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Abstract: Automatic speech recognition (ASR) is an essential technique of human–computer inter-
actions; gain control is a commonly used operation in ASR. However, inappropriate gain control
strategies can lead to an increase in the word error rate (WER) of ASR. As there is a current lack of
sufficient theoretical analyses and proof of the relationship between gain control and WER, various
unconstrained gain control strategies have been adopted on realistic ASR systems, and the optimal
gain control with respect to the lowest WER, is rarely achieved. A gain control strategy named
maximized original signal transmission (MOST) is proposed in this study to minimize the adverse
impact of gain control on ASR systems. First, by modeling the gain control strategy, the quantitative
relationship between the gain control strategy and the ASR performance was established using the
noise figure index. Second, through an analysis of the quantitative relationship, an optimal MOST
gain control strategy with minimal performance degradation was theoretically deduced. Finally,
comprehensive comparative experiments on a Mandarin dataset show that the proposed MOST gain
control strategy can significantly reduce the WER of the experimental ASR system, with a 10% mean
absolute WER reduction at −9 dB gain.

Keywords: human–computer interaction; automatic speech recognition (ASR); word error rate
(WER); gain control; noise figure; maximized original signal transmission (MOST)

1. Introduction

Automatic speech recognition (ASR) has been widely integrated into human–robot
interactions in the form of voice user interfaces (VUIs) [1–3]. Virtual assistants [4], vehicle
systems [5], and home automation all make daily life more convenient [6–9], and the
application scope of ASR is growing in popularity as more people have recognized VUIs as
more natural than graphical user interfaces (GUIs) [10,11].

Currently, the performance of the ASR system in many human–robot interaction
scenarios is unsatisfactory due to robustness limitations, and one of the critical factors is
that various practical noises make it more challenging to extract the features, such as Mel-
frequency cepstral coefficients (MFCC) [12–14], log-channel energies [15], and pitch-based
features [12,16]. Some common noises have been widely researched by experts in ASR,
such as background noise [9,17], reverberation [18–21], squeal noise, and noises tightly
related to hardware, such as thermal noises from amplifiers [22], quantizing noises from
analog to digital converters (ADCs) [23], and signal quality loss caused by coding [24],
compression, and transmission [25]. However, noises related to gain controls have received
less attention. Gain control represents the amplitude adjustment of signals, and it is one of
the frequently used operations in ASR systems. A large gain may cause the ASR system
not to work properly, such as data overflow from the software perspective, and clipping
from the hardware perspective. Therefore, gain control in this paper refers to original gain
controls under the premise of no clipping occurring.
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Figure 1 represents a typical signal flow diagram of the ASR system deployed in a
human–robot interaction system. Speech signals go through multiple gain controls of
serial function units before being processed by the recognition module. Generally, the
function units near the user-end include microphone(s), anti-aliasing filtering and dynamic
range adjustment, analog to digital converter (ADC), and basic digital signal processing
(DSP), such as enhancement, denoising, audio coding, and decoding. Function units in the
cloud include pre-processing, feature extraction, and recognition. The speech signals are
transmitted to the cloud though the network.

DSPADC

Pre-processing
Feature 

extraction“Hello World”

Network

Filtering and 

amplification

Recognition

Figure 1. General audio signal flow of the ASR deployed in the human–computer interaction system.

The function units before the recognition in Figure 1 are further abstracted as serial
blocks in Figure 2 to illustrate the gain control issue. The gain control operations are
distributed in these blocks in Figure 2. The gain within each block is called the gain
requirement. The gain control strategy in this paper refers to the gain distribution while
performing the gain control operations. Constrained gain controls refer to gain distributions
that conform to certain rules, and unconstrained gain controls mean free gain distributions.
Assume the gain requirement from “Block D” is −3 dB. The gain distribution can vary a lot,
such as follows. (1) The gain of −3 dB is divided as −1 dB, −1 dB, and −1 dB on “Block A”,
“Block B”, and “Block C”, respectively; (2) The gain of −3 dB is divided as −2 dB, −1 dB,
and 0 dB on “Block A”, “Block B”, and “Block C” respectively; (3) The gain of −3 dB is only
performed on “Block C”.

Signal
Block A Block B Block C Block D

Block 

End
Recognition

Figure 2. Gain control distribution within the audio signal flow of the ASR system.

From the perspective of noise, theories in [26] show that the noises caused by gain
control can indirectly affect the accuracy of recognition by distorting the features of speech
signals. However, even for a fixed gain value, different gain control strategies correspond
to different noise levels, distorting the features of speech signals to different degrees.
Therefore, to improve the performance of ASR systems, it is necessary to optimize the gain
control strategy in ASR or ASR-related research [18,27,28].

This paper proposes an optimal gain control strategy named the maximized original
signal transmission (MOST) to minimize the adverse effect of noises induced by gain
control on ASR. The gain control strategy within the ASR system can be optimized, since
it has been shown that the performances of similar systems, such as RF systems, can be
significantly improved by modifying the gain structures [26,29]. Firstly, the gain control
strategy’s influence on the speech signal quality is analyzed by establishing a general
model of the ASR system’s gain control strategy. Secondly, based on the established model
using the noise figure theory from the radio frequency (RF) area, the proposed MOST gain
control strategy is proved optimal from the aspect of the gain control strategy. Thirdly, for
complex and diverse ASR systems in practice, a general implementation framework of the
proposed MOST gain control strategy is given, which realizes the proposed MOST gain
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control strategy by automatically managing gain control logic and operations. Finally, the
effectiveness of the proposed MOST gain control strategy is verified on the experimental
ASR system for Mandarin.

