
����������
�������

Citation: Caserio, C.; Lonetti, F.;

Marchetti, E. A Formal Validation

Approach for XACML 3.0 Access

Control Policy. Sensors 2022, 22, 2984.

https://doi.org/10.3390/s22082984

Academic Editor: Nikos Fotiou

Received: 28 March 2022

Accepted: 9 April 2022

Published: 13 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Formal Validation Approach for XACML 3.0 Access
Control Policy
Carmine Caserio 1, Francesca Lonetti 2,* and Eda Marchetti 2

1 Computer Science Department, University of Pisa, 56127 Pisa, Italy; carmcase2@gmail.com
2 ISTI-CNR, 56124 Pisa, Italy; eda.marchetti@isti.cnr.it
* Correspondence: francesca.lonetti@isti.cnr.it

Abstract: Access control systems represent a security mechanism to regulate the access to system
resources, and XACML is the standard language for specifying, storing and deploying access control
policies. The verbosity and complexity of XACML syntax as well as the natural language semantics
provided by the standard make the verification and testing of these policies difficult and error-
prone. In the literature, analysis techniques and access control languages formalizations are provided
for verifiability and testability purposes. This paper provides three contributions: it provides a
comprehensive formal specification of XACML 3.0 policy elements; it leverages the existing policy
coverage criteria to be suitable for XACML 3.0; and it introduces a new set of coverage criteria
to better focus the testing activities on the peculiarities of XACML 3.0. The application of the
proposed coverage criteria to a policy example is described, and hints for future research directions
are discussed.

Keywords: XACML 3.0 formalization; coverage criteria; policy testing

1. Introduction

Security is a challenging issue in modern networked systems where a huge amount
of data are managed and exchanged in everyday life. In particular, the privacy and
confidentiality attributes of personal and critical data require adequate security mechanisms
to be put in place [1]. In this context, access control systems represent an important
component for the overall security because they are able to mediate all requests of access.
This ensures the protection of data and assures that only the intended, i.e., authorized users
can access them. In particular, specific rules can be defined for establishing under which
conditions a subject’s access request to a resource can be permitted or denied.

In this context, attribute-based access control (ABAC) [2] systems are the adopted
means for enhancing a fine-grained access control. ABAC relies on the combination of
various attributes of authorization elements into access control decisions. In the literature,
there are several languages for specifying access control policies [3], and among them, the
OASIS eXtensible Access Control Markup Language (XACML) [4] is the most commonly
used standard in many real-world systems for defining ABAC policies in the XML-based
syntax. The XACML language is also widely used to guarantee access control decisions for
the distributed Internet of Things (IoT) environments [5,6].

The management of real access control policies is in practice difficult and error-
prone [7] due to the verbosity and complexity of the XACML syntax. Faults in the access
control policies are very critical because they could open the path to security flaws: either
denying accesses that should be authorized or allowing accesses to non-authorized users.

Thus, verification and validation become key issues for XACML policies specification
and their implementation [8].

However, in the literature, the commonly available test cases’ generation approaches
for XACML policies leverage combinatorial methodologies [9–12]. With the adoption of

Sensors 2022, 22, 2984. https://doi.org/10.3390/s22082984 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22082984
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4864-2219
https://orcid.org/0000-0003-4223-8036
https://doi.org/10.3390/s22082984
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22082984?type=check_update&version=2

Sensors 2022, 22, 2984 2 of 24

these methodologies, the generated number of test cases rapidly grows according to the
policy complexity.

The execution of a large number of test cases can drastically increase the cost and
effort of the testing phase especially for what concerns the oracle definition, i.e., checking
the test results and deciding whether they are correct or not.

In practice, in the context of access control systems, except for some attempts to
automatically derive the oracle from the XACML policy model [13], this oracle derivation
is usually performed manually, because the complexity of the XACML language makes the
use of automated support very difficult. Given the real constraints on testing budget, a key
issue in the testing of XACML policies is to reduce as much as possible the number of tests
to be executed while trying to maximize the fault detection effectiveness of the reduced
test suite.

The main goal of this paper is to address this specific issue by proposing some testing
coverage criteria specifically conceived on the peculiarities of the XACML 3.0 language
that is the current standard language for access control policies definition. To define
these XACML 3.0-based coverage criteria, we first provide a formal definition of the main
elements of the XACML 3.0 language. The proposed XACML 3.0-based coverage criteria
will guide the testing activities and enhance the trustworthiness of XACML-based access
control systems.

As stated in the literature, coverage information can provide an indication of the
effectiveness of the executed test cases and can guide the generation of test cases [14].
However, some empirical results [15] show that the performance of the reduced test suite
could vary according to the considered program and the adopted coverage criterion.

In this paper, we provide some examples of how the proposed coverage criteria could
be useful in addressing problems and inconsistencies in policy specification. In particular,
we start from a formal definition of XACML syntax and semantics, and then, we show
its use for enabling the understanding of XACML standard intentions and allow rigorous
analysis techniques for verifiability and testability purposes.

Some attempts to provide formal reasoning techniques for the analysis and verification
of policies have been provided [16–20]. They mainly focus on specific aspects of the
language or design new expressive languages whose formal foundations enable tool-
supported analysis and enforcement of access control policies.

In this paper, starting from the work of [16], we refine the definition of the abstract
syntax and semantics of XACML 3.0 standard. According to this formal definition, we
define a formal specification of the coverage process of the elements of the XACML policy
and provide some coverage criteria that is useful to assess the XACML policy.

In particular, we select as the specification language the abstract syntax of the Context
Free Grammar (CFG) [21], because it provides a precise mathematical definition that clearly
rules out the XACML language. Additionally, the formalization provided by the CFG is a
machine readable specification, which can be easily implemented in an automatic way.

Summarizing, the main contributions of this paper are: (i) to derive a rigorous for-
malization of XACML 3.0 standard leveraging context-free grammar [21], extending and
revising the proposal of [16], and (ii) to formally define some policy coverage criteria for
XACML 3.0 policy testing.

We also discuss possible ways to adopt the defined coverage criteria for improving
the verifiability and testability of the policy such as: (i) the derivation of XACML requests
according to the defined coverage criteria; (ii) the reduction (or selection) of a given test
suite according to defined coverage criteria and its effect on fault detection; (iii) finally, the
coverage measurement of the XACML policy in order to detect uncovered or redundant
parts of the policy as well as guide the development of further test cases, which can improve
the quality of policy testing.

The remainder of this paper is organized as follows. Section 2 introduces the XACML
language. Section 3 presents the related work. Section 4 presents the formalization of
XACML 3.0 policy elements, while Section 5 presents the formalization of the XACML

Sensors 2022, 22, 2984 3 of 24

request. Section 6 presents the coverage definition of XACML 3.0 policy elements, whereas
Section 7 shows the definition of some coverage criteria and their application to a policy
example. Finally, Section 8 concludes the paper, also hinting at future work.

2. Access Control Policies in XACML 3.0

XACML 3.0 language is a de facto standardized specification language for ruling the
system access in an XML format. It relies on two main concepts: the XACML policy used
for modeling the access requirements of a protected system; and the XACML request used
for requiring the access to a protected resource. In the access control system, the request is
evaluated against the policy to allow (or deny) the access to the resource. In the following,
more details about these two concepts are provided.

An XACML policy is characterized by a tree structure having as its root the PolicySet
and as children one (or more) PolicySet(s) or Policy elements. The latter includes: a Target,
which specifies the execution constraints in terms of the subjects, resources, actions, and
environments on which the policy can be applied; and a set of rules having also in turn
a target, a condition and a rule-combining algorithm. Usually, the target is represented
by a conjunctive sequence of AnyOf clauses. In particular, each AnyOf clause is a dis-
junctive sequence of AllOf clauses, and each AllOf clause is a conjunctive sequence of
match predicates, and each match predicate compares attribute values in a request with
the policy attributes. Both match predicates and rule conditions use different logical ex-
pressions and a variety of predefined functions and data types on subject, resource, action,
and environment.

Only when a request satisfies the target of the PolicySet or Policy, the associated set of
rules can be evaluated; otherwise, it is skipped.

Considering in detail the structure of a rule, its main elements are: the Target and
the Condition, i.e., a set of Boolean functions used for establishing when the request is
applicable to the rule. In this last case, the outcome of the rule is the rule effect (Permit or
Deny). If the request is not applicable to the rule, the evaluation outcome is NotApplicable or
Indeterminate in case of error.

The combining algorithms (either the PolicyCombiningAlgorithm or RuleCombiningAlgo-
rithm) define how to combine the evaluation results in order to provide a unique evaluation
outcome (access result). As an example, the deny-overrides algorithm establishes that Deny
takes the precedence regardless of any other rules evaluation. Therefore, it will return Deny
if there is a rule that is evaluated to Deny. It will return Permit if there is at least a rule that
is evaluated to Permit, and all the other rules are evaluated to NotApplicable. Alternatively,
an Indeterminate result is provided as the outcome if there is an error in the evaluation of a
rule with the Deny effect, and the other policy rules with the Deny effect are not applicable.

