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Abstract: Electroencephalography (EEG) is a brain imaging technique in which electrodes are placed
on the scalp. EEG signals are commonly decomposed into frequency bands called delta, theta, alpha,
and beta. While these bands have been shown to be useful for characterizing various brain states,
their utility as a one-size-fits-all analysis tool remains unclear. The goal of this work is to outline an
objective strategy for discovering optimal EEG bands based on signal power spectra. A two-step data-
driven methodology is presented for objectively determining the best EEG bands for a given dataset.
First, a decision tree is used to estimate the optimal frequency band boundaries for reproducing the
signal’s power spectrum for a predetermined number of bands. The optimal number of bands is
then determined using an Akaike Information Criterion (AIC)-inspired quality score that balances
goodness-of-fit with a small band count. This data-driven approach led to better characterization
of the underlying power spectrum by identifying bands that outperformed the more commonly
used band boundaries by a factor of two. Additionally, key spectral components were isolated in
dedicated frequency bands. The proposed method provides a fully automated and flexible approach
to capturing key signal components and possibly discovering new indices of brain activity.

Keywords: electroencephalography (EEG); EEG bands; decision tree; machine learning

1. Introduction

The electrical activity produced by the brain was discovered by Richard Caton. Hans
Berger later demonstrated that this activity could be recorded directly from the scalp [1].
This technique for measuring brain activity is called electroencephalography (EEG). It con-
sists of an array of electrodes placed on the scalp that record fluctuations in electric potential
arising from the activity of synchronized neural populations [2,3].

A popular method of analyzing EEG is spectral analysis. This consists of decomposing
signals onto a frequency basis (Figure 1) and grouping frequencies into spectral bands
(i.e., frequency ranges). A popular method for EEG signal decomposition is Welch’s
method which estimates a signal’s spectral power density across a range of frequencies [4].
Commonly used spectral bands are: delta, theta, alpha, and beta [5].

EEG bands correspond to brain phenomena in specific brain areas and contexts. For
example, alpha activity from occipital regions (i.e., visual cortex) in relaxed, awake animals
track with eye closures [6]. During sleep, alpha-band activity is observed at sleep onset, also
called sleep spindles (7–14 Hz), and delta waves (1–4 Hz) appear in deep sleep stages [6].
Additionally, EEG bands have been used in a variety of contexts such as: measuring
cognitive load [7–9], disease diagnosis [10–12], and predicting emotions [13–15].

Despite the widespread use of established spectral bands (e.g., delta, theta, alpha, and
beta), there are two potential concerns with the current standard. First, there is significant
variability in band boundaries across studies, as shown in Figure 2. This disagreement may
be a result of a variety of factors such as hardware, filtering, and experimental task [12].
Second, ideal band definitions may depend on individual characteristics such as age,
genetics, personality, and task performance [16].
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Figure 1. (Top) Example EEG time series signal sampled at 500 Hz. (Bottom) EEG signal’s corre-
sponding power spectrum, where the natural logarithm of the signal’s power spectral density (PSD)
is plotted against frequency.

Figure 2. Box plot illustrating variability between delta, theta, alpha, and beta band boundaries
across studies. Boxes indicate the typical frequency range of each band. Whiskers represent the
smallest and largest band edges observed across studies. Plot adapted from figure in [12].

These concerns motivate the use of data-driven approaches for the discovery of optimal
EEG band boundaries. Such an approach tailors EEG bands to a specific experimental context
in an automated way. Many methodologies have been proposed to achieve this goal [16–20].
These approaches typically make use of a target variable to ground the optimization of band
boundaries [17–20]. For example, learning the best choice of boundaries for classifying Alzheimer’s
disease [17]. A more recent approach proposed by Cohen makes use of a generalized eigende-
composition of the covariance matrix for multi-channel EEG data [16].

Here, we present a new method of EEG band discovery, that makes use of decision
trees, a popular machine learning framework. Optimal bands are inferred for an input EEG
power spectrum in a self-supervised way. Two key points distinguish this method from
past approaches.

• Band discovery is completely self-supervised in the sense that only EEG data is used
• As the method only uses a power spectrum, it is agnostic as to how the data is

generated, so it can handle both single- and multi-channel data in a variety of contexts.
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2. Methods
2.1. Method Overview

An overview of the data-driven method for EEG band discovery is illustrated in
Figure 3. The first step is to obtain single- or multi-channel EEG recordings. Second,
a power spectrum is computed using, for example, Welch’s method [4]. It is noted that
information from multiple EEG channels can be aggregated into a single power spectrum in
this step. Third, a set of band boundaries is derived for every possible choice of band count.
Possible values range from 2 bands up to the total number of unique frequency values in
the power spectrum. Fourth, an AIC-inspired quality score is computed for each choice of
band count. Finally, the band boundaries with the smallest quality score are selected as the
best choices.

