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Abstract: Recently, the frequent occurrence of the misuse and intrusion of UAVs has made it a research
challenge to identify and detect them effectively, and relatively high bandwidth and pressure on data
transmission and real-time processing exist when sampling UAV communication signals using the RF
detection method. In this paper, firstly, for data sampling, we chose a compressed sensing technique
to replace the traditional sampling theorem and used a multi-channel random demodulator to sample
the signal; secondly, for the detection and identification of the presence, type, and flight pattern of
UAVs, a multi-stage deep learning-based UAV identification and detection method was proposed by
exploiting the difference in communication signals between UAVs and controllers under different
circumstances. The data samples are first passed by detectors that detect the presence of UAVs,
then classifiers are used to identify the type of UAVs, and finally flight patterns are judged by the
corresponding classifiers, for which two neural network structures (DNN and CNN) are constructed
by deep learning algorithms and evaluated and validated by a 10-fold cross-validation method, with
the DNN network used for detectors and the CNN network for subsequent type and flying mode
classification. The experimental results demonstrate, first, the effectiveness of using compressed
sensing for sampling the communication signals of UAVs and controllers; and second, the detecting
method with multi-stage DL detects higher efficiency and accuracy compared with existing detecting
methods, detecting the presence, type, and flight model of UAVs with an accuracy of over 99%.

Keywords: unmanned aerial vehicles; detection and identification; radio frequency; compressed
sensing; deep learning

1. Introduction

Drones, also known as unmanned aerial vehicles (UAVs), are unmanned aircraft
operated by radio-controlled equipment and self-contained programmable control devices
or operated completely or intermittently and autonomously by an onboard computer.
In recent years, the rapid development of the UAV industries has been driven by the
maturing technologies in the fields of information, control, and communication, which has
led to the gradual lowering of the threshold for the use of consumer- and industrial-grade
UAVs, making them widely used in various civil and commercial applications, such as
cinematography, agricultural inspection, and rescue search [1]. However, due to the lack of
unified industry standards and norms, the threshold of access is low and most UAVs are
operated in a “black flight” state. While bringing convenience to various industries, once
there is abuse and illegal intrusion, it can seriously threaten major public events, important
areas, airspace security, personal privacy, and national security, and even endanger human
lives and cause property damage. For example, they can endanger the safety of important
targets and affect the take-off and landing of passenger planes [2]; in addition, they may
be used by lawless elements to spy on people’s privacy, smuggle drugs, or even become
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“suicide drones” by terrorists with bombs [3,4]. Though the government has performed
a lot of work on drone regulation in recent years, including registration of real names,
building a comprehensive monitoring platform for drone cloud systems, and setting up
electronic fences, there are still a large number of hard-to-detect drones that need to be
detected and identified by relevant monitoring technologies [5].

Given various problems caused by misuse and malicious intrusion of UAVs, the
accurate detection and classification of UAVs are particularly important to ensure public
and national security. Many experts and scholars have proposed many different UAV
detection methods, which can be roughly divided into UAV detection algorithms based
on acoustics [6,7], visual (image or video) [8,9], radar [10–13], and radio frequency [14,15].
Considering the first three methods in practical application, there are some limitations and
deficiencies, and it is difficult to achieve a good detection effect. For example, the acoustic-
based UAV detection method has such problems, such as susceptibility to interference
from environmental or atmospheric noise and small detection range; the visual-based UAV
detection method cannot be used in dim and severely obstructed vision scenarios; and
the poor detection performance of the radar detection method is due to the low cross-
sectional area of the UAV radar, which is easily obscured by obstacles such as walls and
buildings [6,10]. In contrast, the RF fingerprint-based UAV detection method technique is
based on listening to UAV communication signals by using the high-gain receiving antenna
and high-sensitivity receiving system, which can solve the distance problems related to
visual and acoustic techniques and the influence of relevant environmental factors, and the
RF fingerprint detection method only requires a sufficient UAV dataset for training, which
makes the RF detection method a promising solution.

UAVs are usually flying in the air to achieve a specific task. However, within the
no-fly zone, there are techniques that need to be used to detect any drone intrusion in
the area for security reasons. In this paper, firstly, for data acquisition, we choose to use
compressive sampling [16,17] instead of the traditional sampling theorem since the UAV
communication signal is sparse in nature, and for this reason, we construct a multi-channel
random demodulation (MCRD) [18] sampling structure to sample and compress the UAV
communication signal simultaneously. This reduces the signal bandwidth to some extent
and relieves the pressure on data storage, transmission, and processing. Deep learning
(DL) is a very popular field of machine learning in recent years, and unlike other machine
learning algorithms, deep learning techniques are considered to be one of the most powerful
and effective techniques for selecting, extracting, and analyzing features from the original
dataset with relatively strong generalization capabilities. Therefore, we choose to use the
deep learning approach to build neural networks for training and validation of the original
UAV dataset.