Similarly, the first-applicable algorithm forces the rules evaluation in the order in which
they are listed in the policy. The final outcome will be the effect of the first applicable
rule (i.e., Permit or Deny). In all the cases, if the evaluation of the rule target (or the rule
condition) is False, the next rule in the order will be evaluated until no further rule in the
order exists, and the final NotApplicable result is provided.

For the evaluation, all attribute and element values describing the subject, resource,
action, and environment of an access request are considered and compared with the
attribute and element values of the policy.

The above-described access control mechanism relies on the standardized access
control system architecture represented in Figure 1. As in the Figure, the main entities are:

• the Policy Enforcement Point (PEP) that is in charge of receiving the user’s request,
transforming it into an XACML request and sending it to the PDP. It also allows or
denies the access to the resource.

• the Policy Decision Point (PDP) which is in charge of the request evaluation against
the policy and the computation of the access response (Permit/Deny/NotApplicable).
The PDP retrieves the access policies from the Policy Administration Point (PAP) and
the attributes values from the Policy Information Point (PIP).

Sensors 2022, 22, 2984 4 of 24

Figure 1. XACML Basic Model.

3. Related Work

This work spans over two main research directions: XACML formalization (Section 3.1)
and coverage criteria for testing purposes (Section 3.2). Moreover, in Section 3.3, the specific
advancements of our work with respect to the SotA are presented.

3.1. XACML Formalization

Access control languages formalization has recently been the subject of extensive re-
search, and several attempts have been provided to analyze and formalize XACML policies.

Margrave is a popular propositional logic analysis tool for XACML policy verifica-
tion [22]. Logic programming systems and description logics (DL) have been used to
model XACML policy constraints and roles hierarchies [23,24]. Specifically, the work in [24]
extends the analysis services offered by Margrave leveraging full First-Order logic XACML
analysis tools (such as Alloy [25]). It is able to cover the analysis of role hierarchies and role
cardinality as well as analysis of policy redundancy.

Bryans explores the use of process algebra for formalizing and analyzing XACML
language, presenting the core concepts of XACML using Communicating Sequential Pro-
cesses (CSP) [26]. Other woks propose different formalization approaches for capturing the
semantics of XACML constructs [27–29] and specifying an access control meta-model to
derive access control policies or rule-based policies [30–32].

Other approaches to enable the automated verification of access control policies rely on
SAT solver. Specifically, the authors of [33] present a formal model defining the semantics of
the XACML access control language; then, they define ordering relations on access control
policies that are used to automatically verify properties of the policies by translating them
to boolean satisfiability problems and then applying a sat solver.

Masi et al. in [17] define a formal expressive access control policy language denoted
as FACPL, supporting automated specification, analysis, and the enforcement of access
control policies. It refines and extends XACML language and relies on a rigorously de-
fined denotational semantics that allows for the management of missing attributes and
formalization of combining algorithms. For enabling automated policies analysis, they
introduce a constraint formalism based on Satisfiability Modulo Theories (SMT) formulae,
which has been proven to be more effective than other ones, such as decision diagrams or
description logic.

A more recent work [13] aims to formalize XACML policies by using a typed graph,
called the XAC-Graph. Then, this XAC-Graph is used for both XACML requests generation
and automated model-based oracle derivation.

Sensors 2022, 22, 2984 5 of 24

Finally, the work in [16] differently from the previous approaches focuses on the last
standard version of XACML that is XACML 3.0 and provides a formally defined semantics
for XACML 3.0 components evaluation and standard combining operators, proposing new
directions for the XACML standard extension.

Our proposal revises and extends the work of [16], proving a complete definition
of the abstract syntax and semantics of XACML 3.0 standard, leveraging context-free
grammars. Moreover, differently from all the mentioned formalization approaches, our
work focuses more on policy testing than the verification of policies properties. For this,
we use the proposed formalization to define some policy coverage criteria that can enhance
the effectiveness of policy testing activity.

3.2. Coverage-Based Policy Testing

Coverage metrics represent an effective way to assess the test quality and compare
different testing solutions. The aim of adequacy criteria is to evaluate a specific testing
strategy by measuring the percentage of the exercised elements in the program or in
its specification.

In the literature, test coverage is adopted for different purposes: (i) enhancing the
test suite with additional test cases in order to exercise elements that have not been tested;
(ii) test set augmentation and test set minimization in the context of regression testing [34];
(iii) selection of test cases and evaluation of test cases effectiveness [35]; (iv) test cases
prioritization [36], aiming to reorder test cases so that the tests with a higher priority can be
executed before those with a lower priority; and finally, (v) software maintenance [34]. The
authors of [34] propose a systematic survey of coverage-based testing, whereas the work
in [37] focuses on coverage criteria for state-based testing.

Many solutions for test coverage measurement and analysis have been proposed. They
are based on the adopted policy specification language. The work in [38] provides a first
attempt of coverage criterion for XACML policies. It defines three different structural
coverage metrics able to reduce the generated test sets and validates the effects of this test’s
reduction in terms of fault detection.

An extension of the coverage solution presented in [38] is proposed in [39]. This work
defines an XACML-based smart coverage selection approach that focuses on the policy
rules coverage and provides a formalization of the proposed coverage criterion relying on
the Rule Target Set concept, i.e., the union of the target of the rule, and all enclosing policy
and policy sets targets. The main concept of the proposed criterion is that in order to match
the rule target, the requests must first match the enclosing policy and policy sets targets.

Cirg (Change-Impact Request Generation) [40] is for instance a framework able to
generate access requests through the change-impact analysis of two synthesized versions of
an XACML policy and allows a reduction of the number of tests based on policy structural
coverage. The work in [41] leverages mutation analysis and coverage analysis to perform
regression testing of security policies.

More recently, in [12], a family of coverage criteria for XACML policies, including
Modified Condition/Decision Coverage (MC/DC), has been presented and evaluated
through mutation analysis in order to establish the most effective one in terms of fault
detection. In [42], a proposal for the continuous tracing of policy execution and correspond-
ing coverage criteria has been presented in order to detect inconsistencies in the policy
specification and provide support for policies updates if new events occur.

Differently from previous solutions, our proposal provides a rigorous formalization of
coverage of XACML 3.0 elements and formally specifies four additional coverage criteria
specifically conceived for XACML 3.0 policy testing purposes.

3.3. SotA Advancements

In order to clarify the position of our paper with respect to the State of the Art, we
report the analysis of the related works in the last 10 years in Table 1. In particular, in the
first column, we provide the reference of the paper and the publication year; in the column

Sensors 2022, 22, 2984 6 of 24

labeled Paper contribution, we summarize the main contribution of the considered related
work; in the column labeled Language/Formalism, we report the target specification lan-
guage; in the columns labeled Access control formalization and Coverage metrics/ measures, we
specify if the paper focuses on the formalization or on the coverage metrics and measures,
respectively. Finally, in the last column labeled Our advancement with respect to SotA, we
provide the advancements of our paper with respect to the considered related work. In the
last row of the table, we provide the classification of our contribution.

As shown in the table, most of the related works focus on the possible formalization
of the access control policy and its constructs either considering XACML or ABAC/R-
BAC specification language. Coverage criteria and metrics have been rarely analyzed or
improved during these last 10 years.

As evidenced by the table, the related works are strictly divided into two categories:
either they focus on the formalization or they provide coverage criteria. To the best of
our knowledge, as evidenced in the last row of the table, our paper is the first attempt to
combine the two categories with the purpose of providing a comprehensive process useful
for both developers and testers.

Table 1. SotA Advancements.

Paper (Year) Paper Contribution
Language/
Formalism

Access
Control
Formalization

Coverage
Metrics/
Measures

Our Advancement
with Respect to SotA

[17] (2012)

The paper provides
a formal semantics
of XACML and
its implementation
based on such semantics

XACML 2.0 X

New formalization of the XACML 3.0
standard language by considering
context-free grammars
as an alternative representation

[39] (2014)

The paper provides
a test selection
approach based on
a coverage measure

XACML 2.0 X
New coverage criteria provided
and revision of the existing ones
to XACML 3.0

[16] (2014)

The paper provides
a formalization
of the XACML3.0
using Belnap logic
and D-algebra

XACML 3.0 X

New formalization of the XACML 3.0
standard language by considering
context-free grammars
as an alternative representation

[27] (2015)

The paper provides
a formalization
of semantic differences
between the
combining algorithms

XACML 3.0 X
Formalization extended
to the overall
structure of XACML

[28] (2015)

The paper proposes
a UML profile
for XACML policies
specification

XACML 3.0
UML

X

New formalization of the XACML 3.0
standard language by considering
context-free grammars
as an alternative representation

[42] (2018)

The paper proposes
an access control
infrastructure, based on
a monitor engine
enabling coverage
criterion selection

XACML 2.0 X

New conceived coverage criteria
that could be used for
improving the monitor engine.
This is part of our
future work

[12] (2018)

The paper defines
a family of coverage
criteria for
XACML policies,
including the MC/DC criterion

XACML 3.0 X

Formalization of
the coverage definitions
considering the
context-free grammars
and focusing on the
specific XACML 3.0 elements.
Formalization of MC/DC
criterion could
be part of future work

Sensors 2022, 22, 2984 7 of 24

Table 1. Cont.