The paper is organized as follows: In Section 2, related works in the literature and the
motivation are briefly introduced. In Section 3, the modeling analysis and proof of gain
control influence on ASR systems are given, and the proposed MOST gain control strategy
and the corresponding implementation framework are presented accordingly. In Section 4,
experiments based on the critical factors of reverberation and noises that influence the WER
of ASR systems are carried out on our hardware platform. The conclusions are summarized
in Section 5.

2. Related Work

Currently, most of the research on ASR focus on recognition-related algorithms, and
there is insufficient research on gain control strategies that actually have a significant impact
on ASR systems. The recognition-related algorithms on ASR include two main categories:
the pre-processing algorithms and machine learning (ML)-based ASR algorithms. The
pre-processing algorithms, such as dereverberation [18–21] and denoising [30], usually
greatly promote the ASR system’s performance. Typical pre-processing methods are beam-
forming methods based on microphone arrays [31]. For the ML-based ASR algorithms,
there are various kinds of neural network-related research studies [12,32,33], whose archi-
tectures generally involve the artificial neural network (ANN) [34], deep convolutional
neural network (DNN) [33], recurrent neural network (RNN) [35], fuzzy neural network
(FNN) [32], etc. The acoustic model (AM), pronunciation model (PM), and language model
(LM) are primary aspects that the ML-based ASR algorithms need to consider. However,
AM, PM, and LM can be folded into a single network for joint training by using a sequence-
to-sequence model [36]. The recently proposed ASR approach in [14] achieves a speedup
of about 50 times over the comparison method by combining the end-to-end model with
the non-autoregressive speech recognition model. Moreover, ASR for second language
pronunciation training and learning is currently a hot topic [37]; for example, research on
pronunciation assessment of L2 Spanish for Japanese speakers [38].

In ML-based ASR algorithms, the recognition process works on the extracted features.
As shown in the lower part of Figure 1, the function unit of feature extraction is in front
of the recognition. Moreover, gain controls are widely integrated to realize functions,
such as adjusting the signal strength [7,17,27], improving the perceptual intelligibility [8,9],
optimizing the ASR performance directly [28], or by speech enhancement [18,19,39,40].

However, the noises caused by gain controls distort the features, such as Mel-cepstral
features [14] and pitch-based features [12,16]. From the perspective of frequency-domain,
these features are directly or indirectly constituted by the harmonics of the speech signals.
Figure 3 illustrates a short time Fourier transform (STFT) of a frame of speech signal, the
harmonics located within the first Mel-filter characterize the first dimension of the MFCC
feature fMel(1), and the first few significant harmonics together determine the pitch. The
noise levels corresponding to different gain control strategies may lead to quite different
feature extraction results. As the noise level increases, the harmonic components are
gradually flooded, such as the 1th , 3th , 5th, and 6th harmonics in Figure 3c. The pitch
feature in Figure 3b keeps the same with that in Figure 3a [41,42]. However, an error pitch
occurs in Figure 3c. Similarly, the feature fMel(1) in Figure 3b is valid while it is invalid in
Figure 3c. Thus, an optimized gain control strategy with a lower noise level reserves more
features of speech signals, and this could be helpful to reduce the WER of ASR.
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Figure 3. Noise influence on MFCC and pitch features. (a) Clean speech signal. (b) Speech signal
with low level noise. (c) Speech signal with high level noise. PDA is the pitch estimation algorithm.

3. Proposed Gain Control Strategy and Modeling Analysis

In this section, the MOST gain control strategy is first proposed, and then the detailed
modeling and analysis for deriving the proposed MOST gain control strategy are demon-
strated. For the convenience of the subsequent description, the components or subsystems
within the ASR system are classified into three categories: (1) receiving unit, (2) middle
unit, and (3) recognition unit. For the ASR system shown in Figure 1, the microphone is
the receiving unit, the ASR algorithm is the recognition unit, and all other components or
subsystems are regarded as the middle units.

3.1. Proposed Gain Control Strategy

The proposed MOST gain control strategy is a constraint on gain controls: gain control
operations are performed as close to the recognition unit as possible. In practice, the
constraint as close to the recognition unit as possible must be considered in the following
two perspectives. For clarity, assume the ASR system in the listed cases all consist of a
receiving unit, three middle units, and a recognition unit.

• From the perspective of different units, assume that a gain of −3 dB is required in the
recognition unit. For the current gain control strategy, the execution position of the
gain of −3 dB is unconstrained, and it can be performed at the output of the receiving
unit, or −1 dB at each middle unit, etc. On the contrary, the proposed MOST gain
control strategy means that the −3 dB gain must be performed at the output of the
last middle unit;

• From the perspective of a specific unit, assume that the middle unit of pre-processing
needs a −2 dB gain control. Ensuring the −2 dB gain control is only performed on this
middle unit does not satisfy the constraint. Because this middle unit probably consists
of many smaller software function units, the gain control also has an execution order
among these smaller function units. Thus, the −2 dB gain control should be placed as
close to the end of these smaller function units.

