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Abstract: As mobile robots are being widely used, accurate localization of the robot counts for the
system. Compared with position systems with a single sensor, multi-sensor fusion systems provide
better performance and increase the accuracy and robustness. At present, camera and IMU (Inertial
Measurement Unit) fusion positioning is extensively studied and many representative Visual–Inertial
Odometry (VIO) systems have been produced. Multi-State Constraint Kalman Filter (MSCKF), one of
the tightly coupled filtering methods, is characterized by high accuracy and low computational load
among typical VIO methods. In the general framework, IMU information is not used after predicting
the state and covariance propagation. In this article, we proposed a framework which introduce IMU
pre-integration result into MSCKF framework as observation information to improve the system
positioning accuracy. Additionally, the system uses the Helmert variance component estimation
(HVCE) method to adjust the weight between feature points and pre-integration to further improve
the positioning accuracy. Similarly, this article uses the wheel odometer information of the mobile
robot to perform zero speed detection, zero-speed update, and pre-integration update to enhance
the positioning accuracy of the system. Finally, after experiments carried out in Gazebo simulation
environment, public dataset and real scenarios, it is proved that the proposed algorithm has better
accuracy results while ensuring real-time performance than existing mainstream algorithms.

Keywords: mobile robot; visual–inertial odometry; IMU pre-integration; wheel odometry; Helmert
variance component estimation

1. Introduction

Simultaneous Localization and Mapping (SLAM) technology has rapidly developed
recently, and it is widely used in fields such as drones, Augmented Reality (AR), and
unmanned vehicles. Because of the low price of vision sensors, the improvement of com-
puting power, and the advancement of algorithms, vision SLAM has received widespread
attention [1–3] and produced many excellent results. However, poor lighting conditions,
fast motion, and lack of texture which prone to large positioning error or even system
crashes remain many flaws to pure vision SLAM. In order to improve the robustness and
positioning accuracy of the system, VI-SLAM fade in researcher’s sight as a fusion solution
of visual measurement and IMU measurement.

The current fusion framework of vision and inertial navigation can be divided into two
ways, one is based on filtering, and the other is based on optimization. The optimization-
based method tends to achieve more accurate result by transforming the estimation problem
into a nonlinear least squares optimization problem which is a bundle adjustment problem,
and iteratively solving it to obtain higher accuracy. However, it was not until the sparsity
of the Hessian matrix involved in the solution process was discovered that real-time algo-
rithms were developed to overcome large amount of calculation. For example OKVIS [4],
VINS [5], and ORB-SLAM3 [6] use a tightly coupled method to simultaneously optimize the
visual projection constraints and IMU pre-integration constraints. In order to balance the

Sensors 2022, 22, 2930. https://doi.org/10.3390/s22082930 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22082930
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22082930
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22082930?type=check_update&version=1


Sensors 2022, 22, 2930 2 of 21

calculation load and positioning accuracy, they use a sliding window method to maintain a
certain number of optimization variables. Although the use of sparse matrix factorization
can reduce the amount of calculation, VIO system based on optimization method still
occasionally leads to a decrease in the performance of the entire system while the calcula-
tion resource are limited because of the necessary occupation of the other modules in the
mobile robot system, such as the navigation module which needs to occupy certain system
resources in addition to the localization module [7].

