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Abstract: This paper presents the LC-type passive wireless sensing system for the simultaneous and
independent detection of triple parameters, featuring three different capacitive sensors controlled by
two mechanical switches. The sensor coil was connected with three different capacitors in parallel
and two mechanical switches were in series between every two capacitors, which made the whole
system have three resonant frequencies. The readout coil was magnetically coupled with the sensor
coil to interrogate the sensor wirelessly. The circuit was simulated advanced design system (ADS)
software, and the LC sensor system was mathematically analyzed by MATLAB. Results showed
that the proposed LC sensing system could test three different capacitive sensors by detecting three
different resonant frequencies. The sensitivity of sensors could be determined by the capacitance
calculated from the detected resonant frequencies, and the resolution of capacitance was 0.1 PF and
0.2 PF when using the proposed sensor system in practical applications. To validate the proposed
scheme, a PCB inductor and three variable capacitors were constructed with two mechanical switches
to realize the desired system. Experimental results closely verified the simulation outputs.

Keywords: inductive coupling; multifunction; mechanical switches; passive wireless sensing system

1. Introduction

A square spiral inductor is coupled to a sensing capacitor to generate a resonant LC
circuit in the inductor-capacitor (LC) sensor. The variable capacitor varies in response to
the parameter of interest that causes the readout coil impedance or input impedance to
detect a resonant frequency when change occur. Passive wireless LC sensors are frequently
employed in applications where monitoring external parameters such as pressure [1,2],
temperature [3,4], chemical concentration [5], and air humidity [6,7] is problematic due to
a lack of a physical link. Small size, low cost, contactless interrogation, and an unlimited
lifetime are all advantages of LC sensors [8,9]. Passive wireless sensing technology has
been utilized to monitor several other characteristics besides non-contact detection via
LC wireless sensors [10]. Practical implementations in the sensor network required the
detection of multiple parameters independently and simultaneously [11].

As a result, in a variety of applications, the LC passive wireless sensor system for
multi-parameter measurement is needed. The most straightforward way to design a multi-
functional LC sensor is to create an array of LC circuits with separate LC resonant circuits
responding to the many parameters of interest; however, this results in a larger sensor chip
area and readout coil size. Quality factor and resonant frequency are measured using the
temperature effect of an LC passive wireless sensor to monitor the two parameters of pH
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value and temperature [12]. Another approach for measuring temperature and humidity
was used to monitor the resonant frequency and real magnitude value of maximum input
impedance [13]; however, the method was limited due to the LC sensor’s operating princi-
ple. Using two inductors can solve this issue; however, because of the significant mutual
coupling between the two inductors, the transmission signals interfere with each other, and
the resonant frequencies are altered or absent entirely. Both capacitive sensors were used
with embedded inductors to measure the temperature and humidity resulting in a limited
interrogation range [14]. Another attempt was made to employ particular winding stacked
inductors, which presented several LC tanks to realize multi-parameter measurements [15],
but the interrogation range was limited due to the sensor’s relatively low mutual induc-
tance. The use of a relay switch to control two capacitive sensors has been proposed in a
double parameter measuring approach [16]. The two resonant frequencies corresponding to
the two sensors were detected simultaneously and independently; however, the sensitivity
of the sensors identified was limited in double parameter detection, and their size was
sufficient in comparison to the multiple parameters needed. Strong magnetic coupling
occurs when the sweep frequency matches the resonant frequencies simultaneously and
independently, allowing the sensor inductor to receive maximum energy from the readout
coil [17,18].

Wireless low-power sensor systems are attractive in many new applications because
they can transmit data and energy wirelessly while requiring no physical connection
between the sensor and the processing units. These systems are extremely reliable in tough
situations. Wireless sensors can operate in two modes: active and passive. The derivation
of active sensors is from internal battery source, while passive sensors are charged by
an inductive system. Active sensors have several drawbacks, including a longer readout
distance, extra installation and maintenance, cost, and battery life [19].