In summary, to effectively and accurately detect and classify UAVs, we propose a UAV
radio frequency fingerprint detection and classification algorithm based on compressed
sensing and deep learning algorithms. The main contributions of this article are as follows:

1. According to the characteristics of the UAV communication RF signal, the compressed
sensing technology is introduced, and its effectiveness is verified through experiments.

2. A deep learning UAV detection and classification network based on radio frequency
compressed signals is constructed by using deep learning algorithms;

3. Filtering and feature extraction are performed on the compressed measurement signal,
which improves the classification effect of UAV types and modes.

The rest of this paper is organized as follows: Section 2 mainly summarizes the
related work and techniques; Section 3 focuses on the proposed sampling, pre-processing,
and detecting methods; Section 4 describes the dataset, experiments, evaluation metrics,
and experimental results used in this paper; Section 5 compares our method with other
detecting methods using the same dataset; and Section 6 concludes and provides an outlook
on future work.
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2. Related Work

In this section, we mainly introduce some work related to the RF fingerprint-based
UAV detecting method. In general, the RF-based UAV detecting method has two main
parts: one is to collect the background RF signals, the RF signals of various types of UAVs,
and build the raw dataset available for training; the second is to train and validate the
original dataset of drones using the corresponding detection and classification methods to
finish the detection and classification of UAVs.

2.1. Data Acquisition

For data acquisition of UAV RF signals, many papers nowadays basically use the
traditional Nyquist sampling theorem for sampling as they do not take into account the
sparse nature of UAV communication signals. In [19], Al-Sa’d et al. address the lack of
an open-source dataset of radio frequency (RF) signals for UAV communication by using
two NI USRP-2943R RF receivers to collect, analyze, and record raw RF signals from UAVs
in different flight modes at a bandwidth of at least 80 MHz by the sampling theorem to
construct a UAV RF database. The sampling theorem requires that the sampling rate of
the signal must be greater than or equal to twice the maximum frequency to recover the
original signal from the sampled signal. This means that it will have a sampling rate of
160 MHz or more, which is fully manageable by the sampling system, but there is still a
large pressure on the storage, transmission, and processing of data for a UAV detection
system with high requirements for lightweight and real-time [20]. However, we note
that the RF signals communicated between the UAV and the controller are sparse, which
means that it is perfectly possible to use compressed sensing techniques to sample them
instead of the Nyquist sampling theorem. Moreover, introducing the CS framework to UAV
signal acquisition has at least several advantages: (i) the number of samples collected from
sensors is significantly reduced, (ii) the power consumption of the CS-based acquisition
system is decreased, (iii) the processing time required by the algorithms required for
refinement is reduced, and (iv) the observation bandwidth of the overall acquisition system
is increased [21].

Compressed sensing, also known as compressive sampling [16], breaks the limits of
the traditional sampling theorem so that the sampling rate of the signal is no longer limited
by the signal bandwidth, but depends on the content of the information in the signal. It
takes advantage of the sparsity of the signal to obtain the compressed measure of the signal
at a sampling rate lower than the Nyquist rate, samples and compresses the signal at the
same time, and then recovers the original signal by a reconstruction algorithm. In [21],
for the problem of detecting, locating, and tracking mobile RF transmitters, Pasquale et al.
detail several emerging areas of this new RF sensing system, and also propose and discuss a
technical approach to use compressed sensing for RF sensing systems, and determine its fea-
sibility. It is also pointed out that the use of CS techniques for RF sensing systems does not
require a complete signal reconstruction from compressed measurements. In [22], to solve
the problem of real-time UAV data return to the receiving station with limited bandwidth,
Huang et al. utilize compressed sensing and matrix complementation techniques to achieve
real-time transmission of UAV monitoring data, which greatly reduces the data return
time while restoring the image almost identical to the original one. In [23], to correctly
classify ground targets by UAVs (UAVs), Zhu et al. used the PCA algorithm to remove
ground clutter and refined the micro-Doppler characteristics with compressed sensing
to extract features, which improved the classification accuracy and achieved an overall
accuracy of 92.5%. In [24], Gaigals et al., established the detection of UAV transmission
signals by passive radar and compressed and sampled the UAV transmission signals by
compressed sensing technique to investigate the effect of different antenna settings on the
UAV detection quality. It is fully demonstrated that the compressed sensing technique is
fully applicable to the RF signal sampling between the UAV and controller.
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2.2. Detection and Classification Methods

Target detection methods have evolved and an increasing number of detection meth-
ods are proposed. Examples include some adaptive detectors proposed for the generalized
likelihood ratio test (GLRT), the Rao test, the Wald test, or modifications to them [12]; the
total Bregman divergence-based matrix information geometry (TBD-MIG) detector [11];
and the Signal Subspace Matching Detector (SSM) [13], etc. However, the RF signal targets
for UAVs are currently mainly detected and classified by traditional machine learning or
deep learning-based methods.