To make sure of the real-time capability, the fusion framework was mostly based
on the filtering method. The state vector of general EKF-SLAM [8] contains IMU pose
and map feature points. While IMU and image information are obtained, state variables
are propagated and updated. The accurate estimation of the map points can obtain the
estimation of unbiased pose. As one of the typical filtering method, EKF-SLAM still
has great potential for further optimization of the computation load because the state
vector contains a large number of spatial feature points. Mourikis and Roumeliotis [9]
improved the system performance by proposing the Multi-State Constraint Kalman Filter
(MSCKF) algorithm, whose state vector does not contain spatial feature points but only
the pose of camera or IMU at a limited time in the sliding window. MSCKF can achieve
accuracy comparable to optimization-based methods under a small computational load.
Subsequently, many improved versions appeared, such as S-MSCKF-VIO [10], which
extended MSCKF to use stereo cameras to acquire certain scale information and improve
the robustness of the system. ROVIO [11] used luminosity for status update and zero-
speed detection, which is fast but has poor accuracy. Li and Mourikis [12,13], whose work
was named as MSCKF2.0, added the stable tracking SLAM feature points, the camera-
imu external parameters, and the time drift between camera-imu into the state vector,
and simultaneously estimated them together with the camera state. Furthermore, they
also used the First Estimate Jacobian (FEJ) technology to maintain system observability.
OpenVINS [14] is a framework based on the MSCKF sliding window, using a suitable type-
based state modular programming method, which facilitates the management of covariance.
It integrates various improved methods for MSCKF, such as monocular, binocular, FEJ,
SLAM feature points, camera intrinsic and extrinsic parameters estimation, etc., which
facilitate the comparison of effects between various improved methods and provides
complete theory and programming documentation. Adding a sliding window-based
optimization method on the basis of MSCKF framework to provide constraints between
the pose states in the sliding window is proposed in [15], but this undoubtedly increases
the computational load due to the additional use of optimization methods.

Inspired by optimization-based methods, we can use the IMU pre-integration between
two images [16,17] as an observation to update the camera state in the state vector. The
idea is similar to one described in [15], but it can greatly reduce the computational load
and ensure the real-time performance. Since reprojection error of feature points is also
involved in the update process, how to choose a suitable covariance weight between it and
IMU pre-integration is very important. HVCE [18] can determine the weights of different
types of observations, and has achieved good results in fusion positioning applications in
global satellite navigation [19,20]. Xu et al. [21] used the HVCE method to calculate the
weights of the point and line factors in the point–line VIO system for proper estimation,
which improved the accuracy of the VIO system. The proposed method in this article also
use HVCE method considering its effectiveness in multi-observation fusion.

Hesch et al. [22] analyzed the observability of the VIO system, and concluded that
there are four unobservable directions in the VIO system, namely the yaw angle and three
position information. Since the linearization point changes during the state update process
make yaw become observable from an unobservable state, the paper proposes to use FEJ
to maintain the observability of the system and improve the positioning accuracy of the
system. In addition, Wu et al. [23] proposed that in some special situations of the robot, VIO
will produce additional unobservable directions. For example, in uniform motion, the scale
of the system becomes unobservable due to the lack of output acceleration. Quan et al. [24]
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designed a tightly coupled VIO system for indoor mobile robots by tightly coupling the
wheel odometer and gyroscope.

The goal of this paper is to develop a visual–inertial navigation positioning system
with high accuracy and low computational load suitable for indoor mobile robots. From
this introduction, we can conclude that the optimization-based VIO method can obtain
higher positioning accuracy but heavier computation load than the EKF-based VIO method.
Currently, VIO systems based on the EKF framework can achieve localization accuracy
comparable to optimization-based methods with a smaller computational load. However,
from the knowledge we have obtained so far, the mainstream VIO systems based on the EFK
framework mostly use IMU measurement for state prediction and covariance propagation
but not next update stage. This article proposed a new idea of applying IMU data in system
update for further improvement of accuracy. The main contributions of this paper are:

(1) Cosidering the insufficient use of the IMU information in the traditional MSCKF VIO
system, the IMU pre-integration method is used to constrain and update the state of
the sliding window to improve the positioning accuracy of the system. In order to
select the appropriate weight between the covariance of the visual feature point repro-
jection and the IMU pre-integration, this paper uses the Helmert variance component
estimation method in the sliding window update process to select the maximum
posterior weights between the visual reprojection and the IMU pre-integration.

(2) For indoor mobile robots in the process of positioning using the MSCKF-based VIO
system, there are observable changes (such as loss of scale) during start–stop and
uniform motion, resulting in a decrease in positioning accuracy. The speed information
provided by the wheel odometer is used for zero-velocity detection, wheel odometer
pre-integration, and corresponding status updates to improve the positioning accuracy
of the mobile robot system.