Paper (Year) Paper Contribution
Language/
Formalism

Access
Control
Formalization

Coverage
Metrics/
Measures

Our Advancement
with Respect to SotA

[43] (2018)

The paper proposes
a direct logical
formalism of ABAC
models using
a variant of description logics
and function-free first-order
logic with equality

ABAC
RBAC X

New formalization of the XACML 3.0
standard language by considering
context-free grammars
as an alternative representation

[29] (2020)

The paper formally
models the resource attributes
by dynamic description logic (DDL)
and then provides
means for rules
conflict solving

XACML 3.0 X

New formalization of the XACML 3.0
standard language by considering
context-free grammars
as an alternative representation

[31] (2021)
The paper proposes
a generic AC metamodel
for defining AC policies

ABAC
RBAC X

New formalization of the XACML 3.0
standard language by considering
context-free grammars
as an alternative representation

[30] (2021)

The paper provides
a theory for
representing the semantics
of rule-based policies
based on the semantics
of conditional expressions
in their rules

ABAC
RBAC X

New formalization of the XACML 3.0
standard language by considering
context-free grammars
as an alternative representation

[32] (2022)

The paper proposes
an access control metamodel
useful to derive various
instances of AC models

ABAC
RBAC X

New formalization of the XACML 3.0
standard language by considering
context-free grammars
as an alternative representation

This
paper
(2022)

The paper provides
(i) a formalization of the XACML 3.0
standard language
leveraging context-free grammars
(ii) the formal definition of the coverage
of the XACML 3.0 elements
(iii) the definition of several
coverage criteria
specifically conceived
for XACML 3.0 policies
for testing purposes

ABAC
RBAC X X -

4. Formalization of Primary XACML 3.0 Elements

In this section, we provide the formalization of the XACML standard for describing
security access control policies. Starting from the seminal work of [16], we provide here the
definition of the abstract syntax of XACML 3.0 standard (Section 4.1), the specification of
the XACML grammar (Section 4.2), and an example of policy formalization (Section 4.3).

4.1. XACML 3.0 Primary Elements

In this section, we introduce the alphabet of the grammar we use to describe the
structure of an XACML access control policy. In particular, we extend and revise the
XACML syntax introduced in [16], so to better represent the coverage concepts of this paper.
For aim of completeness, we report in Table 2 the symbols we use in this paper for the
definition of the grammar.

Sensors 2022, 22, 2984 8 of 24

Table 2. Symbols of the grammar.

PS PolicySet element
TPS Target of the PolicySet element
P Policy element
PCA PolicyCombiningAlgorithm
TP Target of the Policy element
AnyOf AnyOf element
AllOf AllOf element
M Match element
AttrChoice Syntactic category used for deciding between ad and as
Attr Attribute
Subject Subject’s attribute
Resources Resource’s attribute
Action Action’s attribute
Env Environment’s attribute
AdHoc User’s attribute
av AttributeValue
ad AttributeDesignator
as AttributeSelector
s Subject’s instance
r Resource’s instance
a Action’s instance
e Environment’s instance
ah Ad hoc User’s attribute instance
R Rule element
TR Target of the Rule element
RCA RuleCombiningAlgorithm
C Condition element
EXbool Syntactic category ⊂ EX category for producing only expressions

that obtain a boolean result
A Apply element
EX Expression element
EX f un Syntactic category ⊂ EX category for producing only expressions

that are functions
Fun Function element
E f f ect Effect that can be permit or deny

An initial formalization of the syntactical categories is the one illustrated in Table 3. It
focuses on the syntactical sets that can be identified in an XACML access control specifica-
tion and uses the Kleene star operator for deciding whether a string belongs to a grammar
or not.

Table 3. Definition of syntactical categories with formalization on sets.

PS =
{
P
}+ ∪ {PCA} ∪ {TPS}

P =
{
TP
}
∪
{
R
}+ ∪ {RCA}

T{PS , P , R
} =

{
AnyOf

}∗
AnyOf =

{
AllOf

}+
AllOf =

{
M
}+

M =
{{

av
}
∪
{

el : el ∈ {ad ∪ as}
}}+

R =
{

Effect
}
∪
{
TR
}
∪
{
C
}

EX =
{
A, av, as, ad,Fun

}
C =

{
∃! e ∈ EX : exprval(e) =

{
True

False

}
A =

{
Fun

}
∪
{

EX
}∗

Fun =
{
Funid

}

Sensors 2022, 22, 2984 9 of 24

According to this formalization, given a policyP having a set of n rules R = {R1, . . . ,Rn},
and a Policy target TP possibly empty, the Boolean satisfiability (SAT) of the policy can be
defined as: {

(P = {R})⇒ SAT(R) if TP = ε(
P =

{
TP , R

})
⇒
(
SAT(TP)⇒ SAT(R)

)
otherwise

In the similar way, the Boolean satisfiability (SAT) of each of the policy rules, generi-
cally indicated withR, can be defined as:

(R = ∅)⇒ true

if TR = ε ∧ C = ε(
R =

{
C
})
⇒
(
SAT(TP)⇒ eval(C)

)
if TR = ε(
R =

{
TR
})
⇒ SAT(TR)

if C = ε(
R =

{
TR
}
∪
{
C
})
⇒
(
SAT(TR)⇒ eval(C)

)
otherwise

4.2. XACML 3.0 Grammar

Formally, a context-free grammar [21] is defined by a quadruple:

G = 〈Λ, V, S, P〉

where

- Λ is the set of symbols, called alphabet;
- V is the finite set of the syntactical categories;
- S is the main syntactical category;
- P is the set of all productions, where each production, in the case of context-free

grammars (which is the one we need for XACML 3.0) is a finite relation:

A→ α

where A ∈ V, α ∈ (Λ ∪V)∗ (the asterisk represents the Kleene star).

Applying the above definition to the XACML 3.0 access control language, we have:
the set Λ is a subset of all the possible elements of the XACML 3.0, and it is defined as

Λ = V0 ∪ {av, as, ad, s, r, a, e, ah, permit, deny, true, false,

permitoverrides, denyoverrides, firstapplicable,

onlyoneapplicable, denyunless permit, permitunlessdeny,

ordereddenyoverrides, ordered permitoverrides}

where
V0 = {PS, TPS, P, PCA, TP, AnyO f , AllO f , M, AttrChoice,

Attr, R, RCA, TR, C, EXbool , A, EX , EX f un, Fun,

E f f ect, Subject, Resource, Action, Env, AdHoc}

The main syntactical category S is defined as:

S = {PS}

The set of all productions P is defined in Table 4.

Sensors 2022, 22, 2984 10 of 24

Table 4. Productions of XACML 3.0 grammar.

P = {
PS → PS P | PS1 PS | TPS PCA P
TPS → AnyOf TPS | ε
P → RCA TP R | P R
PCA → permitoverrides | denyoverrides |

firstapplicable |
onlyoneapplicable |
denyunless permit |
permitunlessdeny |
ordereddenyoverrides |
ordered permitoverrides

TP → AnyOf TP | ε
AnyOf → AllOf AnyOf | AllOf
AllOf → M AllOf | M
M → Fun av AttrChoice M |

Fun av AttrChoice
AttrChoice → as | ad
RCA → permitoverrides |

denyoverrides |
firstapplicable |
denyunless permit |
permitunlessdeny |
ordereddenyoverrides |
ordered permitoverrides

R → Effect TR C
TR → TR AnyOf | ε
EX → A | as | av | ad | Fun
EXfun → Fun
Fun → stringequal | stringgreaterthan |

stringlessthan |
stringgreaterthanorequal |
stringlessthanorequal
integerequal | integergreaterthan |
integerlessthan |
integergreaterthanorequal |
iintegerlessthanorequal

Effect → permit | deny
}

4.3. Example of Policy and Its Formalization

In this section, we provide an example of policy representation through the grammar
introduced in the previous section. The sample policy considered is shown in Listing 1. In
this case, starting from S = {PS}, the policy can be expressed by the following production:

1–160 In Listing 1, the PolicySet element contains: two Policy elements (Policy1 and
Policy2 at line 30 and line 96 of Listing 1 respectively), the declaration of the
policy-combining algorithm considered that in this case is first applicable (line 8),
and a policy set Target element (lines 12–29 of Listing 1) that specifies that the
subject element must be an integer less than 15. This can be expressed as:

PSPS → PS P2 → TPS PCA P1 P2 → AnyOf First Applicable P1 P2 →

AllOf First Applicable P1 P2 →

M First Applicable P1 P2 → Fun av AttrChoice First Applicable P1 P2 →

integerlessthan av as First Applicable P1 P2integerlessthan av as First Applicable P1 P2

Sensors 2022, 22, 2984 11 of 24

30–95 Each of the policies in the policy set has in turn a Target element and a Rule
element. In particular, Policy1 specifies that the rule-combining algorithm consid-
ered is first applicable (line 32), the policy Target element (lines 39–56 of listing 1)
specifies that the subject element must be equal to the integer 10. This can be
expressed as:

P1P1 → RCA TP1 R1 → First Applicable AnyOf R1 → First Applicable AllOf

R1 → First Applicable M R1 → First Applicable Fun av AttrChoice R1 →

First Applicable integerequal av as R1First Applicable integerequal av as R1

57–94 The Rule1 element returns the Deny effect (line 58) in case: (i) the subject element is
greater than 4 as declared in the rule Target (lines 59–77 of Listing 1) and (ii) the
subject element is greater than 2 as declared in the rule Condition (lines 78–93 of
Listing 1). This can be expressed as:

R1R1 → Effect T C → Deny AnyOf C → Deny AllOf C → Deny M C →

Deny Fun av AttrChoice C → Deny integergreaterthan av ad C →

Deny integergreaterthan av ad EXbool → Deny integergreaterthan av ad A →

Deny integergreaterthan av ad A EX → Deny integergreaterthan av ad A EX ad →

Deny integergreaterthan av ad EXfun av ad →

Deny integergreaterthan av ad integergreaterthan av adDeny integergreaterthan av ad integergreaterthan av ad

96–159 Similarly, Policy2 specifies that the rule-combining algorithm considered is first appli-
cable (line 97), whereas the Target element (lines 104–121 of Listing 1) specifies that
the subject element must be less than the integer 9 and there is a Rule element. This
can be expressed as:

P2P2 → RCA TP2 R2 → FirstApplicable AnyOf R2 → FirstApplicable AllOf R2 →

FirstApplicable M R2 → FirstApplicable Fun av AttrChoice R2 →

FirstApplicable integerlessthan av as R2FirstApplicable integerlessthan av as R2

122–158 The Rule2 element returns the Permit effect (line 123) in case: (i) the subject element
is less than 7 as declared in the rule Target (lines 124–142 of Listing 1) and (ii) the
subject element is less than 3 as declared in the rule Condition (lines 143–157 of
Listing 1). This can be expressed as:

R2R2 → Effect T C → Permit AnyOf C → Permit AllOf C → Permit M C →

Permit Fun av AttrChoice C → Permit integerlessthan av ad C →

Permit integerlessthan av ad EXbool → Permit integerlessthan av ad A →

Sensors 2022, 22, 2984 12 of 24

Permit integerlessthan av ad A EX → Permit integerlessthan av ad A EX av →

Permit integerlessthan av ad EXfun ad av →

Permit integerlessthan av ad integerlessthan ad avPermit integerlessthan av ad integerlessthan ad av

Basically, if we see the parsing procedure of this policy as an automaton, we obtain:

PSPS

integerlessthan av as First Applicable
First Applicable integerequal av as

Deny integergreaterthan av ad
integergreaterthan av ad

First Applicable integerlessthan av as
Permit integerlessthan av ad

integerlessthan ad av

integerlessthan av as First Applicable
First Applicable integerequal av as

Deny integergreaterthan av ad
integergreaterthan av ad

First Applicable integerlessthan av as
Permit integerlessthan av ad

integerlessthan ad av

In addition, for this example, the parsing procedure returns a positive result, that is, the
policy is fully covered by the grammar; this means that the policy is syntactically correct.

Listing 1. XACML Policy Example.

1 <PolicySet xsi:schemaLocation= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

2 c o r e : s c h e m a : w d - 1 7

3 h t t p : / / d o c s . o a s i s - o p e n . o r g / x a c m l / 3 . 0 /

4 x a c m l - c o r e - v 3 - s c h e m a - w d - 1 7 . x s d "

5 PolicySetId= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

6 c o n f o r m a n c e - t e s t : I I I A 0 2 5 : p o l i c y s e t "

7 PolicyCombiningAlgId= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

8 p o l i c y - c o m b i n i n g - a l g o r i t h m : f i r s t - a p p l i c a b l e "

9 Version= " 1 . 0 " xmlns= " u r n : o a s i s : n a m e s : t c :

10 x a c m l : 3 . 0 : c o r e : s c h e m a : w d - 1 7 "

11 xmlns:xsi= " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
12 <Target >
13 <AnyOf >
14 <AllOf>
15 <Match MatchId= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

16 f u n c t i o n : i n t e g e r - l e s s - t h a n " >
17 <AttributeValue DataType= " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /

18 X M L S c h e m a # i n t e g e r " >
19 15</AttributeValue >
20 <AttributeDesignator DataType= " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /

21 X M L S c h e m a # i n t e g e r "

22 Category= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

23 s u b j e c t - c a t e g o r y : a c c e s s - s u b j e c t " MustBePresent= " f a l s e "

24 AttributeId= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

25 s u b j e c t : s u b j e c t - i d " />
26 </Match >
27 </AllOf >
28 </AnyOf >
29 </Target >
30 <Policy Version= " 1 . 0 " RuleCombiningAlgId= " u r n : o a s i s : n a m e s : t c

31 : x a c m l : 3 . 0 :

32 r u l e - c o m b i n i n g - a l g o r i t h m : f i r s t - a p p l i c a b l e "

33 PolicyId= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

34 c o n f o r m a n c e - t e s t : I I I A 0 2 5 : p o l i c y 1 "

35 xmlns:xacml= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

36 c o r e : s c h e m a : w d - 1 7 "

37 xmlns= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

38 c o r e : s c h e m a : w d - 1 7 " >
39 <Target >
40 <AnyOf>
41 <AllOf >
42 <Match MatchId= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

43 f u n c t i o n : i n t e g e r - e q u a l " >
44 <AttributeValue DataType= " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /

45 X M L S c h e m a # i n t e g e r " >
46 10</AttributeValue >

Sensors 2022, 22, 2984 13 of 24

47 <AttributeDesignator DataType= " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /

48 X M L S c h e m a # i n t e g e r "

49 Category= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

50 s u b j e c t - c a t e g o r y : a c c e s s - s u b j e c t " MustBePresent= " f a l s e "

51 AttributeId= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

52 s u b j e c t : s u b j e c t - i d " />
53 </Match >
54 </AllOf >
55 </AnyOf >
56 </Target >
57 <Rule RuleId= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

58 c o n f o r m a n c e - t e s t : I I I A 0 2 6 : r u l e 1 " Effect= " D e n y " >
59 <Target >
60 <AnyOf >
61 <AllOf >
62 <Match MatchId= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

63 f u n c t i o n : i n t e g e r - g r e a t e r - t h a n " >
64 <AttributeValue DataType= " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /

65 X M L S c h e m a # i n t e g e r " >
66 4</AttributeValue >
67 <AttributeDesignator AttributeId= " u r n : o a s i s : n a m e s :

68 t c : x a c m l : 3 . 0 : s u b j e c t : s u b j e c t - i d "

69 DataType= " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /

70 X M L S c h e m a # i n t e g e r "

71 MustBePresent= " f a l s e "

72 Category= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

73 s u b j e c t - c a t e g o r y : a c c e s s - s u b j e c t " />
74 </Match >
75 </AllOf >
76 </AnyOf >
77 </Target >
78 <Condition >
79 <Apply FunctionId= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

80 f u n c t i o n : i n t e g e r - g r e a t e r - t h a n " >
81 <AttributeDesignator
82 AttributeId= " u r n : o a s i s : n a m e s : t c :

83 x a c m l : 3 . 0 : c o n f o r m a n c e - t e s t : t e s t "

84 DataType= " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /

85 X M L S c h e m a # i n t e g e r "

86 MustBePresent= " f a l s e "

87 Category= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

88 s u b j e c t - c a t e g o r y : a c c e s s - s u b j e c t " />
89 <AttributeValue
90 DataType= " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /

91 X M L S c h e m a # i n t e g e r " >2</AttributeValue >
92 </Apply >
93 </Condition >
94 </Rule>
95 </Policy >
96 <Policy Version= " 1 . 0 " RuleCombiningAlgId= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

97 r u l e - c o m b i n i n g - a l g o r i t h m : f i r s t - a p p l i c a b l e "

98 PolicyId= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

99 c o n f o r m a n c e - t e s t : I I I A 0 2 5 : p o l i c y 2 "

100 xmlns:xacml= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

101 c o r e : s c h e m a : w d - 1 7 "

102 xmlns= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

103 c o r e : s c h e m a : w d - 1 7 " >
104 <Target >
105 <AnyOf >
106 <AllOf >
107 <Match MatchId= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

108 f u n c t i o n : i n t e g e r - l e s s - t h a n " >
109 <AttributeValue DataType= " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /

110 X M L S c h e m a # i n t e g e r " >
111 9</AttributeValue >
112 <AttributeDesignator DataType= " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /

113 X M L S c h e m a # i n t e g e r "

114 Category= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

115 s u b j e c t - c a t e g o r y : a c c e s s - s u b j e c t " MustBePresent= " f a l s e "

116 AttributeId= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

117 s u b j e c t : s u b j e c t - i d " />
118 </Match >
119 </AllOf >
120 </AnyOf >
121 </Target >
122 <Rule RuleId= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

123 c o n f o r m a n c e - t e s t : I I I A 0 2 6 : r u l e 2 " Effect= " P e r m i t " >
124 <Target >
125 <AnyOf >
126 <AllOf >
127 <Match MatchId= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