For simultaneous detection of multi-parameters, different approaches have been used
in various practical applications such as implantable devices, food sample monitoring used
in critical situations about patients [20–22], tooth enamel detection [23], humidity measure-
ment of sealed packages [24,25], and so on. The advanced research on inductor-capacitor
sensors in recent years has rapidly increased and the growing variety of applications neces-
sitates the use of multi-parameters. An array of separated inductor capacitor sensors, on
the other hand, would take up a lot of space and require a separate readout coil for each
sensor [26–28] in addition to other limitations.

The sensor inductor induces voltage for sensor operation when readout coil is mag-
netically coupled, and control of the switches in this novel structure of multifunctional LC
passive wireless sensing system consists of one inductor, three variable capacitors, and two
switches, which construct three different LC tanks. The three different resonant frequencies
respond simultaneously to three different variable capacitors. Figure 1 shows the model of
the proposed system. In Section 2, the resonant frequencies are analyzed by Kirchhoff’s
law of the proposed system and simulations using advanced designing system (ADS-2016)
to demonstrate the resonant frequencies. In Section 3, the experimental setup and results
are presented. Finally, the conclusion is given in Section 4.
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2. Operation Principle
2.1. Analysis

The LC sensing behavior is explained in Figure 2. For wireless interrogation of the LC
sensor, used readout coil was magnetically connected with a sensor coil, and the sensor’s
resonant frequency was measured in response to the parameter sensed.
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The resonant frequency is given by:

f =
1

2π
√

LC
(1)

The geometry, distance between the readout and sensor coil, and all inductive coupling
influences in the magnetic medium is shown in Figure 2 [29]. The simplified equation for
coupling coefficient k is calculated as follows:

k =
1

[1 + 2
2
3 ( x12√r1r2

)
2
]

3
2

(2)

where r1 and r2 are the radii of the area enclosed by both inductors which are 10 mm
each and x12 represents the distance between the coils which is 6 mm. The value of k
lies between 0 and ±1, where ±1 means the maximum coupling between two coils and
0 means no coupling. The value of k for the proposed model was 0.6 according to the
Equation (2). The coupling can be improved by optimizing the size of the coils and the
distance between them.

Figure 2 depicts the reader coil and sensor coil of the LC passive wireless sensor
system, with the reader coil having 2.5 loops and the sensors inductor consisting of 10 turns
of planar square loops. The inductance value of the sensor inductor was 0.5 µH. The sensor
inductor had an outer diameter of 10 mm and a line width of 150 µm, and 100 µm was the
distance between the two loops. The thickness of copper was 30 µm.

The readout and sensor coils were magnetically coupled to each other with mutual
inductances. The readout coil worked as a transducer to transmit the power to the sensor
and receive a signal in the form of resonant frequency to measure the sensor changes.

Both of the switches consisted of four ports as shown in Figure 3a; two ports both
were voltage ports, A and B for switch Sw1, and M, N for Sw2, while the other blue points
C, D, X, and Y were the electrical connection ports, respectively. The readout coil induced
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alternating voltages into the sensor inductor by magnetic coupling, and the mechanical
switches were mechanically controlled. The Sw1 turned on when the voltage reached the
threshold, which made an electrical connection between capacitor C1 and C2 parallel.
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At the start of the scanning cycle, the capacitor C1 represented a resonant circuit with
the sensor inductor Ls exhibiting parallel connection, as shown in Figure 3b, where the first
resonant frequency f1 was detected by the readout coil (Lo), as well as the power coupled
by sensor coil Ls from the readout coil Lo to the mechanical switches. Turning on Sw1
connected C2 with the capacitor C1 in parallel to form the second resonant circuit with
the sensor inductor to detect f2. When f2 was consistent with the scanning frequency, the
induced voltage approached the threshold of the switch Sw2, and we turned on the switch
Sw2. Meanwhile, the switch Sw1 turned off because the scanning frequency increased and
mismatched with f1. The capacitor C3 became connected with the C1 and C2 in parallel to
represent the third resonant circuit, and readout coil was used for the detection of the third
resonant frequency f3. Finally, the controlling voltage approached the level where it was
refused by both switches and turned off. The main factor here was the voltage interval to
keep both the switches turned on and to ensure that the switches were not be turned off until
the sweeping frequencies captured the detected frequencies (f1, f2, and f3) consequently.
Another important consideration was the turn-off delay time of both switches, which
should be in the tens of milliseconds range to ensure that the detected frequencies f2 and f3
are recorded by the sweeping frequencies. The readout device performed the frequency
scanning operation automatically, and changing the sweep frequency band controlled the
sweep intervals among the detected frequencies (f1, f2, and f3). When the scanning cycle
was completed, the entire circuit returned to its initial condition and was prepared for the
next cycle. The detected resonant frequencies (f1, f2 and f3) could be defined as:

f1 =
1

2π
√

Ls(C1 + CCD +
Cp1·C2

Cp1+C2
+ CXY +

Cp2·C3
Cp2+C3

)

(3)

f2 =
1

2π
√

Ls(C1 + CCD + C2 + CXY +
Cp2·C3

Cp2+C3
)

(4)

And
f3 =

1
2π
√

Ls(C1 + CCD + C2 + CXY + C3)
(5)

where Cp1 and Cp2 represent the parasitic capacitances because both switches during off-
state are connected in series with capacitors C2 and C3 in practical applications. The CCD
and CXY are also parasitic capacitances across both switches, which had an insignificant ef-
fect but needed to be considered during simulations. The effect of both switches’ resistance
was equivalently varied with the capacitors in parallel, which had the same parasitic effect
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of capacitors as discussed above. In this case, the Equations (3)–(5) were simplified and
appropriate. Both switches had measured resistance of 1.53 ohms during off-states, which
had little impact on the detected resonant frequencies. The above three equations were used
for the calculation of resonant frequencies of three capacitors, while parasitic capacitances
of both switches are given in datasheets and also were tested through LCR meter.

2.2. Evaluation and Comparison

The comparison and description of different multi-parameter LC sensor systems are
given in Table 1 below. The proposed model had excellent contributions in different aspects.
The proposed scheme had higher measuring sensitivity, minimum cost, lower chip area by
utilizing two mechanical micro switches, larger interrogating range of about 6 mm, detected
and measured three parameters independently, and had negligible parasitic capacitance
effect as compare with the other existing approaches.

Table 1. Comparison of different multi-parameter approaches’ limitations and aspects.

Approaches Number of
Parameters Limitations Inducement

Two quantities of
detected resonant
frequency signal

Two
Lower measuring sensitivity,

lower signal strength,
lower accuracy

Working principle

Array of inductors
capacitor circuit Two

Larger chip area, higher cost,
lower measuring sensitivity,

signal strength

Individual resonant
circuits

Stacked
inductors circuits Two

Transmitting signal shifts,
detected signal missing or

shift, higher cost, lower
measuring sensitivity

Strong mutual
coupling

Two partly
overlapped

inductors system
Two

Limited measuring range,
lower signal strength, lower

measuring sensitivity,
higher cost

Interrogation distance

Specific winding
stacked inductors

system
Two

Limited measuring
sensitivity, lower signal

strength, higher cost, limited
interrogating distance

Small mutual
inductance

Two parallel LC
circuits using single

relay switch
Two

Limited measuring
sensitivity, limited signal

strength, higher cost, larger
chip area, distorted detected

signal, limited
interrogating range

Relay switch

2.3. Simulations

According to the mathematical analysis, f1 > f2 and f2 > f3 or f1 > f3. The resonant fre-
quency simulation using ADS in three different and individual setups is given in Figure 4a,
which shows the first detected resonant frequency for a more distinct analysis of com-
parison among the three resonant frequencies and three capacitors. The readout coil’s
inductance was commonly assumed to be 1 µH, while the sensor coil’s inductance was
0.5 µH, and three capacitors were independently set from 10 pF to 200 pF. At off-state,
the parasitic capacitance of the first switch Sw1 was Cp1 of 18.6 pF, while the parasitic
capacitance of the second switch Cp2 was 45 pF. When the variable capacitance C1 was
changed but C2 and C3 were kept constant at 50 pF, the observed resonant frequencies are
shown in Figure 4b where both switches were turned off when the sweep parameter was
applied to the variable capacitance C1.
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Figure 4. Layout simulations setup using ADS and results. (a) Simulation setup when both switches
were in off-state. (b) Detected resonant frequencies by applying sweep parameter at C1.

