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Abstract: The objective of smart cities is to improve the quality of life for citizens by using Information
and Communication Technology (ICT). The smart IoT environment consists of multiple sensor devices
that continuously produce a large amount of data. In the IoT system, accurate inference from multi-
sensor data is imperative to make a correct decision. Sensor data are often imprecise, resulting
in low-quality inference results and wrong decisions. Correspondingly, single-context data are
insufficient for making an accurate decision. In this paper, a novel compound context-aware scheme
is proposed based on Bayesian inference to achieve accurate fusion and inference from the sensory
data. In the proposed scheme, multi-sensor data are fused based on the relation and contexts of
sensor data whether they are dependent or not on each other. Extensive computer simulations show
that the proposed technique significantly improves the inference accuracy when it is compared to the
other two representative Bayesian inference techniques.

Keywords: smart IoT environment; sensor data fusion; context awareness and sharing; Bayesian
networks; Kalman filter; smart cities

1. Introduction

The rapidly growing world population is becoming a relevant issue to solve the
problems of efficiency and quality of life for people [1,2]. Smart cities use the latest
technologies to improve citizens’ economic growth and lifestyles. The key features of smart
cities include: smart governance, smart monitoring, smart citizens, smart services, smart
economy, smart technology, smart mobility, smart living, smart environments, and smart
parking [3–5]. IoT systems and Information and Communication Technology (ICT) play
a vital role to increase intelligence for making better decisions based on the sensor data
environments [6]. It is based on the paradigm of sensing, reasoning, inferencing, and acting
by exploiting the sensory data [7–9].

The smart city comprises different types of sensor devices which often produce diverse
data. In such a situation, it is necessary to fuse the heterogeneous data obtained from
various sensors deployed in the target place. However, it is challenging to accurately infer
and make a correct decision based on the multi-sensor data. Furthermore, data from a
single source (sensor) are usually insufficient for making the correct decision. Additionally,
noisy data may result in wrong inferences about the environment [10]. Thus, noise in the
sensor data needs to be filtered out before the data are forwarded to the inference system.
We adopted the Kalman filter (KF) which is the most commonly used technique to reduce
the noise and uncertainty in data [11].

Context awareness allows accurate inference by properly interpreting the context
information extracted from the sensor data in an integrated fashion, either passively or
actively [12,13]. The IoT system of smart cities also needs compound context awareness
to achieve accurate decisions since only one context may lead to a wrong inference. For
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example, high body temperature in an ordinary situation indicates illness, but it is normal
during strenuous exercise. Hence, two contexts, temperature and location, may be needed
to distinguish illness from exercise. The techniques used for multi-sensor data fusion
and inference are mainly categorized as artificial-intelligence-based, evidence-based, and
probability-based [14–16]. Bayesian inference (BI) is a probability-based fusion technique
that obtains the correlation between the multi-source data. In the literature, various
data fusion and inferencing techniques have been proposed [17–21]; however, they are
mostly based on a single context. The appropriate manipulation of compound contexts
for accurate inference is still a big challenge, which is the motivation of our research and
proposed scheme.

In this paper, a compound context-aware Bayesian inference (CCBI) scheme is pre-
sented which allows accurate inference and decision making based on multiple-context
data sharing of the smart cities environment. Multi-sensor data are operated in two phases;
in the first phase, KF is applied to filter each sensor datum and reduce the error. In the
second phase, BI is applied on filtered data to exploit the statistical correlation between the
sensor data based on the multiple contexts and fuses them. Altogether, in the CCBI, the
heterogeneous data from multiple sensor devices are fused based on context sharing and
relation to perform an accurate decision on them. Computer simulation reveals that the
CCBI shows considerably better performance than the other two schemes, Bayesian Data
Fusion [22] and Bayesian Network Data Fusion (BNDF) [23], in terms of inference accuracy.
The following are the main contributions of the proposed scheme:

• While various multi-sensor data fusion schemes with BI have been proposed, they are
mostly based on a single context. We proposed a generic approach for improving rea-
soning and inference accuracy by sharing and utilizing multiple compound contexts.

• Since the events in the real situation might be correlated with each other, the inference
operation is further specified in two modes to best match the given condition be-
tween the contexts of sensor data: (i) Bayesian inference with dependent contexts and
(ii) Bayesian inference with independent contexts.

• A novel belief function of the BI system is developed which effectively represents
the conditional dependency between a specific state and contextual information. The
proposed modeling approach is general so that it can be adopted for any inference
problem handling heterogeneous data.