Figure 3. Conceptual overview of the data-driven methodology used in this paper.

There are two key components of this data-driven method. The first component is the use
of a decision tree to obtain optimal EEG band boundaries for a specified band count. There are
two main benefits to using a decision tree in this context. First, due to the structure of decision
tree regression, frequency values are grouped into true bins. In other words, frequency values
in a discovered band are adjacent, which may not be guaranteed by other regression techniques.
The second is the ease of use. There are many efficient and ready-to-use implementations of
decision tree optimization across many computational frameworks [21–24].

The second key component is an Akaike Information Criterion (AIC)-inspired quality
score which serves as an objective from which the choice of band count can be optimized.
As a result, this objective eliminates the need for manual entry of a band count.

2.2. Decision Trees

Decision trees are a widely-used and intuitive machine learning approach. Typically,
they are used to solve prediction problems. That is, identifying a discrete target class
(classification) or estimating a continuous target value (regression) from a set of predictor
variables [25].

Data can be used to grow decision trees in an optimization process called training.
Training requires a training dataset, which consists of predictor variables labeled with
target values. A standard strategy for training a decision tree is recursively partitioning
data via a greedy search method. The search determines the gain from each splitting option
and then chooses the one that provides the greatest gain [25,26]. Splitting options are the
observed predictor variable values in the training dataset. Gain is determined by the split
criterion e.g., Gini impurity or mean squared error (MSE).

For example, in a regression task, data records are recursively split into two groups
such that the weighted average MSE of the target value is minimized from the resulting
groups. MSE is defined as follows.

MSE =
1
N

N

∑
i=1

(Yi − Ŷi)
2

where, N is the total number of observations in a given partition. Yi is the true target
value for the ith frequency value. Ŷi is the tree estimated target value for the ith frequency
value.This splitting procedure can continue until all data partitions are pure, meaning every
data record in a given partition corresponds to a single target value. Although this implies
decision trees can be perfect estimators, such an approach would result in overfitting.
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Therefore, the trained decision tree would not perform well on data sufficiently different
than the training dataset.

One way to combat the overfitting problem is hyperparameter tuning. Hyperpa-
rameters are values that constrain the growth of a decision tree. Common decision tree
hyperparameters are the maximum number of splits, minimum leaf size, and the number
of splitting variables. The key result of setting decision tree hyperparameters is to limit
the tree’s size, which can help avoid predictions only suitable to the training dataset. In
this work, we use decision tree hyperparameters to control the number of discovered
frequency bands.

2.3. Band Discovery with Decision Trees

Optimal EEG frequency bands can be estimated using the decision tree framework.
Here, optimal means the frequency groupings that best reproduce an input signal’s log
spectral density for a set number of bands. To achieve this goal, a decision tree is used to
solve a regression problem in the usual way. A visual overview of the decision tree training
in this context is shown in Figure 4.

Figure 4. (Left) Visual summary of a decision tree partitioning frequency values based on the natural
logarithm of the power spectral density. (Right) Visualization of decision tree splits of frequency
values with power spectra.

We use a single predictor variable (frequency) to estimate a single target variable
(natural logarithm of the power spectral density). Any calculation of the power spectral
density can be used and plugged into our technique. One such method is described
by Welch [4]. Using this technique, for example, the target variable is defined by the
following expression.

Yi = ln P̂( fi)

where, Yi is the ith element of the target variable array, P̂ represents the spectral estimate
according to [4], and fi is the ith element of the predictor variable array i.e., ith frequency
value from the EEG signal decomposition.

The decision tree splits frequency values into subgroups and assigns each subgroup a
single target value estimation. A greedy search of the decision tree parameter space yields
frequency splits that best reproduce target values [25,26]. Thus, through this optimization
process, we automatically obtain the optimal member-adjacent frequency bands for a
predefined band count.
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The band count corresponds to the maximum number of splits used in decision
tree training. However, through the use of an AIC-inspired quality score, the proposed
method removes the need for manual entry of this quantity. This is discussed further in the
next section.