Sensors 2022, 22, 2984 14 of 24

128 f u n c t i o n : i n t e g e r - l e s s - t h a n " >
129 <AttributeValue DataType= " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /

130 X M L S c h e m a # i n t e g e r " >
131 7</AttributeValue >
132 <AttributeDesignator AttributeId= " u r n : o a s i s : n a m e s : t c :

133 x a c m l : 3 . 0 : s u b j e c t : s u b j e c t - i d "

134 DataType= " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /

135 X M L S c h e m a # i n t e g e r "

136 MustBePresent= " f a l s e "

137 Category= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

138 s u b j e c t - c a t e g o r y : a c c e s s - s u b j e c t " />
139 </Match >
140 </AllOf >
141 </AnyOf >
142 </Target >
143 <Condition >
144 <Apply FunctionId= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

145 f u n c t i o n : i n t e g e r - l e s s - t h a n " >
146 <AttributeDesignator AttributeId= " u r n : o a s i s : n a m e s : t c :

147 x a c m l : 3 . 0 : c o n f o r m a n c e - t e s t : t e s t "

148 DataType= " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /

149 X M L S c h e m a # i n t e g e r "

150 MustBePresent= " f a l s e "

151 Category= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

152 s u b j e c t - c a t e g o r y : a c c e s s - s u b j e c t " />
153 <AttributeValue DataType= " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /

154 X M L S c h e m a # i n t e g e r " >
155 3</AttributeValue >
156 </Apply >
157 </Condition >
158 </Rule>
159 </Policy >
160 </PolicySet >

5. Definition of the Request Structure

In this section, we provide the formalization of the XACML request information (such
as attribute values, ID, and so on) necessary for being evaluated by a policy. In particular,
in Figure 2, the generic request structure is represented, which contains:

• AttributeValue element defined by a DataType and any attribute.
• Attribute element A is composed by {AttributeID,AV1, . . . ,AVn}, n ≥ 1, where

∀i,AV i is an AttributeValue and the AttributeID is the identifier of the attribute.
• Attributes element A is defined by an AttributeID, a Category and a set of At-

tribute (that can also be empty), so basically:

A = {AttributeID, Category,A1, . . . ,An}, n ≥ 0

• Request element: R has this structure: {A1, . . . ,An}, n ≥ 1 where ∀i,Ai is an
Attributes element.

Figure 2. Request structure.

Sensors 2022, 22, 2984 15 of 24

In Listings 2 and 3, two examples of requests relative to the policy of Listing 1
are provided.

Listing 2. XACML Request1 Example.
1 <Request xmlns= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

2 c o r e : s c h e m a : w d - 1 7 "

3 CombinedDecision= " f a l s e " ReturnPolicyIdList= " f a l s e " >
4 <Attributes Category= " u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 :

5 s u b j e c t - c a t e g o r y : a c c e s s - s u b j e c t " >
6 <Attribute
7 AttributeId= " u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 :

8 s u b j e c t : s u b j e c t - i d "

9 IncludeInResult= " f a l s e " >
10 <AttributeValue
11 DataType= " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /

12 X M L S c h e m a # i n t e g e r " >
13 10</AttributeValue >
14 </Attribute >
15 </Attributes >
16 </Request >

Listing 3. XACML Request2 Example.
1 <Request xmlns= " u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 :

2 c o r e : s c h e m a : w d - 1 7 "

3 CombinedDecision= " f a l s e " ReturnPolicyIdList= " f a l s e " >
4 <Attributes Category= " u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 :

5 s u b j e c t - c a t e g o r y : a c c e s s - s u b j e c t " >
6 <Attribute AttributeId= " u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 :

7 s u b j e c t : s u b j e c t - i d "

8 IncludeInResult= " f a l s e " >
9 <AttributeValue

10 DataType= " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /

11 X M L S c h e m a # i n t e g e r " >
12 2</AttributeValue >
13 </Attribute >
14 </Attributes >
15 </Request >

6. XACML-Based Coverage Definition

In this section, we detail the concepts of coverage of the XACML 3.0 grammar elements.
Considering therefore a requestR and an element of XACML 3.0 grammar, the following
coverage function can be introduced.

Definition 1 (Coverage function). Let elXACML be an XACML 3.0 component andR a request
element, such thatR = {A1, . . . ,An}

We define the function
cov : elXACML ×R → b

where b ∈ {True, False}.

In practice, this function establishes if the request can be evaluated or not by the
considered element.

Following a more intuitive way of coverage analysis, in the remainder of this section,
we provide the coverage of each of the grammar elements starting from the basic ones.

6.1. Covering Match and Condition

Let M = fMatchID(v, c, a) be a Match element where fMatchID is an identifier of the
Match function, v is the embedded AttributeValue, c is the attribute Category related
to v, and a is an AttributeChoice (defined before, that can be mutually or exclusively,
an AttributeDesignator or an AttributeSelector). Covering the Match element with a
requestR = {A1, . . . ,An} is defined as follows:

Sensors 2022, 22, 2984 16 of 24

cov(fMatchID(v, c, a),R) =


True if ∃i : v′, c′ ∈ Ai.

fMatchID(v′, c′, a) = True

False if ∀i : ∀v′, c′ ∈ Ai.
fMatchID(v′, c′, a) = False

(1)
Note that in the definition, fMatchID appears twice: the former one for the syntax

element of Match component, while the latter indicates the coverage of the fMatchID function.
In this case, considering the request of Listing 2 which has a subject with value 10, it is

able to cover the fMatchID of the Policy Set of Listing 1.
Considering instead the coverage of the condition element, let C be a Condition and

R be a request; then, it is possible to define:

cov(C,R) =
{

True

False

Considering the policy of Listing 1 and the request of Listing 2, the request covers the
condition expressed in the first rule with the value true because it contains a value greater
than 2.

6.2. Covering AllOf, AnyOf and Target

LetM be a Match, A a AllOf, E a AnyOf, and T a Target.
Suppose that allof(Aid) : {M1, . . . ,Mn}, n ≥ 1 is an AllOf element and ∀i,Mi is a

Match element. The coverage of AllOf element Aid over a requestR is as follows:

cov(Aid,R) =
{

True if ∀i, 1 ≤ i ≤ n : cov(Mi,R) = True

False if ∃i, 1 ≤ i ≤ n : cov(Mi,R) = False

Suppose that anyof(Eid) : {A1, . . .An}, n ≥ 1 is an AnyOf element and ∀i,Ai is a
AllOf element. The coverage of AnyOf element Eid over a RequestR is defined as follows:

cov(Eid,R) =
{

True if ∃i, 1 ≤ i ≤ n : cov(Ai,R) = True

False if ∀i, 1 ≤ i ≤ n : cov(Ai,R) = False

Suppose that target(Tid) : {E1, . . . , En}, n ≥ 0 is a Target element and ∀i, Ei is
an AnyOf element. The coverage of Target Tid over a Request R is defined with the
following equation:

cov(Tid,R) =


True if

(
n = 0

)
∨
(
∀i, 1 ≤ i ≤ n :

cov(Ei,R) = True
)

False if ∃i, 1 ≤ i ≤ n : cov(Ei,R) = False

Considering the policy of Listing 1, the target of Rule1 and the request of Listing 2,
the request covers the AllOf, the AnyOf and the Target elements of this rule with the values
true. Indeed, the value 10 of the request matches the function string equal of the AllOf
element, and because the AnyOf and the Target contain only an element, consequently, the
request covers also these last.

6.3. Covering Rule

Let R be a Rule, T a Target, C a Condition, E an Effect (with possible values:
permit and deny).

Sensors 2022, 22, 2984 17 of 24

Suppose that rule(R) = {T , C, E}. The coverage of Rule elementRid over a request
R is determined as follows:

cov(Rid,R) =



True if
(
cov(T ,R) = True ∨ T = ε

)
∧(

cov(C,R) = True ∨ C = ε
)

False if cov(T ,R) = False ∨(
cov(T ,R) = True ∧

cov(C,R) = False
)

Considering the policy of Listing 1 and the request of Listing 2, the request covers the
Rule1 since it covers with a true value both the Target and Condition of Rule1.

6.4. Covering Policy

Let P be a Policy, T a Target,
〈
R1, . . .Rn

〉
a sequence of Rules and combid a

Combining Algorithm.
Suppose that policy(Pid) =

{
T ,
〈
R1, . . .Rn

〉
, combid

}
.