(3) Tests and experiments were carried out in the Gazebo simulation environment, public
dataset EuRoc [25], and actual environment. The results of tests and experiments were
compared with related mainstream algorithms S-MSCKF [10], VINS-Fusion [5,26], and
OpenVINS [14]. Simulations and experiments show that the algorithm proposed in
this paper can not only ensure real-time performance but also improve the positioning
accuracy significantly.

The organization of this paper follows. After the comprehensive introduction in
Section 1, the system overview and mathematical method are introduced in Section 2. In
Section 3, we build a simulation environment in Gazebo and some simulations are carried
out. Next, experimental verification based on the EuRoc data set and the real Mir robot is
shown in Section 4. Finally, discussions and conclusions are given in Sections 5 and 6.

2. System Overview and Methodology
2.1. System Overview

General VIO systems based on MSCKF framework can roughly be divided into two
processes. One is to use the measurement of IMU to predict the state and propagate the
covariance. The other one is extracting and tracking the visual features of the images from
the camera and updating the state by visual geometric constraints. This paper adds the
IMU pre-integration module on the basis of the original framework and uses the HVCE
method to estimate the maximum posterior covariance weight of the visual constraint and
the pre-integration constraint, which are used to simultaneously update the state vector
variables in the sliding window. Meanwhile, for the indoor mobile robot, more accurate
speed information provided by the wheel odometer is used to detect the zero velocity, and
the pre-integration constraint of the wheel odometer is also used to update the pose state.
Figure 1 shows the pipeline of the system, in which the red box is the module added in this
paper on the basis of the general MSCKF framework.
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2.2. State Representation

In order to consider accuracy and efficiency, MSCKF framework uses a sliding window
algorithm for back-end optimization. The state vector variables include the current IMU
inertial navigation state, N historical clone camera states, M stable SLAM features, time
offset between IMU and camera, and the intrinsic and extrinsic parameters of the camera.
It is defined as follows:

xk =
(

xT
I xT

C xT
L xT

W
CtI

)
xT

I =
(

Ik
G qT G pT

Ik
GvT

Ik
bT

ωk
bT

ak

)
xT

C =
(

Ik−1
G qT G pT

Ik−1
GvT

Ik−1
bT

ωk−1
bT

ak−1
· · · Ik−c

G qT G pT
Ik−c

GvT
Ik−c

bT
ωk−c

bT
ak−c

)
xT

L =
(

G pT
f1
· · · G pT

fm

)
xT

W =
(

I
C1

qT C pT
I0

ςT
0

I
C1

qT C pT
I1

ςT
1

)
(1)

where xI is the state of inertial navigation system (INS) at the moment k, and its rotation
posture represents the transformation from the global coordinate frame G to the local
coordinate frame Ik through the unit quaternion Ik

G q; G pIk
and GvIk

represent the position
and velocity of the IMU body coordinate frame Ik relative to the global coordinate frame
G; bωk

and bak
represent the bias of the gyroscope and accelerometer; xT

C is a set of N
history IMU state clones and, in order to update the pre-integration, it also contains
velocity and bias information in addition to the general pose information; xL represents the
SLAM features for stable tracking; and the intrinsic camera parameters and the extrinsic
parameters between IMU and camera are represented by xW .
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2.3. IMU Dynamic Model and Pre-Integration

A six-axis IMU can measure acceleration and angular velocity of the body frame
with respect to the inertial frame through a 3-axis gyroscope and a 3-axis accelerometer,
respectively [17]. Its measurement model follows:

ωm(t) = ω̂(t) + bω(t) + nω(t)
I am(t) = â(t) + R(IqG)gG + ba(t) + na(t)

(2)

where IqG is the quaternion representation from the world frame G to the inertial frame I,
and R(IqG) represents the conversion of the quaternion IqG into the corresponding rotation
matrix. The true values measured by IMU are ω̂(t) and â(t), and the measured values are
ωm(t) and I am(t). The kinetic equation is shown as below:

G .
pIt

(t) = GvIt
(t)

G .
vIt(t) =

GaIt
(t)

It
G

.
q =

[ 1
2 ω It

0

]
⊗ It

Gq
.
bω(t) = nωb.
ba(t) = nab

(3)