The name MOST alludes to the optimization effect and the optimization method. The
effect of the proposed gain control strategy lies in the maximum preservation of the speech
signal features, and the description “maximum original signal transmission” represents the
idea of the proposed gain control strategy. The proposed MOST gain control strategy can be
implemented in many specific forms in practice, such as presented in Figure 4. The audio
signals are transmitted in the direction of the upper black arrows. The red arrows represent
the direction of the gain control command and the logic of the gain control operation.
The middle part of the receiving and middle units are two double pole double throw
switches. “GC” represents gain control operation, “H” and “L” represents the “switch
control” corresponding to the control logic when the acknowledgement (ACK) signal is
received or not, respectively. The points between the middle unit and the recognition unit
represent the middle units. The three gray icons on the left part of the receiving and middle
units, and in the right part of the recognition unit, represent the functions of these units.
They are receiving, processing, and recognition, respectively.

The advantage of the form in Figure 4 is that it provides a compatible protocol frame-
work to establish communication between different units, thereby providing support for
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the proposed MOST gain control strategy. In detail, the signal from the receiving unit is
transmitted and processed by several middle units, and finally reaches the recognition unit.
The proposed MOST gain control strategy in Figure 4 consists of two parts:

• Transmission channel for gain control commands represented by the arrow between
units, which can be wired or wireless, together or independently;

• Gain control logic on the right side of the dotted line in each unit. The double
pole double throw is critical, because it maps the switch control command into the
corresponding gain control logic.

Middle Unit

GC

Receiving Unit Recognition Unit

GCGC

Switch 

Control

Switch 

Control

H

L

H

L

Gain 

Requirements

Gain 

Requirements

Gain 

Requirements

Figure 4. Proposed MOST gain control strategy for the ASR system.

When different units are connected, the units with the proposed MOST gain con-
trol strategy perform two actions before establishing the transmission channel for gain
control commands.

• Wait for a handshake signal at the input. If the handshake signal is received, return
the ACK signal to the former unit;

• Send handshake signals periodically on the output and check for the ACK signal. If
received, return the ACK signal to the switch control module.

The two actions are used to establish communication between adjacent units. Wait
for a handshake signal is attempting to establish communication between the current
unit and the former unit. Send handshake signals periodically is attempting to establish
communication between the current unit and the latter unit.

3.2. Modeling of Gain Control in ASR Systems

The modeling and analysis of gain control strategies in ASR systems are achieved by
the following two steps. (1) Establish the gain control strategy model by regarding the
macroscopic function units in ASR systems as the microscopic components in the RF signal
chain; (2) Analyze the gain control strategy model using the noise figure theory.

Figure 5 shows the details of the modeling and analysis, wherein “Part A” represents
the general block diagram of the ASR systems’ signal flow. “Part B” illustrates the abstracted
serial blocks used to model and an analysis of the gain control strategy. “Part C” is a generic
block diagram of the transceiver’s RF signal chain. The RF signal chain in “Part C” is
composed of several components in series, such as a low noise amplifier (LNA), a diode,
or the like. The gain distributions of these components severely influence the subsequent
signal demodulation. The noise figure theory is an effective way at optimizing the influence
of gain control because it establishes the relationship between gain distribution and signal
quality [26]. Thus, the gain control strategy in “Part A” can be optimized as long as “Part
A” is abstracted as the form of “Part B”. The following will first introduce the noise figure
theory and then demonstrate how to abstract a general model of the gain control strategy
from diverse ASR systems in practice.
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Figure 5. Principles of modeling and analysis of gain control strategy.

Noise figure precisely reflects the influence of the components’ cascaded gain and
distortion on the signal chain quality [26]. Specifically, noise figure represents the degrada-
tion of the signal to noise ratio (SNR) when a signal goes through a device [26,29]. Noise
figure F is defined as (1), where SNRinput is the input SNR, SNRoutput is the output SNR.
Parameters SNRinput and SNRoutput generally refer to the ratio of the signal component and
the noise component at the hardware level. Thus, the value of noise figure is always no less
than 1. In particular, the noise figure value of an ideal system causing no distortion is 1,
and a value closer to 1 indicates a better system performance.

F =
SNRinput

SNRoutput
(1)

The RF chain is a cascade formed by components and sub-units. By equating the units
of the ASR system as components in the RF chain, the noise figure index is used to analyze
the gain control strategy in this paper. Assume the gain of an ASR system in logarithmic
form is Greq dB, the corresponding gain in linear form GLreq is

GLreq = 10
( Greq

20

)
(2)

An ideal gain control attenuates both the power of the speech signal and the noise by
the same degree, which is assumed as Greq. Thus, the noise figure of the ideal gain control
can be derived

Fideal =

Psignal
Pnoise

Psignal×Greq
2

Pnoise×Greq
2

= 1 (3)

where Psignal and Pnoise denote the power of the signal and the noise, respectively. Differ-
ently, the noise floor of the actual gain control is generally fixed and determined by inherent
characteristics, such as resolution. Assume the power of this noise floor is Pnoisefloor, the
corresponding noise figure is

Factual =

Psignal
Pnoise

Psignal×Greq
2

Pnoisefloor

> 1 (4)

Equation (4) shows that speech signal quality degradation is unavoidable if the gain
control operation is used. Thus, it is of significance to minimize the impact of the gain
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control operation, which corresponds to minimizing the value of the noise figure. Next, to
achieve this goal, we discuss how to perform the optimal gain control strategy through a
modeling analysis.