The organization of the paper is: the work related to multi-sensor data fusion for
WSN and smart cities is summarized in Section 2. In Section 3, the proposed CCBI scheme
is discussed. Simulation setup and results analysis are explained in Section 4, and the
conclusion is discussed in Section 5.

2. Related Work

The issue of sensor data fusion in smart IoT environments has been recognized by
several researchers. In [24], a platform named iSapiens was proposed to apply the edge
computing model concerning a distributed network in an urban environment. It was
an IoT-based application platform to develop agents for receiving data from the smart
environment and situation. In [25], a deep learning-based scheme was presented where
a convolution neural network (CNN) was incorporated with long short-term memory
(LSTM) architectures to be used for traffic flow predictions in smart cities. Spatial data
were classified with a CNN, though temporal data were classified with LSTM. In [26], an
adaptive distributed Bayesian was proposed to detect outliers in the sensor data.

In [27], the authors presented a scheme for data fusion using reinforcement learning
to improve fusion accuracy. Ref. [28] presented a deep-learning-based method for fused
multi-source heterogeneous data. Correspondingly, several issues with multi-source het-
erogeneous data fusion were discussed in this paper. A Bayesian-based model [29] was
proposed for data fusion that measures temperature, fuses data from smart buildings,
extracts knowledge with some sensor measurements, and then predicts spatial temperature
distribution for further estimation. The Bayesian information and knowledge fusion model
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is presented in [30], to maximize the posterior probability. In Equation (1) [30], the Bayesian
approach for information fusion is formulated.

p(Θ|D1, D2, |M1, M2) =
p(D1 |Θ , M1)p(D2 |Θ , M2) P{p(Θ|M1)p(Θ|M2)}

p(D1, D2|M1, M2)
(1)

A fuzzy-neural-network-based technique was presented in [31] to extract the important
features and knowledge from the data. Ref. [32] proposes three filtering approaches
to fuse sensor data: Pre-Filtering, Post-Filtering, and Pre-Post-Filtering. It filtered and
combined sensor data using a modified Bayesian fusion algorithm to deal with ambiguity
and contradiction problems in the data. Dempster–Shafer theory is the generalization of
the Bayesian theory which is used to fuse and transform conflicting information into a
decision-making result [33,34].

3. The Proposed Scheme

In this section, we present the proposed CCBI scheme for heterogeneous data fu-
sion and make accurate decisions on them. It increases the inference accuracy based on
compound context awareness and sharing.

3.1. Design Goal

The design purpose of the proposed scheme is to efficiently fuse the heterogeneous
sensor data for accurate inference. The data generated in WSN are usually massive and
noisy. Hence, a method to efficiently filter the errors in the sensor data is needed before the
fusion. With centralized filterings, such as a base station (BS), the network tends to become
congested. So, we consider that each sensor node can accommodate the KF operation for
filtering the sensing data to reduce error and noise before transmitting it to the fusion node.
The BI operation is deployed at the central node to fuse heterogeneous sensor data. The
structure of the CCBI scheme is shown in Figure 1.

Figure 1. The two-phase operation of the proposed CCBI scheme.

3.2. Operation
3.2.1. Distributed Filtering

The data of each sensors are processed using KF [15,35] to omit the noise before being
sent to the BS for inference, as shown in Figure 2a,b. KF is mainly based on the prediction
operation which constructs the matrix of the underlying state vectors and updates it
according to the sensor measurement. Consider the following model of the linear dynamic
system. Table 1 explains all the notations used in the KF.

x̂k = Ak x̂(k−1) + Bkuk + Gk (2)
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zk = Hk x̂k + vk (3)
.̂
xk = Ak x̂(k−1) + Buk (4)

.̂
Pk = AkPk−1 AT + Q (5)

Figure 2. (a) The intersection of the covariance of data. (b) The gaussian PDFs of the estimation
and measurement.

Table 1. The notations used in KF.

x̂k The state of the process

Ak The system state matrix

Bk The Input matrix

uk The control vector

Gk The process noise or gain

zk The measurement obtained by sensors

Hk The Observation (model) matrix

vk Noise measurement or error
.̂
xk The estimation of the predicted state
.̂
Pk Covariance of error

Rk Covariance

Kk The Kalman gain

As shown in Equations (2)–(5), the estimation
.̂
xk and covariance of error

.̂
Pk are

integrated with the sensor measurement zk and covariance Rk to get the updated estimate
and error covariance matrix. Figure 2a,b explains the relation among the approximation
and cleaned data, and Figure 3 shows the procedure of KF.