According to the previous definition, the state vector of INS at time t is:

xT
It
=
(

It
GqT G pT

It
GvT

It
bT

ωt bT
at

)
1×16

(4)

Since the use of the real IMU state leads to the singularity of the covariance matrix,
there are additional units constrained to the quaternion in the state vector. Therefore, the
error IMU state is usually used, which is defined as:

δxT
It
=
(

δIt
GθT δG pT

It
δGvT

It
δbT

ωt δbT
at

)
1×15

(5)

Assuming the error of the quaternion is δIt
Gθ, the update method is:

I
Gq ←

[ 1
2 δIt

Gθ
1

]
⊗ I

Gq (6)

For vector variable position, speed, and offset, standard update methods can be used
(e.g., G pI ← G pI + δG pI ). Forward integration can be used to calculate the IMU state at
time k+1 from the IMU state at time k according to the dynamic equation through the
discrete linear acceleration Ik am, Ik+1 am and angular velocity Ik ωm, Ik+1 ωm measured by IMU
at time k and k + 1. At the same time, the covariance propagation of the state vector can
be performed by linearizing the nonlinear model. According to [14], the error transfer
equation can be written in a compact form as:

Pk+1|k = ΦkPk|kΦT
k + GkQdGT

k (7)

where P is the covariance matrix; Φk and Gk are the Jacobian matrix of system state and
noise characterizing the error transfer; Qd is the discrete noise matrix. For details, please
refer to [14]. Referring to [5], the pre-integration from time i to j can be calculated whose
form is defined as follows:

Ii αIj
=

s
t∈[i,j] qbibt a

It δt2

Ii β Ij
=
∫

t∈[i,j] qbibt a
It δt

Ij qIi
=
∫

t∈[i,j] (

[ 1
2 ω It

0

]
⊗ It qIi

)δt
(8)
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The formula is the calculation of pre-integration under continuous conditions. The
IMU measurements at time k and k + 1 can be used to accomplish the calculation in the
discrete case by numerical methods (such as Euler integral, median integral, or Runge–
Kutta method). While considering the bias and noise, the equation can be get as shown:

ω̂ = 1
2 ((ωm + nω(k)− bω(k)) + (ωm + nω(k + 1)− bω(k + 1)))

â = 1
2 (R(Ii q̂bk

)(Ik am + na(k)− ba(k)) + R(Ii q̂Ik+1
)(Ik+1 am + na(k + 1)− ba(k + 1)))

Ik+1 q̂Ii
=

[ 1
2 ω̂∆t

0

]
⊗ Ik q̂Ii

Ii α̂Ik+1
= Ii α̂Ik+1

+ Ii β̂ Ik
∆t + 1

2 â∆t2

Ii β̂ Ik+1
= Ii β̂ Ik+1

+ â∆t

(9)

At the beginning of the pre-integration calculation, Ii q̂Ii
=
[

0 0 0 1
]T , Ii α̂bk+1

,

and Ii β̂bk+1
are zero vectors. It is assumed that the bias is constant in the calculation process.

Refer to Appendix A for the calculation method of pre-integration covariance Σij. After
calculating the observations Ij q̂Ii

, Ii α̂Ij
, Ii β̂ Ij

, and their corresponding covariance Σij, the
standard extended Kalman filter can be used to update the state in the sliding window.
Note that q̂bk+1bi

, α̂bibk+1
, and β̂bibk+1

are affected by the biases ba
k and bg

k , and the bias changes
are small. In order to avoid calculating the pre-integration again after the bias is updated,
the first-order approximation formula is used directly to update after a small change in
the bias:

q̂bjbi
←
[

1
2 Jq

bg
k
δbg

k

1

]
⊗ q̂bjbi

α̂bibj
← α̂bibj

+ Jα
bg

k
δbg

k + Jα
ba

k
δba

k

β̂bibj
← β̂bibj

+ Jβ

bg
k
δbg

k + Jβ
ba

k
δba

k

(10)

where Jq
bg

k
, Jα

bg
k
, Jα

ba
k
, Jβ

bg
k
, and Jβ

ba
k

are the pre-integrated Jacobian with respect to the bias, which

can be solved iteratively according to the method described in Appendix A.