We define with R the coverage over a requestR of the sequence of Rules :

R =
〈

cov(R1,R), . . . cov(Rn,R)
〉

Then, the coverage of Policy Pid over a requestR is defined as follows:

cov(Pid,R) =


True if cov(T ,R) = True ∧

combid(R) = True
False if cov(T ,R) = False ∨(

cov(T ,R) = True ∧
combid(R) = False

)
The coverage of the sequence of Rules, defined byR, depends on the chosen Combining

Algorithm combid. The semantic within the combining algorithm bound to the coverage of
R over a requestR can be formally defined is this way:

• If combid = fa, then the algorithm that must be applied is the first-applicable:

fa(R) =


True if ∃i, 1 ≤ i ≤ n :

cov(Ri,R) = True ∧
∀j, 1 ≤ j < i : cov(Rj,R) = False

False if ∀i, 1 ≤ i ≤ n : cov(Ri,R) = False

• If combid = ooa, then the algorithm that must be applied is the only-one-applicable:

ooa(R) =



True if ∃i, 1 ≤ i ≤ n :
cov(Ri,R) = True ∧(
∀j, 1 ≤ j ≤ n : i 6= j ∧

cov(Rj,R) = False
)

False if ∀i, 1 ≤ i ≤ n : cov(Ri,R) = False

• If combid = po, then the algorithm that must be applied is the permit-overrides:

po(R) =



True if ∃i, 1 ≤ i ≤ n : cov(Ri,R) = True∧
ERi = permit

False if ∀i, 1 ≤ i ≤ n : cov(Ri,R) = False ∨(
∃i, 1 ≤ i ≤ n : cov(Ri,R) = True ∧

ERi = deny
)

Sensors 2022, 22, 2984 18 of 24

• If combid = do then the algorithm that must be applied is the deny-overrides:

do(R) =



True if ∃i, 1 ≤ i ≤ n : cov(Ri,R) = True∧
ERi = deny

False if ∀i, 1 ≤ i ≤ n : cov(Ri,R) = False ∨(
∃i, 1 ≤ i ≤ n : cov(Ri,R) = True ∧

ERi = permit
)

Considering the policy of Listing 1 and the request of Listing 2, the request covers
Policy1, since it covers with true value both the Target of the policy and the first applicable
rule that is Rule1.

6.5. Covering PolicySet

Let PS be a PolicySet, combid a Combining Algorithm, T a target,
〈
P1, . . . ,Pn

〉
a

sequence of Policy and PolicySet. Suppose that

policyset(PS id) =
{

combid, T ,
〈
P1, . . . ,Pn

〉}
We define P as the coverage over a requestR of the sequence of Policy and PolicySet:

P =
〈
cov(P1,R), . . . , cov(Pn,R)

〉
Then, the covering of PolicySet PS id is defined as follows:

cov(PS id,R) =



True if cov(T ,R) = True∧
combid(P) = True

False if cov(T ,R) = False ∨(
cov(T ,R) = True ∧

combid(P) = False
)

We do not formally provide here the definition of policy-combining algorithm because
the semantic can be easily deduced from that already provided for the rule-combining
algorithm over a request presented in the previous section.

Considering the policy of Listing 1 and the request of Listing 2, the request covers the
PolicySet, since it covers with a true value both the Target of the PolicySet and the first
applicable policy that is Policy1.

7. Coverage Criteria

Considering the coverage concepts introduced in the previous section, several criteria
can be defined for testing purposes. In this section, we introduce some of them considering
different ways in which a target and a condition element could be exercised during the
requests evaluation. Specifically, some basic coverage criteria are: either having all the
policy Target elements covered with the True value or having all the policy Target elements
covered with the True and False value. Similarly, other coverage criteria are: either having
all the policy Condition elements covered with the True value or having all the policy
Condition elements covered with the True and False value. From a more formal point of
view, this can be translated into:

• Policy targets true:
LetRQ be a set of requests

〈
RQ1, . . .RQm

〉
, a

policyset(PS) = {combps, T PS ,
〈
P1, . . . ,Pn

〉
}

where combps is the Combining Algorithm, T PS is the target of the policy set, and〈
P1, . . . ,Pn

〉
a sequence of Policy elements. Let each of the Pid be a policy(Pid) =

Sensors 2022, 22, 2984 19 of 24

{
T P id,

〈
R1, . . .Rh

〉
, combp

}
where T P id is the Target of the policy,

〈
R1, . . .Rh

〉
is

the set of Rules and combp is the Combining Algorithm. Finally, let each Rid be a
rule(Rid) = {T Rid, C, E} where T Rid is the Target of the rule, C is the Condition,
and E is the Effect.
The set of requestsRQ covers the criterion of the Policy targets true if for each of
the target elements included in the policy PS (T PS , T P id, T Rid) there exists at least
anRQi that covers the target with the true value.

• Policy targets true and false.
LetRQ be a set of requests

〈
RQ1, . . .RQm

〉
a

policyset(PS) = {combps, T PS ,
〈
P1, . . . ,Pn

〉
}

where combps is the Combining Algorithm, T PS is the target of the policy set and〈
P1, . . . ,Pn

〉
is a sequence of Policy elements. Let each of the Pid be a policy(Pid) ={

T P id,
〈
R1, . . .Rh

〉
, combp

}
where T P id is the Target of the policy,

〈
R1, . . .Rh

〉
is

the set of Rules and combp is the Combining Algorithm. Finally, let each Rid be a
rule(Rid) = {T Rid, C, E} where T C id is the Target of the rule, C is the Condition,
and E is the Effect.
The set of requestsRQ covers the criterion of the Policy targets true and false
if for each of the target element included in the policy PS (T PS , T P id, T Rid), there
exists at least an RQi that covers the target with the true value and at least an RQj
that covers the target with the false value.
According to the target coverage defined in the previous section, if a Target element
is empty, it is always covered with True. From a practical point of view, the True
evaluation of a Target element requires a request that makes at least one element
AnyOf to True; in case of the AnyOf element of the AllOf elements, a request is necessary
that makes all the Match elements True (in our analysis, the Match elements are the
leaves of the tree with the Policy or PolicySet component as the root).
In a similar way, two additional criteria that refine the previous ones can be defined.
They focus on the evaluation of the condition and can be formulated in the following.

• Policy conditions true:
LetRQ be a set of requests

〈
RQ1, . . .RQm

〉
, a

policyset(PS) = {combps, T PS ,
〈
P1, . . . ,Pn

〉
}

where combps is the Combining Algorithm, T PS is the target of the policy set and〈
P1, . . . ,Pn

〉
is a sequence of Policy elements. Let each of the Pid be a policy(Pid) ={

T P id,
〈
R1, . . .Rh

〉
, combp

}
where T P id is the Target of the policy,

〈
R1, . . .Rh

〉
is

the set of Rules and combp is the Combining Algorithm. Finally, let each of Rid be a
rule(Rid) = {T R, Cid, E} where T R is the Target of the rule, Cid is the Condition
and E is the Effect.
The set of requests RQ covers the criterion of the Policy conditions true if for
each of the condition elements included in the ruleR (T R, Cid, E), there exists at least
anRQi that covers the condition with the true value.

• Policy conditions true and false:
LetRQ be a set of requests

〈
RQ1, . . .RQm

〉
, a

policyset(PS) = {combps, T PS ,
〈
P1, . . . ,Pn

〉
}

where combps is the Combining Algorithm, T PS is the target of the policy set and〈
P1, . . . ,Pn

〉
is a sequence of Policy elements. Let each of the Pid be a policy(Pid) ={

T P id,
〈
R1, . . .Rh

〉
, combp

}
where T P id is the Target of the policy,

〈
R1, . . .Rh

〉
is

the set of Rules and combp is the Combining Algorithm. Finally, let each Rid be a

Sensors 2022, 22, 2984 20 of 24

rule(Rid) = {T R, Cid, E} where T R is the Target of the rule, Cid is the Condition,
and E is the Effect.
The set of requests RQ covers the criterion of the Policy conditions true and
false if for each of the condition elements included in the ruleR (T R, Cid, E), there
exists at least an RQi that covers the condition with the true value and at least an
RQj that covers the condition with the false value.

7.1. Application Example of Coverage Criteria

In this section, as an example, we show the application of the coverage criteria defined
in Section 7 to the policy of Listing 1 described in Section 4.3, and we provide examples of
test suites able to satisfy the different proposed criteria.

7.1.1. Policy Target True

Given a test suite TS1 = {RQ1}, where RQ1 is the request of Listing 2, we would like to
measure its coverage considering the Policy target true criterion. As in Listing 2, the request
contains a subject having a value equal to 10. The evaluation of the request on the policy
of Listing 1 provides the following results: RQ1 covers with True value the Target of the
PolicySet, the Target of Policy1 and the Target of the Rule1.

Indeed, because the policy-combining algorithm is FirstApplicable, i.e., it returns
the result of the first applicable policy, neither Policy2 nor Rule2 are evaluated with RQ1.

Consequently, the overall coverage measure of the Policy targets true criterion for TS1
is 60%, because the policy of Listing 1 contains five targets and RQ1 covers only three
of them.

In order to increase the coverage and reach 100%, TS1 should be enriched with a
request able to reach the target of Policy2. From a practical point of view, this is possible
by executing a request that makes the evaluation of the Policy1 not applicable and triggers
the evaluation of Policy2. An example of such a request is provided in Listing 3, which
contains a subject having a value equal to 2. Indeed, this request is able to pass the Target
of the PolicySet, makes the evaluation of the Policy1 not applicable, and triggers the
evaluation both of the Target of Policy2 and Rule2.

Consequently, given a test suite TS2 = {RQ1, RQ2} where RQ1 and RQ2 are the requests
of Listing 2 and Listing 3, respectively, the overall coverage measure of the Policy targets
true criterion for TS2 is 100% because RQ2 is able to evaluate with a True value the Targets
of the PolicySet, Policy2 and Rule2.