2.2.1. Traditional Method Based

The traditional machine learning-based UAV detecting method is simply to detect
and classify the primary UAV dataset using traditional machine learning methods, such as
kNN, XGboost, MLP, SVM, etc., to detect and classify the dataset.

In [25], Azuma et al. transformed the original signal to the wavelet domain in the
detection phase and used a Naive Bayes Method to detect drones; in the classification
phase, a set of the statistical features was extracted from the energy transient signal, then
the important features were selected by Neighborhood Component Analysis (NCA), and
finally the selected features were given back to several machine learning algorithms for
classification, where the use of the kNN classification method achieved an accuracy rate of
96.3%. They experimented in [26] to achieve 98% classification accuracy using KNN under
signal interference from Wi-Fi and Bluetooth transmitters at 25 db. In [27], Medaiyese
et al. designed a machine learning RF-based DDI system with three machine learning
models developed by the XGBoost algorithm, and experimentally verified that the low-
frequency spectrum of the captured RF signal in the communication between the UAV and
its flight controller as the input feature vector already contains enough information; and
finally, using only the low-frequency spectrum as the input feature vector, the XGBoost
algorithm was used to detect and identify the presence of an UAV, three types of UAVs,
and corresponding flying modes with an average accuracy of 99.9%, 90.73%, and 70.09%,
respectively. In [28], Ibrahim et al. proposed an improved UAV detection and identification
method using an integrated learning approach based on hierarchical concepts combined
with preprocessing and feature extraction stages of RF data. The detection method makes
full use of the KNN and XGBoost methods in machine learning and is evaluated in the
publicly available dataset of [15], which shows that the method can detect whether a UAV
is flying in the region and can directly identify the type of UAV and corresponding flying
modes with an average accuracy of about 99%.

2.2.2. Deep Learning Based

DL is a very popular field of machine learning in recent years, unlike traditional
machine learning algorithms; firstly, it can select extracts as well as analyze features directly
from the original dataset without relying on manual feature selection and extraction; and
secondly, DL techniques can adapt to a variety of different datasets without affecting the
classification performance, which means that its generalization ability is very powerful.

In [29], Al-Sa’d et al., for their dataset published in [19], designed three deep neural
networks (DNN) for UAV presence, type, and flying modes detection and classification,
respectively, which were validated by 10-fold cross-validation and evaluated using various
metrics. The classification results show that the average accuracy of the DNN method
in detecting the presence, type, and corresponding flying modes of UAVs reached 99.7%,
84.5%, and 46.8%, respectively, which fully demonstrated the feasibility of UAV detection
and recognition through the dataset. In [30], Al-Emadi et al. similarly based on this dataset,
tried to solve the UAV detection and classification problem by adding a feature extraction
layer with a convolutional layer then a fully connected layer for detection and classification,
which improved the accuracy of UAV detection and classification. In [31], Shi et al. built an
RF UAV dataset including five types of UAV by recording two types of UAV with yunSDR
software radio devices based on the dataset [19]. A 1D convolutional neural network was
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designed for detection and identification based on the characteristics of the sample data
and CNN network. The final accuracy of detecting the presence of UAVs was 99.6%; the
accuracy of classifying UAV types was 96.8% (6 types); and the identity rate of flying modes
reached 94.4% (12 modes).

3. Proposed Sampling and Detection Method

In this section, we mainly introduce the sampling structure and data pre-processing
method based on CS theory that we adapt according to the signal characteristics of the UAV
RF signals; secondly, we introduce the neural network structure designed in this paper for
detecting and classifying UAV RF fingerprints.

3.1. Detection and Classification Methods
3.1.1. Compressive Sensing

In this paper, the signal we sample is the RF signal x(t) of the session between the UAV
and the controller. Although the x(t) signal is susceptible to various kinds of noise during
communication, leading to a small percentage of zero elements in x(t), many elements
are close to zero. It is continuously collected when it is sampled, but the session between
the UAV and the controller is intermittent, so at the moment when there is no command
transmission, the sampled signal is only noise, making the difference between the values
of the elements of the x(t) signal very large. However, after filtering the signal x(t), x(t)
is exhibiting sparsity in the frequency band; and when x(t) has sparsity, it just meets the
prerequisite condition of compressive sensing, so the sampling of x(t) by compressive
sensing is available.