The general gain control strategy model of ASR systems is established by modeling
the basic unit mentioned in Figure 4. While modeling the unit, it is specified that, if a
unit contains the gain control, the gain control is at the input or output position of the
unit. Otherwise, the unit continues to be split, and replaced by smaller units. Therefore,
any unit can be equivalent to the mixture of the gain control and the processing portion.
For a certain unit, if these two parts do not exist simultaneously, the missing part can be
equivalently added by an all-pass function with the noise figure and the linear gain both
equal to 1. Thus, the basic unit models that constitute the gain control strategy are shown
in Figure 6.

I O

(a)

Processing
I O

(b)

Gain 

Control

Gain 

Control

F GL,GC GC F GL,GC GCF GL,Pro Pro

Processing

F GL,Pro Pro

Left part Right part Left part Right part

Figure 6. Basic unit models that constitute the gain control strategy. (a) Gain control is before the
processing portion. (b) Gain control is after the processing portion.

The overall gain of the ASR system with the unit model number of n is the combination
of all the units

GLoverall =
n

∏
i=1

GLProi GLGCi (5)

Assume that the ASR system consists of n basic unit models; that is, the ASR system
includes n processing portions and n gain controls. The noise figure of the ASR system
can be calculated by treating each macroscopic processing portion and gain control as
microcosmic components in an RF chain, and by applying the noise figure formula of the
cascade system

FASRn = F1a +
F1b − 1
GL1a

+
F2a − 1

GL1aGL1b
+

F2b − 1
GL1aGL1bGL2a

+ · · ·

+
Fc − 1

GL1aGL1bGL2a · · · GLc−1
+ · · · Fnb − 1

GL1aGL1bGL2aGL2b · · · GLna

(6)

where parameters F and GL with the index 1a, 2a, . . . represent the noise figure and the
gain of the left part of the basic unit model in Figure 6a or Figure 6b, respectively. Similarly,
parameters F and GL with the index 1b, 2b, . . . represent the noise figure and the gain of the
right part of the basic unit model in Figure 6a or Figure 6b, respectively.

3.3. Analysis and Proof

The proposed MOST gain control strategy constrains each gain control requirement
to be performed as close as possible to the end of the signal flow. Although there may be
multiple gain control requirements from the units within the ASR system, the analysis and
proof that the proposed MOST gain control strategy is optimal is applicable to all gain
control requirements. Select any one of the gain control requirements. Assuming that the
value of the selected gain control requirement is GLsel produced by the kth basic unit model,
and the unit’s function limits that the selected gain control requirement can be moved
backward in the signal flow by, at most, mth units, and is performed on the (k + m)th unit,
m ≥ 0.
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The argument is the influence of the gain control strategies, so the processing induced
by the last recognition unit itself should not be considered. Since the method involves
comparing the overall noise figure value of ASR systems with different gain control strate-
gies, it is reasonable and necessary to set the last recognition unit that does not affect the
conclusion as an all-pass function. By doing so, the influence of the gain control strategy
on ASR systems is reflected by the value of the noise figure. The minimum noise figure
corresponds to the optimal system performance. Thus, proving that the proposed MOST
gain control strategy is optimal is equivalent to proving that the overall noise figure of the
ASR system corresponding to the gain control requirement is only performed in the mth
unit is the smallest.

GLGC influences the overall noise figure of the ASR system FASRn through (6). Because
different gain control strategies contribute differently to each of the cumulative terms
in (6), the ASR system’s overall noise figures of the current strategies and the proposed
MOST gain control strategy are different. The fixed values of FPro and GLPro do not affect
the analysis of gain control strategy. Thus, the analysis and proof only need to consider
the gain distribution, rather than the FPro and GLPro. The reason is that the noise figure
FPro and the gain GLPro of each unit are both fixed and determined by the performance
and function of the processing portion, respectively, such as the gain GLPro of the analog
processing circuit between the microphone and ADC. The gain GLPro is generally constant
and depends on the signal amplitude difference between the microphone output and the
ADC input, respectively.

According to the gain distribution of the gain control requirement GLsel expressed
by (5), for the proposed MOST gain control strategy, GLGC = 1 for i = 1,2,. . . m− 1, and
GLGC = GLsel for i = m. Moreover, for the current gain control strategy, usually at least
one GLGC < 1 for i = 1,2,. . . m− 1, and GLGC < GLsel for i = m. Thus, for the selected gain
control requirement, the comparison of the overall noise figure of the ASR system under the
current gain control strategy and the proposed MOST gain control strategy can be achieved
by letting m equal to n in (6), respectively. Assume that, in the above-mentioned, at least
one gain GLGC < 1 in the current gain control strategy is indexed by c in (6). Moreover,
this gain is equal to 1 in the proposed gain control strategy. Since the gains in (6) are at
the numerator position, the larger the gain, the closer to the former position, the smaller
the corresponding noise figure. As a result, the overall noise figure of the current gain
control strategy must be greater than that of the proposed MOST gain control strategy.
The proposed gain control strategy minimizes the overall noise figure by maximizing the
numerators of the first m− 1 terms in (6). Thus, the proposed gain control strategy is an
optimal gain control strategy.