7.1.2. Policy Target True and False

Given the test suite TS2 = {RQ1, RQ2} where RQ1 and RQ2 are the requests of Listing 2
and Listing 3, respectively, we would like to measure its coverage considering the Policy
target true and false criterion.

In this case, as already described in the previous section, RQ1 and RQ2 are able to
evaluate with True value the Targets of the PolicySet, Policy1, Policy2, Rule1 and Rule2.
Additionally, the request R2 evaluates with False value the target of Policy1.

Consequently, the overall coverage measure of the Policy targets true and false criterion
for TS2 is 60%, because the policy of Listing 1 contains five targets, each one to be evaluated
to True and False value, and TS2 covers only six of them.

In order to increase the coverage and try to reach 100%, TS2 should be enriched
with additional requests. For the aim of simplicity, we report in Table 5 an example of
the required requests. In particular, we considered RQ3 having a subject value equal for
instance to 16; (ii) RQ4 with a subject value equal for instance to 11; (iii) RQ5 with a subject
value equal for instance to 8.

Consequently, given a test suite TS3 = TS2
⋃ {RQ3, RQ4, RQ5}, we would like to

measure its coverage considering the Policy target true and false criterion.
In this case

• RQ3 is able to evaluate with False value the Target of the PolicySet;

Sensors 2022, 22, 2984 21 of 24

• RQ4 is able to evaluate with False value the Target of Policy2;
• RQ5 is able to reach the evaluation with True value of the Target of Policy2 and then

trigger the evaluation of the Target of the Rule2 with False value.

Consequently, the overall coverage measure of the Policy targets true and false criterion
for TS3 is 90%.

Note that it is not possible to reach 100% coverage of Policy targets true and false
criterion, since it is not possible to have the coverage of the Target of the Rule1 with False
value. This is because in order to trigger the evaluation of Rule1, we need a request with a
subject equal to 10 that is able to evaluate with True value the Target of Policy1; then, this
subject value is always greater than 4.

7.1.3. Policy Condition True

Given the test suite TS2 = {RQ1, RQ2} where RQ1 and RQ2 are the requests of Listing 2
and Listing 3, respectively, we would like to measure its coverage considering the Policy
condition true criterion.

In this case, as already described in the previous section, RQ1 and RQ2 are able
to evaluate with True value the Conditions of Rule1 and Rule2. Indeed, RQ1 is able to
evaluate with True value the condition of Rule1, whereas RQ2 is able to evaluate with True
value the condition of Rule2.

Consequently, the test suite TS2 is also able to reach 100% coverage of Policy conditions
true criterion.

7.1.4. Policy Condition True and False

Given the test suite TS4 = TS2
⋃ {RQ6}where RQ6 is the request of Table 5, we would

like to measure its coverage considering the Policy condition true and false criterion.
In this case, as already described in the previous section, RQ1, RQ2 and RQ6 are able

to reach 75% of coverage of Policy conditions true and false criterion, since RQ6 is
able to cover with False value the condition of Rule2.

Note that, again, it is not possible to reach a 100% coverage measure of Policy
conditions true and false criterion, since to trigger the evaluation of condition of
Rule1, a subject equal to 10 is needed to evaluate to True value the Target of Policy1.
This subject value makes always true the condition of Rule1.

Table 5. Subject value for each request.

Request RQ 1 RQ2 RQ3 RQ4 RQ5 RQ6

Subject Value 10 2 16 11 8 4

8. Discussion and Conclusions

In this paper, we provided a formal definition of XACML syntax and semantics
and defined some coverage concepts useful for verifiability and testability purposes. In
particular, we revised and extended the existing definition of the abstract syntax and
semantics of XACML 3.0 standard, defined a formal specification of the coverage process
of the elements of the XACML policy and provided some coverage criteria useful to assess
the XACML policy.

The proposed coverage criteria can have different practical implications for improving
the verifiability and testability of the policy. Indeed, from a testing point of view, the
policy coverage measure can describe the degree to which the policy has been exercised
by a given test suite. Reaching high coverage, measured as a percentage, can increase the
chance of detecting possible weaknesses or security flaws in the considered policy code.
Moreover, the analysis of the policy elements that have not been covered may suggest
possible improvements of the original test suite, so to increase the overall fault detection
effectiveness of the test suite itself. This has been evidenced also by the application example
proposed in this paper. Even if it is very simple, the application of the coverage criteria of

Sensors 2022, 22, 2984 22 of 24

Target true and false and Condition true and false evidenced an infeasible path in the policy
specification. This does not per se represent a security flaw; however, it highlights an
inaccuracy in the policy writing that should be avoided. Another practical implication
of the proposed coverage criteria is the possibility of exploiting the coverage measure to
reduce (or select), from a given test suite, only those test cases that have an impact on
the defined coverage criteria. This is specifically important in case of regression testing
because the test effort may be dedicated just to run the test cases able to maximize the
coverage measure.

Finally, the proposals of this paper can also be used for the definition of test suite
generation methodologies that target the 100% coverage of a specific criterion. As from
the application example, the coverage of a specific target and/or condition depends on
the evaluation of the previous targets and/or conditions. Thus, as a basic proposal for a
test case generation algorithm able to force the execution of a specific rule, it should be
considered that: it is first necessary to generate the attributes that make the Target element
of the PolicySet true; successively to generate the attributes that make the Target of the
current Policy true and those that make the previous Policy elements false; finally, to
generate the attributes that make the Target of the Rule element true and the Targets of
the previous Rules elements false.

However, many different metrics can be used to calculate policy coverage. In this
paper, we provide some basic ones focusing on the evaluation of the targets and the
conditions that are common critical points for most of the policies. As a future work, we
would like to provide more additional specific coverage criteria as well as to perform an
accurate comparison of their fault detection effectiveness so to better guide testing efforts.
We are also developing ad hoc test case generation algorithms able to target the coverage
criteria proposed in this paper.

Author Contributions: Conceptualization, C.C., F.L. and E.M.; methodology, C.C., F.L. and E.M.;
formal analysis, C.C., F.L. and E.M.; writing—original draft preparation, F.L. and E.M.; writing—
review and editing, C.C., F.L. and E.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the European Commission, under the projects H2020 Cyber-
Sec4Europe grant number 830929 and H2020 BIECO grant number 952702.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. AlMedires, M.; AlMaiah, M. Cybersecurity in Industrial Control System (ICS). In Proceedings of the International Conference on

Information Technology (ICIT), Amman, Jordan, 14–15 July 2021; pp. 640–647.
2. Hu, V.C.; Kuhn, D.R.; Ferraiolo, D.F. Attribute-based access control. Computer 2015, 48, 85–88. [CrossRef]
3. Han, W.; Lei, C. A survey on policy languages in network and security management. Comput. Netw. 2012, 56, 477–489. [CrossRef]
4. Rissanen, E. eXtensible Access Control Markup Language (XACML) Version 3.0 OASIS Standard. 2013, Volume 33, p. 110.

Available online: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-corespec-os-en.html (accessed on 20 January 2022).
5. Riad, K.; Cheng, J. Adaptive XACML access policies for heterogeneous distributed IoT environments. Inf. Sci. 2021, 548, 135–152.

[CrossRef]
6. Ravidas, S.; Lekidis, A.; Paci, F.; Zannone, N. Access control in Internet-of-Things: A survey. J. Netw. Comput. Appl. 2019,

144, 79–101. [CrossRef]
7. Lonetti, F.; Marchetti, E. Issues and Challenges of Access Control in the Cloud. In Proceedings of the WEBIST, Seville, Spain,

18–20 September 2018; pp. 261–268.
8. Daoudagh, S.; Lonetti, F.; Marchetti, E. Continuous Development and Testing of Access and Usage Control: A Systematic

Literature Review. In Proceedings of the ESSE 2020: 2020 European Symposium on Software Engineering, Rome, Italy, 6–8
November 2020; pp. 51–59. [CrossRef]

http://doi.org/10.1109/MC.2015.33
http://dx.doi.org/10.1016/j.comnet.2011.09.014
http://docs. oasis-open. org/xacml/3.0/xacml-3.0-corespec-os-en. html
http://dx.doi.org/10.1016/j.ins.2020.09.051
http://dx.doi.org/10.1016/j.jnca.2019.06.017
http://dx.doi.org/10.1145/3393822.3432330

Sensors 2022, 22, 2984 23 of 24

9. Martin, E. Automated test generation for access control policies. In Proceedings of the November Companion to the 21th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, Portland, OR, USA, 22–26
October 2006; pp. 752–753. [CrossRef]

10. Bertolino, A.; Daoudagh, S.; Lonetti, F.; Marchetti, E. Automatic XACML Requests Generation for Policy Testing. In Proceedings
of the Fifth IEEE International Conference on Software Testing, Verification and Validation, Montreal, QC, Canada, 17–21 April
2012; pp. 842–849. [CrossRef]

11. Limaye, S.; Zhang, Y. Combining algorithm based data flow testing approach for XACML. In Proceedings of the Third ACM
Workshop on Attribute-Based Access Control, Tempe, AZ, USA, 21 March 2018; pp. 25–31.