2.4. Quality Score for Band Boundaries

Although decision tree optimization can be leveraged to identify optimal EEG fre-
quency bands, this method requires the number of bands to be predetermined. Instead of
choosing a band count manually, here we describe an objective data-driven strategy. The
choice of band count is framed as an optimization problem, where we define an objective
that can be optimized with respect to the band count.

One choice of objective is the r2 regression score. In this context, the r2 value cor-
responds to how well a set of decision tree-derived EEG band boundaries reproduce an
underlying power spectrum. While the decision tree optimization strategy described pre-
viously will ensure band boundaries are optimal for a given number of bands, different
choices of band count will correspond to different r2 values. An example of this is shown
in Figure 5, where the r2 regression scores of several different choices of band count are
plotted for the same dataset.

However, the r2 score is a problematic objective choice, since it strictly increases with
the number of bands. Therefore, the maximum regression score would correspond to the
largest possible number of bands i.e., a frequency “band” for every observed frequency
value. One simple solution is to introduce an objective that incorporates both the r2 regres-
sion score and a penalty for the number of bands. This is the goal of popular measures such
as the Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC) [27].
Taking inspiration from AIC, we construct an empirically derived quality score (QS) to help
choose a model that balances the best regression score while limiting the number of bands.

Figure 5. r2 regression scores plotted against the number of frequency bands included in the decision
tree model. The data used to derive these bands and r2 values is the artificial data described in Case
Study 1 in Section 3.1. Colored dashed vertical lines highlight large jumps in r2 and are labeled by
the corresponding number of bands.

AIC is a measure of model quality, where smaller values imply better models [27,28].
It is defined in terms of the maximum value of the likelihood function for the model, L, and
the number of parameters in the model, k.

AIC = − log L2 + 2k
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The quality score (QS) we employed closely resembles AIC with two modifications.
First, in lieu of the squared maximum likelihood value, we used the r2 regression score.
Since r2 values are between [0, 1], the first term in the QS equation below will be between
[0, ∞), however, this range is not very large in practice e.g., for r2 ≥ 0.135, the first term
is approximately between [0, 2]. Second, we divided the second term by N, where N is
the maximum number of bands, or equivalently, the total number of observed frequency
values. This ensures the second term in the equation below takes values in the range [0, 2].

QS = − log r2 + 2k/N

QS provides a way to compare EEG band boundaries in a way that accounts for both
goodness-of-fit and band count. It will typically take values between 0 and 2, where smaller
values correspond to better models. By computing the QS for every possible band count,
we can choose the best EEG band boundaries as the choice with the smallest QS.

Although QS takes inspiration from AIC, a theoretically grounded quantity, its deriva-
tion is empirical, therefore it may not be most suitable for all applications. Furthermore,
there are countless other objective choices to optimize band count. The decision tree method
described in Section 2.3 is independent of this band count optimization step, and thus can
be enhanced by a variety of choices.

2.5. Software Implementation

This two-part technique is implemented using the Sci-Kit learn Python library, a
popular and free machine learning software [21]. The decision tree implementation used is
the sklearn.tree.DecisionTreeRegressor class. The chosen parameters for the decision tree
training are specified in Table 1. A detailed description of each parameter can be found
at the Sci-Kit learn documentation: https://scikit-learn.org/stable/modules/generated/
sklearn.tree.DecisionTreeRegressor.html (accessed on 6 March 2022).

Table 1. Table specifying the sklearn.tree.DecisionTreeRegressor parameters used in decision tree-
based band discovery method. Parameter details can be found at the Sci-Kit learn documentation [21].

Name Value

criterion “squared_error”

splitter “best”

max_depth None

min_samples_split 2

min_samples_leaf 1

min_weight_fraction 0.0

max_features None

random_state None

max_leaf_nodes Optimized with QS

min_impurity_decrease 0.0

ccp_alpha 0.0

Our code is open-source and publicly available at the GitHub repository: https://
github.com/mi3nts/decisiontreeBinning (accessed on 6 March 2022). Although Python
is used for our implementation, other statistical software packages can be readily used to
implement this method [22–24].

3. Results

In the following subsections, we explore two case studies that apply the proposed
data-driven method for EEG frequency band discovery to an artificial and experimental

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://github.com/mi3nts/decisiontreeBinning
https://github.com/mi3nts/decisiontreeBinning
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dataset, respectively. A Python script to reproduce both case studies is freely available at the
following GitHub repository: https://github.com/mi3nts/decisiontreeBinning (accessed
on 6 March 2022).