Figure 5a shows that the three resonant frequencies decreased gradually when C1
increased and f1, f2, and f3 became close to overlapping each other as C1 was much larger
than C2 and C3. This condition made it difficult to solve the capacitances. By turning on the
first switch Sw1, the capacitor C2 changed but C1 and C3 were fixed at 50 pF. The difference
between the detected resonant frequencies f1 and f2 enlarged when C2 became much larger
than C1, but the difference between f2 and f3 decreased to become overlapped with each
other as C2 was much larger than C3, as shown in Figure 5b.

Similarly, when both switches were turned on, C3 changed but C1 and C3 were fixed
at 50 pF, then the difference among three resonant frequencies increased as much as C3
increased, and f3 could still decrease greatly but f1 and f2 kept unchanged, as shown
in Figure 5c. These differences among the resonant frequencies occurred because of the
parasitic capacitances Cp1 and Cp2, which were connected in series with the capacitors
C2 and C3, consequently weakening the influence of change in the detected resonance
frequencies.
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C1 and C3 were fixed at 50 pF; (c) resonant frequencies versus C3 when C1 and C2 were fixed at
50 pF.

3. Experiments and Results

To verify the proposed multifunctional sensor system, the three variable capaci-
tors were tested by controlling two mechanical switches instead of electromagnetic relay
switches. The schematic diagram of the experimental setup of LC triple parameter sensor
system designed and constructed on the PCB board is shown in Figure 6. The sensor
inductor Ls was used to receive the energy by mutual coupling and transmitted the signal
to capacitors. The three variable capacitors C1, C2 and C3 were connected in parallel and
with the two switches Sw1 and Sw2, respectively. The variable capacitors imitated three
capacitive sensors to monitor different parameters by detecting resonant frequencies at
the readout coil. The mechanical switches were used to control the circuit. However, by
using an electromagnetic relay switch, the threshold voltage for one switch was 10 V and
for second switch was 20 V, as available commercially. The tested parasitic capacitance of
mechanical switch Sw1 in the off-state was 0.96 pF and for Sw2 was 0.65 pF, which could be
neglected to be considered during simulation, but the parasitic capacitances Cp1 of 18.6 pF
and Cp2 of 45 pF were connected in series with C2 and C3 in practical applications when
both the switches were in the off-state.
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Figure 6. Schematic diagram of experimental setup.

The actual fabrication and testing was accomplished as depicted in the experimental
setup Figure 7a. As a sensor inductor, a PCB planar square copper inductor was employed,
which was integrated over a PCB with 10 turns and 0.5 µH inductance, as illustrated in
Figure 7b. Outer diameter of sensor inductor was 10 mm, and the line’s width was 150 µm.
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The distance between loops was 100 µm. The copper had a thickness of 30 µm, while the
PCB substrate was 2 mm thick. The sensor coil inductance was 0.5 µH.
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monitoring sensor system. (b) PCB planar square copper inductor.

The LC triple parameters monitoring sensor system and readout coil were connected
to a network analyzer and the distance between the readout coils was fixed at 6 mm. The
diameter was 10 mm and was coupled to an Agilent N5224A PNA network analyzer (PNA)
to monitor the LC tank’s frequency response. When the PNA’s output power was set
to 20 dBm, the distance between the readout coil and sensor inductor was modified to
evaluate the system’s mutual coupling capability and switch operation.

The Figure 8a shows different resonant frequencies detected by changing the values of
variable capacitors one by one.