12. Xu, D.; Shrestha, R.; Shen, N. Automated coverage-based testing of XACML policies. In Proceedings of the 23nd ACM
Symposium on Access Control Models and Technologies, Indianapolis, IN, USA, 13–15 June 2018; pp. 3–14.

13. Daoudagh, S.; Lonetti, F.; Marchetti, E. XACMET: XACML testing & modeling. Softw. Qual. J. 2020, 28, 249–282.
14. Pezzè, M.; Young, M. Software Testing and Analysis—Process, Principles and Techniques; Wiley: Hoboken, NJ, USA, 2007.
15. Rothermel, G.; Harrold, M.J.; Ostrin, J.; Hong, C. An Empirical Study of the Effects of Minimization on the Fault Detection

Capabilities of Test Suites. In Proceedings of the International Conference on Software Maintenance, Bethesda, MD, USA, 20
November 1998; pp. 34–43. [CrossRef]

16. Ramli, C.D.P.K.; Nielson, H.R.; Nielson, F. The logic of XACML. Sci. Comput. Program. 2014, 83, 80–105. [CrossRef]
17. Masi, M.; Pugliese, R.; Tiezzi, F. Formalisation and Implementation of the XACML Access Control Mechanism. ESSoS 2012,

7159, 60–74.
18. Margheri, A.; Pugliese, R.; Tiezzi, F. On Properties of Policy-Based Specifications. arXiv 2015, arXiv:1508.03903.
19. Vijayalakshmi, K.; Jayalakshmi, V. A priority-based approach for detection of anomalies in ABAC policies using clustering

technique. In Proceedings of the 2020 Fourth International Conference on Computing Methodologies and Communication
(ICCMC), Erode, India, 11–13 March 2020; pp. 897–903.

20. Mejri, M.; Yahyaoui, H.; Mourad, A.; Chehab, M. A rewriting system for the assessment of XACML policies relationship. Comput.
Secur. 2020, 97, 101957. [CrossRef]

21. Bundy, A.; Wallen, L. Context-free grammar. In Catalogue of Artificial Intelligence Tools; Springer: Berlin/Heidelberg, Germany,
1984; pp. 22–23.

22. The Margrave Policy Analyzer. Available online: http://www.margrave-tool.org/ (accessed on 20 February 2022).
23. Zhao, C.; Heilili, N.; Liu, S.; Lin, Z. Representation and reasoning on RBAC: A description logic approach. In Proceedings of the

ICTAC, Hanoi, Vietnam, 17–21 October 2005; Volume 3722, pp. 381–393.
24. Kolovski, V.; Hendler, J.; Parsia, B. Analyzing Web Access Control Policies. In Proceedings of the 16th International Conference

on World Wide Web, Banff, AB, Canada, 8–12 May 2007; pp. 677–686. [CrossRef]
25. Jackson, D. Alloy: A lightweight object modelling notation. ACM Trans. Softw. Eng. Methodol. 2002, 11, 256–290. [CrossRef]
26. Bryans, J. Reasoning about XACML policies using CSP. In Proceedings of the 2005 Workshop on Secure Web Services, Fairfax,

VA, USA, 11 November 2005; pp. 28–35.
27. Xu, D.; Zhang, Y.; Shen, N. Formalizing semantic differences between combining algorithms in XACML 3.0 policies. In

Proceedings of the 2015 IEEE International Conference on Software Quality, Reliability and Security, Vancouver, BC, Canada, 3–5
August 2015; pp. 163–172.

28. Tout, H.; Mourad, A.; Talhi, C.; Otrok, H.; Yahyaoui, H. Model-driven specification and design-level analysis of XACML policies.
In Proceedings of the Second International Conference on Next Generation Computing and Communication Technologies, Dubai,
United Arab Emirates, 22–23 April 2015.

29. Yang, S.; Tan, C. Detection of Conflicts between Resource Authorization Rules in Extensible Access Control Markup Language
Based on Dynamic Description Logic. Ing. Syst. d’Inf. 2020, 25, 285–294. [CrossRef]

30. Masoumzadeh, A.; Narendran, P.; Iyer, P. Towards a Theory for Semantics and Expressiveness Analysis of Rule-Based Access
Control Models. In Proceedings of the 26th ACM Symposium on Access Control Models and Technologies, SACMAT’21, Virtual,
Spain, 16–18 June 2021; pp. 33–43. [CrossRef]

31. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. Access control metamodel for policy specification and enforcement: From
conception to formalization. Procedia Comput. Sci. 2021, 184, 887–892. [CrossRef]

32. Kashmar, N.; Adda, M.; Ibrahim, H. HEAD Access Control Metamodel: Distinct Design, Advanced Features, and New
Opportunities. J. Cybersecur. Priv. 2022, 2, 42–64. [CrossRef]

33. Hughes, G.; Bultan, T. Automated verification of access control policies using a sat solver. Int. J. Softw. Tools Technol. Transf. 2008,
10, 503–520. [CrossRef]

34. Shahid, M.; Ibrahim, S.; Mahrin, M.N. A Study on Test Coverage in Software Testing. In Proceedings of the International
Conference on Telecommunication Technology and Applications, Syedey, Australia, 13 May 2011; IACSIT Press: Singapore, 2011;
pp. 207–215.

35. Zhu, H.; Hall, P.A.; May, J.H. Software unit test coverage and adequacy. ACM Comput. Surv. 1997, 29, 366–427. [CrossRef]
36. Kaur, A.; Goyal, S. A genetic algorithm for regression test case prioritization using code coverage. Int. J. Comput. Sci. Eng. 2011,

3, 1839–1847.
37. Pradhan, S.; Ray, M.; Patnaik, S. Coverage criteria for state-based testing: A systematic review. Int. J. Inf. Technol. Proj. Manag.

2019, 10, 1–20. [CrossRef]

http://dx.doi.org/10.1145/1176617.1176708
http://dx.doi.org/10.1109/ICST.2012.185
http://dx.doi.org/10.1109/ICSM.1998.738487
http://dx.doi.org/10.1016/j.scico.2013.05.003
http://dx.doi.org/10.1016/j.cose.2020.101957
http://www.margrave-tool.org/
http://dx.doi.org/10.1145/1242572.1242664
http://dx.doi.org/10.1145/505145.505149
http://dx.doi.org/10.18280/isi.250301
http://dx.doi.org/10.1145/3450569.3463569
http://dx.doi.org/10.1016/j.procs.2021.03.111
http://dx.doi.org/10.3390/jcp2010004
http://dx.doi.org/10.1007/s10009-008-0087-9
http://dx.doi.org/10.1145/267580.267590
http://dx.doi.org/10.4018/IJITPM.2019010101

Sensors 2022, 22, 2984 24 of 24

38. Martin, E.; Xie, T.; Yu, T. Defining and measuring policy coverage in testing access control policies. In Proceedings of the
International Conference on Information and Communications Security, Raleigh, NC, USA, 4–7 December 2006; pp. 139–158.

39. Bertolino, A.; Le Traon, Y.; Lonetti, F.; Marchetti, E.; Mouelhi, T. Coverage-based test cases selection for XACML policies. In
Proceedings of the ICST Workshops, Cleveland, OH, USA, 31 March–4 April 2014; pp. 12–21.

40. Martin, E.; Xie, T. Automated Test Generation for Access Control Policies via Change-Impact Analysis. In Proceedings of the
Third International Workshop on Software Engineering for Secure Systems, Minneapolis, MN, USA, 20–26 May 2007. [CrossRef]

41. Hwang, J.; Xie, T.; El Kateb, D.; Mouelhi, T.; Le Traon, Y. Selection of regression system tests for security policy evolution. In
Proceedings of the ASE, Essen, Germany, 3–7 September 2012; pp. 266–269.

42. Lonetti, F.; Marchetti, E. On-line tracing of XACML-based policy coverage criteria. IET Softw. 2018, 12, 480–488. [CrossRef]
43. Jiang, J.; Chirkova, R.; Doyle, J.; Rosenthal, A. Towards greater expressiveness, flexibility, and uniformity in access control. In

Proceedings of the 23nd ACM on Symposium on Access Control Models and Technologies, Indianapolis, IN, USA, 13–15 June
2018; pp. 217–219.

http://dx.doi.org/10.1109/SESS.2007.5
http://dx.doi.org/10.1049/iet-sen.2017.0351

	Introduction
	Access Control Policies in XACML 3.0
	Related Work
	XACML Formalization
	Coverage-Based Policy Testing
	SotA Advancements

	Formalization of Primary XACML 3.0 Elements
	XACML 3.0 Primary Elements
	XACML 3.0 Grammar
	Example of Policy and Its Formalization

	Definition of the Request Structure
	XACML-Based Coverage Definition
	Covering Match and Condition
	Covering AllOf, AnyOf and Target
	Covering Rule
	Covering Policy
	Covering PolicySet

	Coverage Criteria
	Application Example of Coverage Criteria
	Policy Target True
	Policy Target True and False
	Policy Condition True
	Policy Condition True and False

	Discussion and Conclusions
	References