4. Experiment

The experiment was set up to compare the ASR system’s performance of current gain
control strategies and our proposed MOST gain control strategy.

Since the gain control strategy of practical ASR systems is diverse, even under the same
overall gain setting, gain control strategies are uncertain, because the position, number,
and allocation proportion of the gain control all could be varied. Therefore, it is of great
significance to cover various actual situations by elaborately designing a limited set of
experiments. Section 3 theoretically demonstrates that the influence of gain control is
dependent on the gain distribution within the signal flow, and the proposed MOST gain
control strategy adds a constraint that the gain control operation is performed only at the
last recognition unit. Therefore, the theoretical analysis can be verified by comparing the
ASR system performance under extreme gain control configurations (performed at two
ends, respectively).

4.1. Experimental Setup Overview

In the experiment, we selected a practical and widely used ASR scenario. The ASR
scenario was a smart voice recorder that worked in actual environments. Noise and
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reverberation are two significant factors affecting ASR systems [6,20,21]. The actual en-
vironments were designed to be comprehensive and representative by including various
types of noises, various SNRs, various reverberation strengths, and various speaker to
microphone distances. The advantage of the proposed gain control strategy was manifested
by the WER reduction of ASR.

The voice recorder’s ASR system included two parts: the user-end device and the
processing in the cloud. The two parts were connected through a network. The user-end
device received and converted the sound into an electrical signal. After preprocessing,
such as filtering and analog to digital converting, the digital audio signal was transmitted
to the cloud through the network to achieve the text transfer function by the recognition
algorithm. This practical ASR system was equivalently simulated using a wireless audio
transmission system developed by us and two computers for comparison experiments.

The block diagram of the ASR experiment is illustrated in Figure 7, which includes
two utterance generation modules on computer 1, the wireless audio transmission system,
and an ASR module on computer 2. We assumed that the gain control operation was
only performed on “GC1” or “GC2” in the current strategies or the MOST gain control
strategy, respectively. Two utterance generation modules based on the noise and rever-
beration were designed to comprehensively compare the current and the proposed gain
control strategies. The utterance generation modules and the ASR module were on two
independent computers.

Receiving Board

with Transceiver

GC2GC1

Kaldi ASR
Transceiver with

USB Interface

Computer 2Computer 1 Wireless audio transmission system

NOISEX-92

Clean Speech

RIR

Clean Speech

a

b

c

Figure 7. ASR experiment block diagram and the corresponding relationship between the experiment
setup (below the dotted line) and the practical ASR system (above the dotted line).

The corresponding relationships between the voice recorder with text transfer function
and the ASR experiment are explained as follows.

• The test utterances were generated on computer 1 to make the reverberation degree
and noise level of the experimental speech signal more controllable and quantita-
tively modified;

• The wireless audio transmission system contained a receiving board and a transceiver
with a USB interface; the details are in Appendix A. The user-end device corresponded
to the receiving board, within which, the filtering and other processing were integrated
to simulate the actual noises induced by the hardware. The wireless transceiver was
designed to simulate the actual network transmission of the voice recorder;

• The ASR function in the cloud was simulated through a locally installed Kaldi ASR
module on computer 2.

4.1.1. ASR Module and Dataset Selection

The proposed gain control strategy optimizes the speech signal quality; therefore, the
WER improvement effect of the proposed gain control strategy is universal for ASR systems.
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This paper selects the open-source ASR toolkit Kaldi [43] and the Mandarin TDNN chain
model CVTE trained on commercial data as the experimental ASR module. The dataset
in this experiment was part of the test set of THCHS-30 [44], which contained 500 test
utterances recorded from 10 native speakers, including males and females. These speakers’
ages were from 19 to 50, all of them were fluent in standard Mandarin. The sampling
frequency of the test utterances was 16 kHz, and the resolution was 16-bit. The WER results
are the statistical averaged values of these test utterances.

4.1.2. Noise Setup

The utterance generation module with noises was enabled by switching on the “a” and
“c” in Figure 7. The white, babble, and factory1 noise in the NOISEX-92 noise library [45]
were attenuated and then superimposed on the clean speech according to the SNR, re-
spectively. Since the sampling frequency of the noise dataset was not consistent with the
sampling frequency of the clean speech dataset, the noises were resampled. The resample
process was realized by the commonly used resample function (default parameters setup)
within the MATLAB tool. The resample function adopted a linear interpolation and an
anti-aliasing filter to resample the signal at a uniform sample rate. The cutoff frequency
of the anti-aliasing filter was set to the Nyquist frequency of the lower sample rate (here,
it was 16 kHz). The anti-aliasing filter is a linear-phase FIR filter with the Kaiser window
(β = 5). In actual environments, the power of the audio signal received by the microphone
decreases rapidly as the speaker-microphone distance increases. We simulated this by
adding an attenuator after the clean speech; the attenuator before the noise signal was set
accordingly at the same time to achieve the test utterances with a specified SNR.