Kk =
.̂
Pk HT

(
H

.̂
Pk HT + R

)−1
(6)

x̂k =
.̂
xk + Kk

(
zk − Hk

.̂
xk

)
(7)

Pk = (1− Kk H)
.̂
Pk (8)
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Figure 3. The operation procedure of KF.

3.2.2. Bayesian Inference

The proposed scheme has two modes of operation: inference with dependent contexts
and independent contexts, respectively. These two modes properly deal with heterogeneous
data based on the relation between the contexts and data.

Bayesian Inference with Dependent Contexts

This mode is applied when the events or measurements of the environment are
dependent on each other. Here, the probability of an event or outcome is predicted based
on the occurrence of the related events. Making a decision based on multi-sensor data and
context information is regarded as inference with the given condition. For example, turning
an air conditioner on and off according to the existence of people or fire detection based on
multiple context data are such inference operations. Similarly, in the healthcare application,
a variety of sensor nodes record the patient’s physical context such as blood pressure and
sugar, etc. [10]. When the threshold of a context is exceeded, the medical center is notified
immediately. In critical applications, including the healthcare system, accurate and reliable
inference is very important, and single-sensor data may not be sufficient for that [36,37].
Therefore, BI using heterogeneous data is required. In this mode, the posterior probability
is computed according to the Bayesian rules to make the decision based on the compound
contexts. Table 2 lists the notation used in the proposed CCBI model.

Table 2. The notations used in the CCBI model.

zt Denotes the sensory measurement at state t

ct Represents the contextual information at state t

yt Denotes the environment at state t

at Represents the target alarm value at state t

p(.) Denotes the probability function on the measurement

Bel(.) Represents the belief of the occurrence
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Figure 4 shows the data flow of the proposed CCBI with the change in the state
of the system. Here, zt = (z1

t , z2
t , . . . , zn

t ) is the set of data generated by n sensors, and
ct = (c1

t , c2
t , . . . , ck

t ) is a set of k context data at state t. The probability distribution, p(zt|ct),
represents how the contextual information affects the sensor reading and final event, at.
The state takes a certain probability value, which is expressed by the state transition model,
p(at|zt, ct, yt), and leads to a final decision. The belief of the BI system, Bel(at), under a
specific state, at, and contextual information, ct, is defined as

Bel(at) = p(at|zn, ct, yt), (9)

Figure 4. The data flow of the proposed CCBI.

The equation of Bayes fusion [38] is adopted for deriving the belief. Particularly,
Equation (9) can be expressed as follows. Let us define p(at) as the probability of the
occurrence of an event, at, and p(at, zt, ct, yt) as the joint probability of the occurrence of all
events. Then, the conditional probability of the occurrence of at given that the environment
or State_yt has already occurred can be related as p(at, zt, ct, yt) = p(at|zt, ct, yt) p(zt, ct, yt)

p(at|zt, ck, yt) =
p(at, zt, ct, yt)

p(zt, ct, yt)
(10)

The following belief represents the conditional dependence between at and (zt, ct, yt),
and the above relation can also be written as follows in Equation (11):

p(at|zt, ct, yt) =
p(zt|ct, yt, at) p(ct, yt, at)

p(zt, ct, yt)
(11)

By applying the chain rule, p(ct, yt, at) and p(zt, ct, yt) can be further separated as
p(ct, yt, at) = p(ct|yt, at)p(yt, at), and p(yt, at) = p(yt|at)p(at), then

p(ct, yt, at) = p(ct|yt, at)p(yt|at)p(at) (12)

In a similar fashion, p(zt, ct, yt) can be formulated as p(zt, ct, yt) = p(zt|ct, yt)p(ct, yt)
and p(ct, yt) = p(ct|yt)p(yt), then

p(zt, ct, yt) = p(zt|ct, yt)p(ct|yt)p(yt) (13)

Substituting Equations (12) and (13) into Equation (11), we obtain the following equation:

p(at|zn, ck, yt) =
p(zn|ct, yt, at) p(ct|yt, at)p(yt|at)p(at)

p(zt|ct, yt)p(ct|yt)p(yt)
(14)
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By substituting Equation (14), Equation (9) becomes

Bel(at) =
p(zn|ct, yt, at) p(ct|yt, at)p(yt|at)p(at)

p(zt|ct, yt)p(ct|yt)p(yt)
(15)

The data service module produces the meta-information on the system to extract the
information relevant to the target application such as updating the alarm threshold or
reconfiguring the sensory infrastructure.