When both of the switches (Sw1 and Sw2) were in the off-state and C1 measured at a
minimum value of 14.6 pF and the tested parasitic capacitances of both mechanical switches
were 0.96 pF for Sw1 and 0.65 pF for Sw2, then the maximum resonant frequency f1_max was
detected as 40.6 MHz, as shown in Figure 8b. Similarly, the minimum detected resonant
frequency

(
f1_min

)
was 21.7 MHz by measuring the variable capacitor C1 at a maximum

value of 44.6 pF.
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Figure 8. Experimental results of detected resonant frequency versus S11 parameter of proposed
LC sensor system, (a) combined representation of detected frequencies for maximum and minimum
values of three capacitors, (b) curves for variation in C1, (c) curves for variation in C2, (d) curves for
variation in C3.

By turning on the first switch Sw1, the variable capacitor C2 was set to a minimum
value of 8.73 pF, while C1 was at a maximum of 44.6 pF. The second resonant frequency f2
varied from 30.7 MHz to 20.35, as shown in Figure 8c. The capacitance of C2 changed from
44.6 pF to 47 pF.

Figure 8d shows the third resonant frequency f3_max of 21 MHz when both switches
were turned on and the variable capacitor C3 was measured at a minimum value of 20 pF,
but C1 and C2 were fixed at 44.6 pF and 47 pF. respectively. The third resonant frequency f3
varied from 21 MHz to 17.65 MHz and the capacitance of C3 changed from 20 pF to 40.2 pF,
while C1 and C2 were fixed at 44.6 pF and 47 pF with their respective parasitic capacitances
of 18.6 pF and 45 pF connected in series with them, which had to be considered during use
in practical applications.

We can see in Figure 8c,d that the resonant frequencies decreased, the influence of
the parasitic capacitance connected in series with both of the capacitors, which greatly
weakened the influence of changing capacitances and resulted in the small change in
resonant frequencies.

The theoretical analysis of three capacitors was calculated by Equations (3)–(5) when
the three resonant frequencies were given by the readout coil of the LC sensor system. When
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the C1 is increased more than the other two capacitors, the three frequencies became close
or even overlapped, which was already explained in Section 2 in detail and represented
in Figure 5a. In this situation, the proposed LC sensor system could not be applied in
real applications. Hence, the position of the capacitor C1 and C2 were exchanged for the
solution of overlapping of the three resonant frequencies to each other, but still, f2 and f3
overlapped, as shown in Figure 5b. Therefore, positions of the two capacitors were also
exchanged which addressed the merging issue of the three resonant frequencies, then we
could calculate the three capacitors by using the three equations. The equivalent circuit
was already discussed in the theoretical model which was simplified and had the small
parasitic capacitances at the other ports of both switches taken into consideration. The
resistance affected the Q factor of the whole LC circuit; however, it had a small effect over
the resonant frequency. The final result was not influenced by the resistance.

4. Conclusions and Future Work

In conclusion, an LC-type passive wireless triple parameter monitoring system with
double mechanical switches was designed and manufactured. The corresponding circuit
mentioned in the theoretical model was simplified and did not account for any other
considerations, particularly the resistance and minor parasitic capacitances at both switches’
off-state ports. The resistance had an impact on the overall Q factor of the LC circuit, but
only a little impact on the resonant frequency. As a result, the lack of resistance had
no bearing on the ultimate results. Two factors influenced the coupling voltage: the
distance between the readout coil and the sensor inductor and the difference between
the sweep frequency and the LC tank’s resonance frequency. The schematic circuit of the
multi-parameter monitoring LC sensor system was simulated using ADS software and the
mathematical analysis was carried out using MATLAB 2010. The experiments showed that
the two mechanical switches were controlled and actuated mechanically to demonstrate
and verify the detected resonant frequencies for three parameters. It was shown from
the measurements that three different resonant frequencies could respond to the three
variable capacitors, respectively. Therefore, the proposed multi-parameter LC sensor system
could measure three parameters. In the future, further techniques and methodologies can
be utilized to achieve the issue of multiple sensor operation simultaneously through a
miniaturized and limited-area-acquired inductive telemetry system.
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