4.1.3. Reverberation Setup

The utterance generation module with reverberations was enabled by switching on
the “a” and “b” in Figure 7. The severity of room reverberation was quantified by the
reverberation time and reverberation time 60 (RT60) was widely used in practice. RT60 is
the time it takes for a sound to decay by 60 dB. A higher RT60 represents a more severe
reverberation. Commonly used RT60s of 0.5 s, 0.7 s, and 1 s were selected to generate
the test utterances by convolving the clean speech with different room impulse responses
(RIRs). The simulated RIRs were constructed using the image method [46]. The detailed
room size, speaker, and microphone positions are shown in Appendix B.

4.2. Results and Analysis

For the above-mentioned test utterances with noises or reverberations, the correspond-
ing WER results of the ASR module are shown in Figures 8 and 9, respectively. The legends
“Cur” and “Pro” represent the current and the proposed strategies, respectively, and the
legends “(−3dB)” and “(−9dB)” represent the gain. Since a smaller WER value corresponds
to a higher recognition accuracy, a lower height of the histogram in Figures 8 and 9 depicts
a better performance.
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Figure 8. WER comparisons under different noise and SNR conditions. (a) White noise. (b) Babble
noise. (c) Factory1 noise.
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Figure 9. WER comparisons under different RT60 and speaker-microphone distance conditions.
(a) RT60 = 0.5 s. (b) RT60 = 0.7 s. (c) RT60 = 1 s.

4.2.1. WER Analysis

The experimental ASR system’s word error rate (WER) corresponding to the clean
test utterances without any attenuation and noise was 8.19%, and the lowest WER in the
experiment was around 10%. From the overall trend of WER changes in Figures 8 and 9, it
can be seen that under two significant types of simulation conditions, WER performance
variations basically covered the process from near the best to almost failure. Therefore, the
experimental conclusions are comprehensive and representative.

In detail, the following conclusions can be obtained.

• The WER result increased with decreasing gains in all 18 sets of comparison test
conditions in Figures 8 and 9. This is because a lower gain control will result in a
greater reduction in the quality of the test utterances;

• The proposed MOST gain control strategy showed advantages over the current strate-
gies under the 18 sets of comparison test conditions in Figures 8 and 9, except for the
penultimate set indicated by the red circle in the right down position of Figure 9. The
abnormal results corresponded to the conditions of RT60 = 1 s, d = 4 m, and the gain
setting of −3 dB, within which the proposed MOST gain control strategy was slightly
higher by 1%. The abnormal WER results exceeded 70%. The reason is likely that such
a harsh reverberation condition is close to the working limitation of the experimental
ASR system; thus, the WER performance of the ASR system is no longer positively
related to distance;

• For a certain noise type shown in Figure 8, the power ratio of the clean speech to
the selected noise is negatively correlated to the performance improvement of the
proposed MOST gain control strategy.

4.2.2. Absolute WER Reduction Analysis

In order to show the degree of improvement of the proposed MOST gain control
strategy to the WER, the absolute WER reduction is calculated by

WERabsolute(%) = WERcurrent −WERMOST (7)

where WERcurrent and WERMOST represent the WER result corresponding to the current
strategies and the proposed MOST gain control strategy, respectively. Obviously, a larger
WERabsolute represents a more remarkable WER performance improvement. The WERabsolute
results based on Figures 8 and 9 are shown in Figures 10 and 11. The legends “GC(−3dB)”
and “GC(−9dB)” represent the WERabsolute calculated under the gain of −3 dB and −9 dB,
respectively. The legends “Averaged (GC = −3dB)” and “Averaged (GC = −9dB)” indicate
the average value of three sets of WERabsolute at −3 dB and −9 dB gain, respectively, and
the three sets of WERabsolute correspond to a specified noise type or RT60. The average
values represented by the straight lines in Figures 10 and 11 describe the average WER
performance improvement under the specified conditions.
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Figure 10. Absolute WER reduction under different noise and SNR conditions. (a) White noise.
(b) Babble noise. (c) Factory1 noise.
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Figure 11. Absolute WER reduction under different RT60 and speaker-microphone distance condi-
tions. (a) RT60 = 0.5 s. (b) RT60 = 0.7 s. (c) RT60 = 1 s.

From Figures 10 and 11, the following conclusions can be obtained.