3.1. Case Study 1: Artificial Data

As a first demonstration of the method, we produce an artificial EEG power spectrum
as shown in Figure 6. The spectrum consists of the characteristic 1/ f shape for EEG signals
with added white noise. A mathematical expression for the artificial power values is
given below.

P = 1/ f + r

where, P is the artificially generated power value. f is the frequency value. r is a uniformly
distributed random value between 0 and 0.4.

Figure 6. Artificial power spectrum for initial demonstration of data-driven method. The spectrum
consists of the characteristic 1/ f curve for EEG signals with added white noise.

The results of applying decision tree-based band discovery to the artificial power
spectrum are shown in Figure 7 for 5 different choices of band count. In the top 5 plots, the
true power spectrum is shown as a solid blue line, the decision tree estimated spectrum
is plotted as a dashed orange line, and the discovered band boundaries are indicated
by dashed vertical red lines. The plots are titled according to the number of bands and
r2 (coefficient of determination) regression score. The r2 score indicates how well the
discovered bands reproduce the true power spectrum. As a comparison, the typical
boundaries of the delta, theta, alpha, and beta bands according to the review by [12] are
shown at the bottom of Figure 7. Each band is labeled with text. The r2 score of the standard
bands is computed by comparing the average power value within each band with the true
values. This value is provided in the plot title.

The greedy search algorithm used in decision tree regression preserves band bound-
aries when new bands are added. In Figure 7, for example, 7.3 Hz is a band edge in every
case (i.e., from 2 bands to 6 bands). It is interesting to note that the discovered 4 bands case
is nearly identical to the typical delta, theta, alpha, and beta band boundaries according
to [12]. Thus, it may be that the typical band boundaries are a good representation of this
characteristic power spectrum.

In Figure 7, as more bands are added, the r2 regression score increases. A diagrammatic
representation of this observation is shown in Figure 5, where model regression scores are
plotted against the number of bands. Since there are 150 unique frequency values in this
first artificial dataset, the maximum number of bands is 150. Colored dashed vertical lines
indicate band choices that exhibit a large jump in the r2 score.

Since the r2 score strictly increases with the number of bands, using it as an objective
from which to choose the band count would always result in a “band" for every observed
frequency value. However, the AIC-inspired quality score (QS) defined in Section 2.4 does
not suffer from this issue. This is illustrated in Figure 8, which plots QS against the number
of bands. Additionally, the r2-based fitness term in QS is shown as a dashed blue line, the
band count penalty term is plotted as a dashed orange line, and the minimum QS value is

https://github.com/mi3nts/decisiontreeBinning
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indicated by a yellow star. A minimum QS value is observed at 6 bands, implying the best
choice of band count for this spectrum is 6.

Figure 7. Band comparisons for artificial power spectrum. The true power spectra are plotted
with solid blue lines, predicted spectra are plotted with dashed orange lines, and discovered band
boundaries are indicated by dashed vertical red lines. The plots are titled according to their number
of bands and r2 regression score. For comparison, typical values of the standard 4 bands (delta, theta,
alpha, and beta) according to [12] are shown in the bottom plot along with the true power spectrum
plotted again as a solid blue line.
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Figure 8. Empirically derived quality score (QS) plotted against the number of bands for a case study
of an artificially generated power spectrum. The r2-based fitness term in QS is shown as a dashed
blue line, the band count penalty term is plotted as a dashed orange line, QS is plotted as a green
line, and the minimum QS value is indicated by a yellow star.

The top plot in Figure 9 outlines the optimal bands based on a quality score (QS)
minimization strategy. The plot title indicates the number of bands (6), r2 regression score
(0.94), and the quality score of the band definitions (0.14). The bottom plot in Figure 9
similarly outlines the standard bands, titled with the same metrics. The QS of the standard
bands is computed using the QS equation in Section 2.4 with k = 4. Although the discovered
bands include more parameters, the QS is about half of that of the standard bands, thus it
is a better characterization of the underlying spectrum based on this objective. Based on the
data-driven approach, new band boundaries are discovered that complement the standard
delta, theta, alpha, and beta bands by dividing the standard delta and beta bands into two.

Figure 9. Comparison of discovered and standard bands for the case study of an artificially generated
power spectrum. Plots are titled by the number of bands, r2 regression score, and the quality score
of the respective band boundaries. The true power spectrum is plotted as a solid blue line. (Top)
Discovered bands using the proposed decision tree method employing a minimum quality score (QS)
technique. Discovered band boundaries are indicated by dashed vertical red lines. (Bottom) Typical
standard band boundaries are taken from review by Newsom [12]. Standard band boundaries are
indicated by dashed vertical dark blue lines.