With the development of compressed sensing technology, researchers have proposed
a variety of sampling structures based on CS theory, whose representative results mainly
include Random Filter (RF) [32], Random Sampling (RS) [33], Random Demodulation
(RD) [34], and Modulated Wideband Converter (MWC) [35]. According to the charac-
teristics of the x(t) signal, we constructed a sampling structure of multichannel random
demodulation (MCRD) based on CS theory, as shown in Figure 1, which is composed of
multiple channels, each of which can be considered as an independent RD system. The
structure is similar to MWC, but the randomly mixed signal is different. The mixing func-
tion of MWC is periodic, while the mixed signal of MCRD is a random sequence, so only
a random sequence needs to be generated in MCRD, and then modulated into different
carrier frequencies.
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Figure 1. Multi-channel Random Demodulation Sampling Structure.

Suppose the UAV communication signal is x(t) with a bandwidth of B. It is divided
into m subbands, each with a bandwidth of B/m. Then the signals of these m subbands are
multiplied with the random sequence separately and then sampled at low speed (sampling
frequency lower than 2 B/m) after passing low-pass filtering to obtain compressed sampling
for multiband random demodulation. The specific steps are as follows: the x(t) signal
enters m channels at the same time, and in i-th) channel.
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a. x(t) is multiplied with the mixed signal pi(t) time domain, and the spectrum of x(t) is
frequency shifted to the lower frequency band; that, is the spectrum of x(t) is moved
to the [−f/m, f/m] region, thus the mixed signal is:

pi(t) = 2εncos
(

2π
i· f
m

t
)

, t ∈
[

n
W

,
n + 1

W

)
, n = 0, 1, · · ·W − 1, i = 0, 1, · · · , m− 1, (1)

where εn is obtained with equal probability taking ± 1 and W is the Nyquist rate.
b. After the ideal low pass filter h(t) with a cut off frequency of fs/2,the mixed output

signal x̃i(t) will be filtered out of the high frequency signal and only the signal whose
spectrum is shifted to the low frequency band (the narrow band signal with frequency
in [−/2, fs/2]) will be retained, so the filtered signal is the signal of the i-th band in
the original x(t).

c. Finally, the m group of low-speed sampling sequence yi(n) is obtained by sampling
interval Ts for the low-speed ADC sampling (ADC sampling satisfies the Nyquist
theorem), when:

yi(n) =
∫ n·Ts

0
x(τ)dτ·

∫ n·Ts

0
pi(τ)h(n·Ts − τ)dτ = Φi·x(n), (2)

Φi =
∫ n·Ts

0
pi(τ)h(n·Ts − τ)dτ, (3)

In this paper, because the high-speed pseudo-random sequence (mixed signal pi(t)
is produced by taking ±1 with equal probability, after low-pass filtering and low-speed
sampling, the measurement matrix of the whole MCRD sampling structure becomes a
random Bernoulli matrix.

Φ =


Φ0 · · · 0
...

Φ1
. . .

...

0 · · · Φm−1

, (4)

If the Nyquist sample of signal x̃i(t) on a frequency band of the x(t) signal is x̃i(m)
with length M, then the compressed measurement signal yi(n) in the corresponding ith
channel in the MCRD is mathematically represented as the product of the observation
matrix Φ ∈ Rn×m and x̃i(m).

yi(n) = Φi × xi(m), (5)

3.1.2. Data Pre-Processing

The RF signal x(t) communicated between the drone and the controller is sampled by
the CS-based MCRD sampling structure to obtain the compressed measurement signal yi(n)
for each channel; however, the data are still further processed to make it easier to distinguish
the characteristics of the data and to collocate each yi(n). The specific preprocessing is
as follows.

a. Zero-centered the compressed measurement signal yi(n), to remove mainly the
zero-frequency component and the offset component.

b. Computing the yi(n) power spectral density Pi(k).

Pi(k) =
1
N

N−1

∑
m=0

[yi(n)e
j 2πmk

N ]
2
, (6)

where N is the length of yi(n), and k ≤ n.
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c. The conversion signals of each channel are connected to create the complete spectrum.
As the connection between each conversion signal obtained after MCRD sampling is
the same. Therefore, only the connection of two adjacent channels is given here.