• The gain control strategy dramatically influences the performance improvement de-
gree of the proposed MOST gain control strategy, and the noise type, signal-to-noise
ratio, RT60, and distance factors have a relatively small influence. The average per-
formance improvement of the proposed MOST gain control strategy was around 10%
under the −9 dB gain condition, while it was about 2% under −3 dB gain condition;

• The performance improvement degree of the proposed MOST gain control strategy is
rather effective under a lower gain. In the case of −9 dB gain, 8 of the 18 sets of the
proposed MOST gain control strategy offered a WER reduction of more than 10%, as
shown with the4 symbols in Figures 10 and 11;

• The proposed MOST gain control strategy has a smaller performance improvement if
the utterances are less affected by the noises or reverberations. (1) The WER reduction
is relatively small for the test utterances with high SNRs, corresponding to the two
circle positions in Figure 10. The reason is that such a high SNR provides enough fea-
tures for the test utterance signal to be recognized by ASR; thus, the current strategies
and our MOST gain control strategy both obtained better WER results, as shown in
the two right sets of results in Figure 8b,c. (2) The WER reduction is not obvious under
weak reverberation conditions, as shown in Figure 11. When the distance is very close
(1 m) and RT60 is small (0.5 s) (corresponding to the two circle positions in Figure 11),
the improvement effect is not apparent; therefore, all strategies can obtain good WER
results, as shown in the two left sets of results in Figure 9a,b;

• The performance improvement degree of the proposed MOST gain control strategy
becomes evident as the reverberation condition becomes severe. The increase in the
vertical distance of the circles in Figure 11 shows that, as increasing the adverse effects
of the environment become more serious, the improvement effect of the proposed
MOST gain control strategy gradually emerges;
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• The performance improvement degree of the proposed MOST gain control strategy
decreases under extremely severe reverberation conditions. When the distance is
extremely long (4 m) and RT60 is large (1.0 s) (corresponding to the position of the box
in Figure 11), the ASR system can hardly work normally, so the WER results of the
current strategies and MOST gain control strategy are both very poor, as shown in the
two right sets of the results in Figure 9c.

The overall averaged WER reductions of the proposed MOST gain control strategy un-
der reverberation and noise conditions are shown in Table 1. The results in Table 1 represent
the mean WER results corresponding to different reverberation and noise conditions.

Table 1. Averaged absolute WER reduction of the proposed MOST gain control strategy relative to
the current strategies.

Category Reverberation Noise

Gain (dB) −3 −9 −3 −9
Averaged absolute WER reduction (%) 2.3 10.3 1.1 9.0

Results in Table 1 are more comprehensive and representative. Whether reverberation
or noise test utterances, at a relatively small gain attenuation amplitude (−3 dB), the
performance improvement of the proposed MOST gain control strategy is small, about 2%.
As the gain attenuation increases, such as −9 dB, the proposed MOST gain control strategy
dramatically improves the ASR system performance.

In summary, the proposed MOST gain control strategy reduces the adverse effects of
the gain control to the greatest extent and realizes a significant performance improvement of
the ASR system, especially under harsh environments and with more significant gain atten-
uation. Although the proposed MOST gain control strategy improves the ASR performance
in a different way compared with the existing methods based on algorithm or subsystem
updating, the proposed MOST gain control strategy’s effect is rather considerable and
efficient under a medium usage of gain control operation (such as gain ≤−9 dB).

5. Discussion

The experiments were conducted on the Meridian dataset; this is the limitation of
this paper. However, the ’improvement’ of this paper involves the speech signal features.
The proposed MOST gain control strategy ensures that more features are fed into the
recognition algorithm. Thereby, higher recognition accuracy is achieved. Features are the
common foundation for the speech recognition of Mandarin and other languages. Thus,
the proposed MOST gain control strategy is probably applicable for the other languages.
One future work is to prove the effectiveness of the proposed MOST gain control strategy
with other languages.

Moreover, unlike directly improving the ASR of the algorithm layer, this paper in-
directly improves ASR performance by optimizing the noise caused by the gain control
in the signal layer. The signal layer is the basis of the algorithm layer, and the influence
and processing of the signal layer on the original sound signal take precedence over the
algorithm layer. Therefore, in the research of ASR, the importance of the signal layer
cannot be ignored. In future work, other aspects of the signal layer that affects the perfor-
mance of ASR systems should be investigated, such as dynamic range compression at the
microphone, which is a variant of gain control.

6. Conclusions

Inappropriate gain control strategies cause an increase in the ASR WER, with respect
to a performance degradation of the human–computer interaction system. In this paper, an
optimal gain control strategy named MOST was proposed to minimize this adverse impact.
Our primary contribution involved modeling the gain control strategy and theoretically
prove that unconstrained gain control will cause the performance degradation of the ASR
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system using the noise figure theory. The second contribution theoretically demonstrates
that the proposed MOST gain control strategy is the optimal gain control strategy for the
ASR system. Finally, comprehensive comparison experiments under different conditions
were conducted on the Mandarin dataset. For a −9 dB gain setting, the proposed MOST
gain control strategy improved the WER performance of the experimental ASR system by
an average of up to 10%. Such a considerable performance improvement shows that the
proposed gain control strategy, as well as its corresponding modeling method, are effective
in real ASR systems.
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Abbreviations
The following abbreviations are used in this manuscript:

ASR automatic speech recognition
ACK acknowledgement
ASRC asynchronous sampling rate converter
AM acoustic model
ADC analog to digital converter
ANN artificial neural network
aptX audio delivers premium sound wirelessly via Bluetooth
aptX HD aptX High Definition
aptX LL aptX Low Latency
BT SBC Bluetooth subband codec
DSP digital signal processor/processing
DNN deep neural network
FNN fuzzy neural network
HMM hidden Markov model
GUI graphical user interface
GC gain control
LM language model
LNA low noise amplifier
LDAC a proprietary audio coding technology developed by Sony
MCU micro control unit
MFCC Mel-frequency cepstral coefficients
ML machine learning
MOST maximized original signal transmission
MUX multiplexer
mic microphone
NW network
PP preprocessing
PM pronunciation model
RF radio frequency
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RNN Recurrent neural network
RIR room impulse responses
RT60 metric reverberation time 60
SVM support vector machines
SOC System on chip
spk speaker
TDNN time delay neural network
THCHS-30 an open Chinese speech database published at Tsinghua University
THD + N total harmonic distortion and noise
VUI voice user interface
WER word error rate
d speaker to microphone distance
F noise figure
Fideal noise figure of ideal gain control
Factual noise figure of actual gain control
FGC noise figure of gain control part of the basic unit model
FASR overall noise figure of ASR system
FPro noise figure of processing part of the basic unit model
F1a, F2a, . . . noise figure of left part of 1th, 2th, . . . basic unit model
F1b, F2b, . . . noise figure of right part of 1th, 2th, . . . basic unit model
Greq gain requirement in logarithmic form
GL Linear gain
GLGC linear gain of gain control part of basic unit model
GLPro linear gain of processing part of basic unit model
GL1a, GL2a, . . . linear gain of left part of 1th, 2th, . . . basic unit model
GL1b, GL2b, . . . linear gain of right part of 1th, 2th, . . . basic unit model
Psignal power of speech signal
Pnoise power of noise
Pnoisefloow power of the noise floor
SNR Signal to noise ratio
SNRinput signal to noise ratio at the input port
SNRoutput signal to noise ratio at the output port
WERabsolute absolute WER reduction
WERcurrent WER corresponds to current gain control strategy
WERMOST WER corresponds to proposed MOST gain control strategy

Appendix A. Experimental Hardware

The wireless audio transmission system used in the experiment is shown in Figure A1.
The wireless audio transmission system we developed possesses the proposed MOST gain
control strategy and can transmit audio signals with CD-quality. In detail, the wireless
audio transmission system serves two purposes, as follows.

• The wireless audio transmission system demonstrates an application example of the
proposed MOST gain control strategy;

• Parts of the wireless audio transmission system are adopted to simulate the user-end
device in Figure 7 and transmission parts in the ASR experiment.

The transceiver in Figure A1 ensures the realization of the proposed MOST gain control
strategy by using a data channel to transmit the gain control commands. It contains a
CC8531 system-on-chip (SOC)-based 2.4 GHz transceiver and a 22 dBm RF power amplifier
for extending the range. The gain control requirements are obtained through the remote
control or the encoder of the receiving board with the transceiver. Then the gain control
commands are forwarded by the MCU to the transceiver, and are sent to the transceiver
with USB interface with audio signals simultaneously. Finally, the gain control operations
are performed at the back-end.
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Figure A1. Wireless audio transmission system adopted in the ASR experiment.

The lines with the arrow in Figure A1 represent the direction of the audio signal flow
used in the experiment. The audio interface box firstly received the speech signal from the
computer through an XLR interface, buffered and filtered by low noise amplifiers OPA1632,
and then output through a relay that switched balanced and unbalanced analog input
signals. Secondly, the output speech signal was adjusted by the amplifier OPA1632 to match
with the later unit dynamic range requirement, and quantized by the ADC chip CS5381.
Finally, the speech signal was sent to the USB receiver equipped on computer 2 and handled
by the ASR algorithm. The audio clock was resynchronized twice to decrease the jitter,
and the digital and analog circuits of the audio interface box were designed to be isolated
for a lower noise level. The basic parameters of the signal chain are as follows: (1) THD +
N = −73.57 dB, SNR = 78.55 dB, (1 kHz, 0 dB input, band = 20 Hz–20 kHz, unweighted);
(2) ADC (16-bit, 44.1 kHz). Moreover, considering that the over-the-air data rate and audio
latency performance are essential indexes for ASR systems, comparisons of these indexes
between our experimental platform and multiple mainstream Bluetooth-based wireless
audio transmission scheme are shown in Table A1.

Table A1. Over-the-air data rate and audio latency performance comparison between our wireless
audio transmission system and various Bluetooth-based technologies.

Index BT SBC aptX aptX HD aptX LL LDAC Ours’

Data rate/Mbps 0.328 0.384/0.325 0.576 0.352 0.99 5.0
Latency/ms 220 130 220 40 >80 10.7–40

Appendix B. Experimental Reverberation Conditions

The room and position information of the speaker and microphone for the experi-
mental reverberations are shown in Figure A2. It is assumed that the clean speech was
received by an omnidirectional microphone placed in a rectangular room with dimensions
[5 × 6 × 3] (m), and all six wall surfaces of the room have the same reflection coefficient.
The speaker is at the position of [1, 1, 2] (m) represented by “spk”. Parameter “d” represents
the speaker–microphone distance, and the microphone is placed at the position of [1, 2, 2]
(m) for d = 1 m, [1, 3, 2] (m) for d = 2 m, and [1, 5, 2] (m) for d = 4 m, as shown by “mic”.
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Figure A2. The room that is used to produce the experimental reverberations.
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