Bayesian Inference with Independent Contexts

This case is applied when the events or measurements of the sensor are not dependent
on each other. After performing the KF operation, individual sensors send data to the
central node, where the data are inferred based on the posterior and prior probability, and
the measurement of the highest probability is considered as the final value. Let us denote di

n,
di

c, and di
p as the new predicted dataset, current dataset, and previous dataset with sensor-i,

respectively (i = 1, 2, 3 . . . n). Note that the sensor data are individually filtered by KF, and
the probability of the result, x, is computed based on the latest set of data p

(
x
∣∣d1

n . . . d2
n
)

in
the node applying the CCBI. Using the rules of CCBI, the following relationship can be
obtained with two sensor nodes as in [39]:

Bel
(

xj
)
= p

(
x
∣∣∣d1

nd2
n

)
= p

(
x
∣∣∣d1

cd2
cd1

pd2
p

)
=

p
(

d1
cd2

c

∣∣∣x, d1
pd2

p

)
p
(

x
∣∣∣d1

pd2
p

)
p
(

d1
cd2

c

∣∣∣d1
pd2

p

) (16)

Since the sensor readings are independent, we obtain the following:

Bel
(
xj
)
=

p
(

d1
c

∣∣∣x, d1
p

)
p
(

d2
c

∣∣∣x, d2
p

)
p
(

x
∣∣∣d1

pd2
p

)
p
(

d1
cd2

c

∣∣∣d1
pd2

p

) (17)

By applying the chain rule, Equation (16) is rewritten as

Bel
(
xj
)
=

p
(

d1
c

∣∣∣x, d1
p

)
p
(

d2
c

∣∣∣x, d2
p

)
p
(

x
∣∣∣d1

pd2
p

)
p
(

d1
cd2

c

∣∣∣d1
pd2

p

)

=
p
(
x
∣∣d1

n
)

p
(
x
∣∣d2

n
)

p
(

x
∣∣∣d1

pd2
p

)
p
(

x
∣∣∣d1

p

)
p
(

x
∣∣∣d2

p

) (18)

Equation (13) can be expanded for the case of three sensors as given below:

p
(

x
∣∣∣d1

nd2
nd3

n

)
=

p
(

x
∣∣d1

n
)

p
(
x
∣∣d2

n
)

p
(
x
∣∣d3

n
)

p
(

x
∣∣∣d1

pd2
pd3

p)
)

p
(

x
∣∣∣d1

p

)
p
(

x
∣∣∣d2

p

)
p
(
x
∣∣d3

p
) × N3 (19)

N3 =
3

∑
i=1

p
(

xi
)

Here, N3 denotes the normalization value for three sensor nodes. With m sensors, the
model can be generalized as

p
(

x
∣∣∣d1

n, . . . , dm
n

)
=

∏m
i=1 p(x|dm

n )p(x
∣∣∣∏m

i=1 dm
p )

∏m
i=1 p

(
x
∣∣∣dm

p

) × Nn (20)
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Nm =
m

∑
i=1

p
(

xi
)

(21)

4. Performance Evaluation

In this section, we present the simulation environment as well as performance analysis
of the obtained results.

4.1. Simulation Environment

The simulation environment is set up on a computer with Intel-Core i7 processor and
16 GB RAM running Matlab R2018a at LINK lab, koreatech university, South Korea. The
performance of the CCBI is compared with the two representative BI schemes: Bayesian
Data Fusion (BDF) [22] and Bayesian Network Data Fusion (BNDF) [23].

Bayesian Data Fusion (BDF): This is the simplest model of data fusion based on Bayes’
rule combining different knowledge. P(x|z) is the inference distribution of the unknown
state x using specific sensor measurement z. It is represented as

P(x|z) = αP(x)P(z|x) (22)

The BDF model is further extended by BNDF to improve the inference accuracy as follows.
Bayesian Network Data Fusion (BNDF): This merges some properties of the surround-

ing environment, e, with the data for achieving more accurate inference as below [23]:

P(x|z, e) = αP(x)P(z|x, e) (23)

Note that the BNDF scheme is extended in the proposed CCBI scheme by adding dif-
ferent factors and states of the environment to improve the inference accuracy, as explained
in the previous section.