3.2. Case Study 2: Experimental Data

We evaluate the band discovery method on experimental data from the PhysioNet
dataset: EEG During Mental Arithmetic Tasks [29,30]. EEG data were collected monopolarly
using the Neurocom EEG 23-channel system (Ukraine, XAI-MEDICA). The electrodes were
placed on the scalp according to the International 10/20 montage. Interconnected ear



Sensors 2022, 22, 3048 10 of 15

electrodes were used as the reference. A 30 Hz cut-off frequency high-pass filter and a
50 Hz power line notch filter were used. The data are artifact-free segments of 60 s. In
preprocessing, Independent Component Analysis (ICA) was used to eliminate artifacts
(eyes, muscles, and cardiac). For this case study, the baseline EEG recording from Subject 00
is used. Occipital electrodes (O1 and O2) are averaged to produce an aggregated occipital
EEG signal.

The aggregated occipital time-series signal and its corresponding power spectrum are
shown in Figure 10. Welch’s method using a Hanning window and a segment length of
1028 estimated the power spectral density of the aggregated signal [4]. Due to the signal
preprocessing scheme used here, the power spectrum does not follow the typical 1/ f
shape. Nevertheless, an alpha rhythm peak is observed. Although this experimental power
spectrum is characteristically different than the previous artificial spectrum, the EEG bands
discovered by our data-driven approach will automatically adapt to it.

Figure 10. (Top) Time series of aggregated occipital EEG signal. (Bottom) Power spectral density
plotted against frequency for aggregated occipital EEG signal plotted from approximately 1–30 Hz.

We repeat the two-part strategy from Case Study 1. First, we derive band boundaries
using the decision tree strategy for every possible choice of band count (i.e., 2 to 60 bands).
Second, we use the quality score (QS) to identify the best number of bands. The QS is
plotted against the number of bands in Figure 11. The minimum QS value occurs for the
6 bands case.

Figure 12 compares the bands discovered by applying the proposed band discovery
strategy to the experimental data (top plot), the optimal bands discovered in Case Study 1
(middle plot), and the standard EEG band boundaries from [12] (bottom plot). The discov-
ered bands from the experimental data (top plot) outperforms the other band choices, with
both a significantly higher r2 score and lower (better) QS. For the present case study, the
quality score for the discovered bands was 0.35, compared to scores of 0.86 and 0.8 for the
bands discovered in Case Study 1 and standard EEG bands, respectively. Despite the fact
that the discovered band boundaries outperformed the standard bands in Case Study 1,
when the same boundaries are applied to new experimental data, the standard bands
perform better. The poor performance of the bands from Case Study 1 in characterizing this
experimental power spectrum highlights the need to tailor EEG bands to specific datasets.

The bands identified from the experimental data isolate spectral features. Specifically,
the peak in power spectral density between 10 and 12 Hz is partitioned into a dedicated
band. This gives an idea of how the proposed method works. It will tend to learn frequency
bands that correspond to peaks in the underlying power spectrum.
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Figure 11. Empirically derived quality score (QS) plotted against the number of bands for the case
study of experimental EEG data. The r2-based fitness term in QS is shown as a dashed blue line, the
band count penalty term is plotted as a dashed orange line, QS is plotted as a green line, and the
minimum QS value is indicated by a yellow star.

Figure 12. Comparison of discovered and standard bands for the case study of experimental EEG
data. Plots are titled by the r2 regression score and the quality score of the respective band boundaries.
The true power spectrum is plotted as a solid blue line. (Top) Discovered bands using the proposed
decision tree method employing a minimum quality score (QS) technique. Discovered band bound-
aries are indicated by dashed vertical red lines. (Middle) Discovered bands derived from artificial
power spectrum in Case Study 1. Discovered band boundaries from Case Study 1 are indicated by
dashed vertical green lines. (Bottom) Typical boundaries of standard bands are taken from a review
by Newsom [12]. Standard band boundaries are indicated by dashed vertical dark blue lines.