P(k) = [Pi(k), cPi+1(k)], (7)

c =
∑Q

q=0 Pi(k)(N − q)

∑Q
q=0 Pi+1(k)(q)

, q = 0, 1, . . . , Q− 1 (8)

where c is a normalization factor calculated as the ratio between the last Q samples
of the previous power spectrum Pi(k), and the first Q samples of the next power
spectrum Pi+1(k), and N is the total number of in Pi(k). c ensures that continuity of
the spectrum is maintained between the two halves of the RF spectrum, as they are
captured using different devices; however, the spectral bias is inevitable. Note that Q
must be relatively small to successfully stitch the two spectra and large enough to
average out any random fluctuations, e.g., Q = 10 for M = 2048.

d. Finally, only the connected power spectral density P needs to perform maximum nor-
malization to vary all the values to within the interval from 0 to 1, which constitutes
one piece of data for the input detection classification network.

3.2. Two/Multistage Classification Network

In this paper, we directly feature extraction and identify the compressed sampled
signal without recovering the original signal through reconstruction algorithms. For such
signals, feature extraction by conventional methods is relatively difficult, but DNN and
CNN networks extract features by learning methods; the latter obviously being a little
easier. Secondly, many recent research results [29–31] have shown that DNN and CNN
networks are perfectly suitable for detecting and classifying RF signals. Therefore, the
DNN and CNN network structures are chosen for detection and identification. Below, the
CNN and proposed network structure is described in detail.

CNN is a class of DL techniques that has the unique feature of combining feature
extraction and classification into a single model. It is composed of layers, each layer is
a collection of neurons, and consists of three main layers: convolutional layer, pooling
layer, and fully connected layer. The convolutional layer mainly extracts features from the
input data; the pooling layer is used to reduce the computational complexity and cost by
downsampling; and finally, the fully connected layer and the corresponding activation
function are used to classify the features extracted from the previous layer. Thus, CNN
provides a flexible architecture to increase and decrease the number of layers according to
the need and the complexity of the data.

In this paper, we need to detect and classify the RF signals of communication between
the UAV and controller. Within the no-fly zone, we need to detect the presence of the UAV,
and identify the type of UAV and the current flying modes of that type of UAV. For this
case, we can use a layered learning approach, where the layered model first determines
the presence of the UAV; then, identifies the type of UAV based on that RF signal after
the presence of the intruding UAV is determined; finally, the flying modes in which the
UAV is located are further determined based on that type of RF signal. Given the different
detection and classification complexities, we designed the following two different neural
network models for them, respectively, as follows.

1. UAV Detection Network (DNN Network): mainly used in the no-fly area to detect
the existence of UAVs; in other words, two types, with and without the presence of
UAVs. Since these two signals are still relatively easy to distinguish in the spectrum,
we constructed a DNN network consisting of five Dense layers, with the specific
parameters shown in Table 1.
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Table 1. UAV Detection Network.

Layer Embedded Structure Parameter Activation

1 Input (None, 2047) -

2

Dense
Dense
Dense
Dense

256
128
256
128

ReLU
ReLU
ReLU
ReLU

3 Output Layer 2 sigmoid

2. UAV Identification and Classification Network (CNN Network): mainly used to
identify and classify the type and flying modes of UAVs. Firstly, after detecting an
intruding UAV, the type of UAV (N class) is identified based on the RF signal, where
N is the number of UAV type contained in the UAV dataset; secondly, after determin-
ing the type of UAV, then the motion mode under that type is further determined
(4 Classes: on, connected and off; hovering; flying; and flying with video recording).
For both cases, we use convolutional layers for feature extraction, pooling layers
to reduce the information size, and finally fully connected layers for classification.
A CNN network structure is designed, consisting of six 1D convolutional layers,
each followed by a pooling layer, ending with two fully connected layers for further
classification, interspersed with two Dropout layers to prevent overfitting, with the
parameters shown in Table 2.

Table 2. UAV Identification and Classification Network.

Layer Embedded Structure Parameter Activation

1 Input Layer (None, 2047, 1) -

2 Conv1D
Max pooling filters = 32, kernel size=6 ReLU

3, 4, 5 Conv1D
Average pooling filters = 64, kernel size = 3 ReLU

6, 7 Conv1D
Average pooling filters = 128, kernel size = 3 ReLU

8 Dropout
Flatten 0.25 -

9
Dense

Dropout
Dense

256
0.22
128

ReLU

10 Output Layer Type of Output softmax

4. Experiments and Results

In this section, we first introduce the dataset used, followed by the detailed sampling
process further in the simulation experiments, and finally the evaluation metrics and
experimental results for performing the detection and classification.

4.1. Dataset

During the experiments, we choose the dataset publicly available in [19] to better
compare with existing work. Based on this dataset, the compressed sampled dataset is
simulated.