The fire detection system is adopted to evaluate the efficiency of the BI schemes
as a realistic test case. In fire detection, the key contexts are air temperature, smoke
concentration, the wavelength of the flame radiation, humidity, and carbon monoxide
(CO). The data used in the simulation are generated randomly for each of the five different
contexts. In the simulation, gaussian noisy data of high variation are injected, and then
erroneous data are omitted by applying KF [40]. The filtered data from different sensors are
then sent to the CCBI engine to make a final decision based on the context information. Four
performance indicators are measured in the simulation: sensitivity (precision), specificity
(recall), accuracy, and F1-score [41]. The results of three schemes are computed and tested
using three statistical measurements, sensitivity, specificity, and F1-score (F-measure), as
shown in Equations (24)–(27). In the following equations, we used TP (true positive), FP
(false positive), TN (true negative), and FN (false negative).

Sensitivity (precision) =
TP

TP + FN
(24)

speci f icity (recall) =
TN

FP + TN
(25)

Accuracy =
TP + TN

TP + FP + TN + FN
(26)

F1 =
2(speci f icity× sensitivity)
(speci f icity + sensitivity)

(27)

4.2. Simulation Result

Figure 5 shows the probability of fire detection with each respective context datum.
As observed from the figure, at iteration 18, the detection probability with air temperature,
smoke, flame, CO, and humidity is around 0.66, 0.61, 0.42, 0.44, and 0.4, respectively. When
the fire erupts, the values of the contexts will start to increase, such as at iteration 10.
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However, the fire eruption can be confirmed between iterations 40 and 70 because the
probability values of all the contexts are high enough in that range. Notice that making
a decision based on only one context might not allow dependable results. For example,
high temperatures without smoke may not indicate fire in the real situation. Therefore,
the proposed scheme utilizes all the five-context data to efficiently resolve this issue and
increase the decision accuracy.

Figure 5. The detection probability of fire is based on the respective context.

Figure 6 shows the evaluation of the error rate in the sensor data before and after the
KF. In the sensor data, errors occur due to noises and variations. To test the effectiveness of
the proposed scheme, noisy data of high variation are injected in the simulation. Before
the BI process, the sensor data, which are a mixture of the data and noise, are filtered by
KF. It measures the noise variance in the data to filter out the errors, as briefly explained
in Equations (4)–(8) in Section 3.2. As shown in the figure, the error rate after KF is much
smaller than before KF. In addition, note that the error rate fluctuates significantly, while
KF makes it quite stable and low.

Figure 6. The comparison of error rates before and after KF.

Figure 7 shows the ROC (receiver operating characteristic) curve for three schemes,
BDF, BNDF, and CCBI. Here, the curve is plotted with TP rate (=TP/(TP + FN)) on the
y-axis against the FP rate (=FP/(FP + TN)) on the x-axis; it compares the TP and FP rate
of three schemes. The upper-left corner indicates a 100% TP rate. Therefore, the closer to
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this corner, the higher the overall accuracy is. Hence, the proposed scheme shows better
performance than the other two schemes, BDF and BNDF.

Figure 7. The result of TP and FP for three schemes.

Figure 8 shows four performance measurements: the recall, precision, accuracy, and
F1-score of the three schemes. The CCBI consistently shows better results than BDF and
BNDF based on four performance measurements: recall, precision, accuracy, and F1-score.
This better performance is because the decision-making strategy of the proposed scheme is
based on multiple contexts.

Figure 8. The comparison of the schemes on the four metrics.

5. Conclusions

In this paper, a novel, context-aware scheme of multi-sensor data inference was
proposed for a smart IoT environment. It employed KF and BI to efficiently deal with the
uncertainty and inconsistency issues with sensory data. To enable early warnings of fire,
the characteristics of temperature, smoke concentration, and carbon monoxide sensor data
in the initial stage of fire were analyzed in this study, and a BI was chosen to achieve the
fusion of data. Here, the data were inferred considering the relation between the contexts.
The simulation results show that the proposed scheme considerably outperformed the
existing BI schemes in terms of decision accuracy, with a realistic test case of fire detection.
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In the future, the performance of the proposed method will be further extended and
improved by employing the Dempster–Shafer theory, which calculates the reliability of
each state based on data extracted from various sources. The proposed scheme will also be
extended using feature extraction and selection in the high-dimensional data to improve
inference and decision accuracy. Moreover, it is also our goal to build a wireless sensor
network (WSN) based on Deep Reinforcement Learning to test the algorithm in a realistic
fire scenario and apply it to the Internet of Things (IoT) in smart cities.
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