecessary parts in the multiplication
process and increasing the maximum operating frequency. If the type of wavelet should be
flexible for a variety of applications, the difference in Tnorm between the reference processor
and the proposed processor will be considerable. Therefore, the proposed processor has a
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faster CWT processing time than the reference processor, which makes it more suitable for
real-time general vital-signal measurement.

5. Discussion and Conclusions

This paper proposes an FFT-based CWT processor for high-speed vital-signal mea-
surement. The proposed processor uses a pipeline FFT/IFFT architecture to satisfy the
trade-off between the throughput and hardware complexity. The FFT module for one-
channel input signals used an R2SDF architecture with low complexity. The IFFT module
for foura-channel input signals applies an MDC architecture with a smaller area than the
SDF architecture. Furthermore, it can decrease the number of non-trivial multipliers and
support various input signal lengths of 8, 16, 32, 64, 128, 256, 512 and 1024-point length
by using a mixed-radix algorithm. The proposed processor can support up to 24 daughter
wavelets with a maximum 1024-point length. The number of loaded daughter wavelets
can be controlled for use in various vital signal measurement applications. The proposed
CWT processor was implemented on a Xilinx Zynq UltraScale+ FPGA device and used
89,941 LUTs, 108,598 FFs, and 92 DSPs resources at the operating frequency of 302 MHz.
The processing time between the proposed CWT processor implemented in the FPGA
device and MATLAB software with an Intel i7 CPU were compared, and it is confirmed that
the proposed CWT processor can reduce the processing time by 48.4-fold and 40.7-fold for
heartbeat and respiration from an FMCW radar sensor, respectively. Finally, the proposed
processor is compared with a previous processor implemented using the FFT-based CWT
algorithm. As a result, the proposed processor can reduce the CWT processing time of
1024-point signals by 94.6% compared to the previous CWT processor. In addition, it
was confirmed that the processing time could be reduced by 73.3% if normalization was
performed with the technology of the FPGA device used, signal length, and number of
scales for a fair comparison. Thus, the proposed CWT processor proved to be effective for
real-time vital signal measurement requiring high speeds and flexibility in wavelet type,
signal length, and number of daughter wavelets.
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