4.1.1. Raw Dataset

The dataset contains 227 segments of recorded RF signal strength data, each segment
includes two parts: low-frequency signal xl(n) and high-frequency signal xh(n); each
part contains 1 million samples. They obtained from 3 UAVs (AR, Bebop, and Phantom)
experiments with 10 types. There was 10.25 s of background RF activity data (no UAV), and
5.25 s of UAV communicated RF data. Besides the background RF activity, four different
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modes or states of the UAV are recorded: on, connected and off; hovering; flying; and flying
with video recording, as shown in Table 3. The UAV is controlled by the controller, and
the RF signal strength data are collected by two RF receivers that receive the first 40 MHZ
(low-frequency signal) and the second 40 MHZ strength (high-frequency signal).

Table 3. Composition of Drone-RF Dataset.

Class-2 Class-4 Class-10 Segments Ratio

No UAV No UAV No UAV 41 18.06%

UAV

Bebop

On, connected, off 21 9.25%
Hovering 21 9.25%

Flying 21 9.25%
Flying with video recording 21 9.25%

AR

On, connected, off 21 9.25%
Hovering 21 9.25%

Flying 21 9.25%
Flying with video recording 18 7.94%

Phantom 3 On, connected, off 21 9.25%

4.1.2. Simulation Dataset

In the dataset of [19], it is known that the UAV communication signals x(n) are all
already acquired, which are split into two low-frequency signals xl(n) and high-frequency
signals xh(n) with temporal continuity and sparsity, so that the number of channels m in the
MCRD sampling structure of Section 3.1 is two when the random Bernoulli matrix becomes:

Φ =

[
Φ1 0
0 Φ2

]
, (9)

For increasing the number of samples in the dataset, we divide the xl(n) and xh(n)
signals into 100 segments and record each segment as signal xl/hi(n) with length 1× 105.
Based on the length of the xl/hi(n) signal and compressed measurement signal, we gen-
erated the 2048×1 ∗ 105 random Bernoulli matrix Φ1/2. Then, the xl/hi(n) and Φ1/2 are
substituted into the Equation (5) and low-pass filtered to obtain the corresponding low-
dimensional observation signal with length 2048. After obtaining the low-dimensional
observed signal yl/hi(m), only feature extraction and spectral concatenation need to be
performed according to the preprocessing link in Section 3.1. Note: To reduce the amount of
data and considering that the power spectral density Pi(k) is symmetric here, it is sufficient
to take half of each of the two channels Pi(k) for spectral connection.

4.1.3. Dataset Reliability Analysis

For preliminary validation of the method in this paper and to ensure the reliability of
the dataset fed into the neural network, we statistically analyzed and initially examined
the spectrum and correlation features of the RF signal dataset generated by simulated com-
pressed sampling. After noise variation reduction and aggregation with smoothing of the
spectrum, the average power spectra of the three given scenarios (Class 2, 4, and 10) in the
dataset were obtained as shown in Figure 2. In two classes of scenarios, Class 1 represents
the RF background activity in the absence of UAVs, and Class 2 represents the RF signal
in the presence of UAVs. For four classes of scenarios, Class 1 represents RF background
activity without UAV, Class 2 to 4 are Bebop, AR, and Phantom, respectively. For 10 classes,
Class 1 represents RF background activity without UAV, Class 2 to 5 represents the four
modes of Bebop, Class 6 to 9 represents the four modes of AR and Class 10 is Phantom.
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Figure 2. Average power spectrum of the RF activities for 2, 4, and 10 classes scenarios: In (a), class 1
is for RF background activities and class 2 is for the drones RF communications (to be supplied to the
UAV Detection Network). In (b), class 1 is for RF background activities and classes 2–4 are for the
Bebop, AR, and Phantom drones (to be supplied to the UAV Identification Network). In (c), class 1 is
for RF background activities, classes 2–5 are for the Bebop 4 different flight modes, classes 6–9 are
for the AR 4 different flight modes; and lastly, class 10 is for the Phantom single flight mode (to be
supplied to the UAV Classification Network).

As can be seen from Figure 2, there are certain differences between the average power
spectra of different types of UAVs, and there are also certain differences between the
average power spectra of different flight modes of the same type of UAV, but the differences
are relatively small, so it is difficult to make accurate classification using traditional signal
recognition methods; hence, we introduce convolutional neural networks to dig deeper
into their intrinsic deep features for signal differentiation.