4. Discussion

This paper outlines a self-supervised method for discovering optimal EEG frequency
bands. It differs from previous methods in two important ways. First, band discovery
is entirely self-supervised, so an external target variable is not necessary. Second, since
the method solely uses a power spectrum, it is capable of handling both single- and
multi-channel data across contexts.
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The methodology was evaluated by using two case studies. In the first case study, the
method was applied to a power spectrum consisting of a 1/ f shape with white noise added.
The discovered bands overlapped with the typical delta, theta, alpha, and beta boundaries.
Two additional bands were found within the typical delta and beta frequencies. Despite
the larger number of parameters, the discovered bands had a quality score that was nearly
half that of the typical ones, thus indicating significantly better performance. In the second
case study, the method was applied to a baseline EEG recording from the open-access
PhysioNet dataset: EEG During Mental Arithmetic Tasks [29,30]. As in the previous case,
the discovered EEG bands significantly outperformed the more conventional boundaries.
Additionally, the discovered bands isolated a peak in the power spectral density curve into
a dedicated frequency band.

The proposed method has two key strengths. First, the method provides a way to deter-
mine frequency bands that are representative of an underlying power spectrum while keep-
ing the number of bands to a minimum. This results in a parameter-free and reproducible
approach to the discovery of optimal EEG bands. Second, the method is readily accessible
since it is based on decision tree optimization, which has many efficient and ready-to-use
implementations [21–24]. Additionally, we made our implementation of the technique
open-source and publicly available (https://github.com/mi3nts/decisiontreeBinning (ac-
cessed on 6 March 2022)).

Unlike other methods that optimize band boundaries to estimate a particular variable
(e.g., disease diagnosis), our approach relies only on power spectral density values for
estimation. Although this can be considered a strength, it also has a downside. Since EEG
bands are purely based on spectral density curves, their interpretation may not be clear.
Consequently, interpretation of bands discovered using this method may require additional
effort compared to other approaches.

In Table 2, we present a comparison of different approaches to EEG band discovery.
Five previous methods are compared with the one proposed in this article [16–20]. The
comparisons are based on four characteristics: supervised, self-supervised, single-channel,
and multi-channel. A supervised method is one that uses a target variable to ground the
band optimization, such as disease diagnosis, stimulus details, and task type. Conversely, a
self-supervised method uses the inherent characteristics of EEG signals to partition bands.
Single-channel means the technique can operate on single-channel EEG data, while multi-
channel indicates the technique operates on multi-channel EEG data. The uniqueness of
our approach resides in the fact that it is a self-supervised approach that works on both
single-channel and multi-channel data. Furthermore, it is the first EEG band discovery
method that uses the decision tree machine learning framework.

A key feature of the presented approach is that it is agnostic to how the input power
spectrum is generated, thus it can readily be applied to other types of power spectra
(e.g., audio signals, hyperspectral imaging). Hyperspectral imaging, for instance, captures
images with layers beyond the standard red, green, and blue. This provides a power
spectrum for each pixel of a hyperspectral image. Using the proposed band discovery
method, interesting spectral features in hyperspectral images can be detected in a self-
supervised way.

Additionally, this method can be applied to other types of input variables. For example,
a times series (e.g., heart rate over time) could be used in lieu of a power spectrum. This
would result in the discovery of temporal epochs, as opposed to frequency bands.

https://github.com/mi3nts/decisiontreeBinning
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Table 2. Tabular comparison of different data-driven approaches to EEG band discovery [16–20].
Methods are compared via four characteristics: supervised, self-supervised, single-channel, and
multi-channel, shown as columns. Rows indicate the article reference outlining the approaches. The
method proposed in this article is shown on the bottom row with the reference name “Proposed
Method”. An “X” indicates the corresponding method has the listed characteristic.

References Supervised Self-
Supervised

Single-
Channel

Multi-
Channel

Elgendi et al. (2011) [17] X X X

Lee et al. (2012) [18] X X X

Magri et al. (2012) [19] X X X

Raza et al. (2015) [20] X X

Cohen (2021) [16] X X

Proposed Method X X X

5. Conclusions

EEG serves as a window to underlying neural processes. Spectral analysis of EEG ex-
amines the oscillations in electric potentials arising from the brain. Despite the widespread
use of established delta, theta, alpha, and beta bands for EEG, their boundaries vary widely
across studies, which may be a result of variations in experimental details and partici-
pant differences. This motivates the use of objective and data-driven approaches to EEG
band discovery.

In this work, we leveraged the readily available optimization of a decision tree for
regression to discover EEG bands most appropriate for a given dataset and a predetermined
number of bands. The best choice of band count was then determined using an AIC-
inspired quality score. We applied the presented method to both artificial and open-access
experimental data. Discovered bands isolated spectral features into dedicated bands and
outperformed the standard band definitions. Data-driven EEG band discovery may provide
new indices of neural activity which can adapt to a variety of experimental and subject
characteristics.
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