4.2. Counterpart Two/Multilevel Classification

For this dataset, our approach is shown in Figure 3. The raw RF signal from the drone
is pre-processed with data to obtain the corresponding simulated data, which then enters
the Detector in the learning phase. The output of this Detector on our RF signal informs
whether there is a drone or no drone in the detected area. If there is a drone in the area,
this data sample enters Classifier 0 to determine the type of drone detected (Bebop, AR,
and Phantom 3). If the detected drone is Phantom 3, the output of the detection method
is category number 9. Otherwise, the data sample enters Classifier 1, when the detected
drone is Bebop, or Classifier 2, when the detected drone is AR. Classifiers 1 and 2 define
the mode of the detected drone as one of the following based on four classes: on, connected
and off; hovering; flying; and flying with video recording, where the classes for Bebop UAV
are: 1 for on, connected and off mode; 2 for hover mode; 3 for flying mode; and 4 for flying
with video recording mode. For the AR UAV, the modes are as follows: 5 for on, connected
and off mode; 6 for hover mode; 7 for flying mode; and 8 for flying with video recording
mode. The Detector uses the UAV detection network (DNN structure) from Table 1; the
Classifier 0, 1, and 2 use the identification and classification network (CNN structure) from
Table 2.



Sensors 2022, 22, 3072 11 of 15

Sensors 2022, 22, x FOR PEER REVIEW 11 of 16 
 

 

from Table 1; the Classifier 0, 1, and 2 use the identification and classification network 
(CNN structure) from Table 2. 

 
Figure 3. Our approach consists of dividing the dataset into training and testing data stage and a 
learning stage with four classifiers to specify the class of any sample. 

4.3. Detection and Classification 
4.3.1. Assessment Indicators 

In our process of challenging UAV detection and classification systems, we have 
added recall, error rate, precision, false-negative rate (FNR), false discovery rate (FDR), 
and F1 score to assess the goodness of the system, taking into account the fact that classes 
are unequally correlated with each other and that classes are unbalanced, in addition to 
using accuracy to assess the goodness of the system. These metrics are assessed and 
summarized in matrix form using a confusion matrix, which can be calculated from the 
equation below. 

Accuracy = TP+TN
TP+TN+FP+FN’ , (10) 

Precision = TP
TP+FP′

 , (11) 

Recall = TP
TP+FN′

 ,  (12) 

Error = 1−Accuracy  (13) 

FDR=1−Precision  (14) 

FNR = 1−Recall (15) 

F1 score = 2×(Precision×Recall
Precision+Recall

) (16) 

where TP, TN, FP and FN are true positives, true negatives, false positives, and false 
negatives, respectively. 

4.3.2. Experimental Results 
Within this subsection, we will experiment and discuss the neural network structure 

proposed in Section 3.2 with the parameters shown in Table 4. This paper uses 10-fold 
cross-validation to randomly divide the dataset into 10 subsets, with each remaining 9 
subsets used for training, and 1 subset used for validation in 10 cycles. 

Table 4. Selection of Experimental Parameters. 

Figure 3. Our approach consists of dividing the dataset into training and testing data stage and a
learning stage with four classifiers to specify the class of any sample.

4.3. Detection and Classification
4.3.1. Assessment Indicators

In our process of challenging UAV detection and classification systems, we have added
recall, error rate, precision, false-negative rate (FNR), false discovery rate (FDR), and F1
score to assess the goodness of the system, taking into account the fact that classes are
unequally correlated with each other and that classes are unbalanced, in addition to using
accuracy to assess the goodness of the system. These metrics are assessed and summarized
in matrix form using a confusion matrix, which can be calculated from the equation below.

Accuracy =
TP + TN

TP + TN + FP + FN′
, (10)

Precision =
TP

TP + FP′
, (11)

Recall =
TP

TP + FN′
, (12)

Error = 1 − Accuracy (13)

FDR = 1 − Precision (14)

FNR = 1 − Recall (15)

F1 score = 2×
(

Precision× Recall
Precision + Recall

)
(16)

where TP, TN, FP and FN are true positives, true negatives, false positives, and false
negatives, respectively.

4.3.2. Experimental Results

Within this subsection, we will experiment and discuss the neural network structure
proposed in Section 3.2 with the parameters shown in Table 4. This paper uses 10-fold cross-
validation to randomly divide the dataset into 10 subsets, with each remaining 9 subsets
used for training, and 1 subset used for validation in 10 cycles.

UAV presence detection is actually a binary hypothesis problem, and for the detector
(to detect the presence of UAV), the RF background activity without UAV signal and the
RF signal with UAV are marked as zero and one, respectively, and then fed into the UAV
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detection network in Table 1 in Section 3.2. Using 10-fold cross-validation, 30 rounds are
trained in batches of 10, and the last activation layer is chosen as a Sigmoid function as well
as convergence using the MSE loss function. The final binary classification accuracy and F1
scores reach 100%, as shown in Figure 4a.

Table 4. Selection of Experimental Parameters.

Experiments Epochs Batch Size Activation
Functions Loss Learning_Rate

Detector 30 10 Sigmoid mse Default
Classifier1 200 20 Softmax CrossEntropy Default
Classifier23 300 120 Softmax CrossEntropy 0.00003
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Figure 4. The output confusion matrix for 2-classes, 4-classes, and 10-classes scenario: Where (a) is
the 2-classes output confusion matrix (detecting the presence of a drone); (b) is the 4-classes output
confusion matrix (detecting the presence of a drone and identification its type); and (c) is confusion
matrix of outputs for 10-classes scenario (detecting the presence of a drone, identification its type,
and determining its flight mode).
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If the Detector identifies it as the UAV signal, we need to further classify its UAV
type. The RF background activity signal without UAV signal, Bebop, AR, and Phantom
are labeled as zero, one, two, and three, respectively; and finally, the data are fed into
the CNN network in Table 2 in Section 3.2. By 10-fold cross-validation, 200 rounds are
trained in batches of 20, and the last activation layer is chosen as a Softmax function as
well as convergence using a Cross-Entropy loss function. The final quadruple classification
accuracy was 99.6% and the F1 score was 99.6%, as shown in Figure 4b.

Finally, we further identify which mode the RF signal classified by the type classifier
(Classifier 1) is in. For these two classifiers, we also use the CNN network structure from
Table 2 in Section 3.2 for classification. The four patterns are also labeled and fed into
the CNN network, which is trained for 300 rounds in batches of 20 using 10-fold cross-
validation, with the last activation layer chosen as a Softmax function and a cross-entropy
loss function for convergence. Finally, to better compare with other papers using this
dataset, we took the background RF activity, the four types of AR/Bebop patterns, and the
Phantom type, to form a 10-class confusion matrix with a classification accuracy of 99.3%
and an F1 score of 99.3%, shown in Figure 4c.

Worth noting: the rows and columns of this matrix’s interior correspond to the pre-
dicted and true classes, respectively. The diagonal cells highlighted in green indicate
correctly classified segments, while the non-diagonal cells indicate incorrectly classified
segments, with the total number of segments and percentage of segments in each cell in
bold. Next, the grey column on the far right shows Precision in green and FDR in red; the
grey row at the bottom shows Recall in green and FNR in red; the blue cell in the bottom
right corner of the figure shows Overall Precision in green and Error in red; the yellow
column and row on the far left and top show the F1 score predicted for each class in green
and it shows complementarity (completeness) in red; the orange cell in green indicates the
average F1 score for all classes, and in red its complementarity.

5. Comparison with Other Methods

We compare the method proposed in this paper with other papers using the same
dataset [27–30]. In paper [29], the authors used four fully connected layers to build a
DNN network and utilized 10-fold cross-validation for training to verify the validity of the
dataset; in paper [30], the authors tried to use CNN instead of DNN to solve the detection
problem and obtain better accuracy; and in paper [27], the authors used only the lower band
of RF signals and XGBoost algorithm to solve the classification problem. In the paper [28],
the authors combine KNN and XGBoost to solve the pattern classification problem of
UAVs using an integrated learning approach. Table 5 summarizes the performance of
the five methods, and the results demonstrate that: firstly, the effectiveness of using
compressed sensing techniques on sampling the communication signals between the UAV
and the controller is verified; and secondly, it shows that the method used in this paper
outperforms other learning methods in terms of accuracy, F1 score, and recall, at very low
sampling rates.

Table 5. Results of different sampling methods and machine learning.

Reference Sampling Approach 2-Classes 10-Classes

[29] NS 1 DNN 99.7% 46.80%
[30] NS 1 CNN 99.8% 59.20%
[27] NS 1 XGBoost 99.9% 70.09%
[28] NS 1 Hierarchical 99.5% 99.20%

Ours CS 2 DNN/CNN 100% 99.30%
1 is sampling theory, 2 is Compressive Sensing.

6. Conclusions and Future Work

In this paper, we introduce the compressed sensing technique into the sampling of
the session communication signal between the UAV and controller with a multi-channel
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random demodulator constructed. For the detection and identification of UAVs, we use the
DNN and CNN networks designed in this paper for UAV detection and classification and
finally achieve 100% accuracy for detecting UAV presence, 99.6% accuracy for identifying
UAV types, and about 99.3% for UAV pattern classification. It is fully verified that the
proposed signal sampling method and UAV detection algorithm in this paper is effective
and can still obtain good detection results under a very low sampling rate. In future work,
we intend to use multi-station detection to achieve UAV localization and tracking under
the reduced pressure of data storage, transmission, and processing, through compressed
sampling in this paper.
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