2.4. Measurements Update
2.4.1. Point Feature Measurement Update

The feature points used for visual observation update have two types: SLAM feature
points for long-term stable tracking, the state of which can be added to the state vector of
the sliding window, and the MSCKF feature points lost in tracking. The predicted pixel
coordinates of the spatial feature in the camera image at time k can be expressed as:

zm,k = hd(hp(ht(hr(λ, · · · ), RCkw, pwCk )), ζ) + nk (11)

where hd(·) maps the normalized coordinates to the distorted pixels coordinates; hp(·)
converts the coordinates in the camera coordinate frame into normalized coordinates frame;
ht(·) maps the 3D coordinates of the feature point in the world frame to the coordinates
in the camera coordinate frame, and hr(·) converts the feature point representation λ into
3D coordinates in the world frame. ζ are the camera’s intrinsic parameters, including focal
length and distortion parameters. RCkw and pwCk are the position and orientation of the
camera; nk is the measurement noise, usually assumed to be Gaussian white noise of one
pixel. By stacking the multiple observations of different feature points, the observation
equation can be constructed:

r f ,k = zm,k − ẑm,k = HxδXk + H f δG p f + nk (12)

where δXk is the error state vector in the sliding window involved in the feature point
observation update; Hx and H f are the measurement Jacobian matrix with respect to state
vector variables and the position of the feature. For the SLAM feature point update, since
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the feature point state is included in the state vector of the system, there is no H f δG p f term.
As for the update of MSCKF feature points, since the state of the feature points is affected
by the state of the camera, the observation equation can be projected onto the left null-space
of H f and then updated with a standard extended Kalman filter.

2.4.2. Pre-Integration Measurement Update

The pre-integration of velocity and displacement can be expressed as:

αbibj
= qbiw(pwbj

− pwbi
− vw

i ∆t + 1
2 gw∆t2)

βbibj
= qbiw(v

w
j − vw

i + gw∆t)
(13)

The corresponding Jacobian matrix can be obtained:

∂αbibj
∂θig

= [Rbiw(pwbj
− pwbi

− vw
i ∆t + 1

2 gw∆t2)]
×

∂αbibj
∂pwbj

= Rbiw,
∂αbibj
∂pwbi

= −Rbiw,
∂αbibj
∂vw

i
= Rbiw∆t

∂βbibj
∂θig

= [Rbiw(v
w
j − vw

i + gw∆t)]
×

∂βbibj
∂vwbj

= Rbiw,
∂βbibj
∂vwbi

= −Rbiw

(14)

For quaternions, suppose the ideal observation is:

zq = [qbjbi
⊗ (qbiw ⊗ qwbj

)]
1:3

= [0 0 0]T (15)

The residual of the quaternion can then be defined as rq = zq − ẑq, where ẑq =
[q̂bjbi

⊗ (q̂biw ⊗ q̂wbj
)]

1:3
. The corresponding Jacobian matrix is:

∂zq
∂θbiw

= −RL(qbjbi
)RR(qbiw ⊗ qwbj

)

∂zq
∂θbjw

= −RL(qbjbi
⊗ qbiw ⊗ qwbj

)
(16)

where RL and RR are the left and right quaternion multiplication matrices. The residual of
pre-integration can be expressed as:

rI =


rq
rp
rv
rbg

rba

 =


−[qbibj

⊗ (qbiw ⊗ qwbj
)]

1:3
αbibj
− qbiw(pwbj

− pwbi
− vw

i ∆t + 1
2 gw∆t2)

βbibj
− qbiw(v

w
j − vw

i + gw∆t)
−(bω

i − bω
j )

−(ba
i − ba

j )

 = HIδXI + RI (17)

where HI is the Jacobian matrix of the pre-integration relative to state in the slide window
and RI is the covariance of the pre-integration.

2.4.3. Wheel Odometer Measurement Update

When the wheel odometer detects that the robot’s velocity is zero, it can be defined
that the observation speed, acceleration, and angular velocity are all zero. The residual can
then be defined as:

rv = zv − ẑv = −vw

ra = za − ẑa = −(ã− ba − Rbgg)
rω = zω − ẑω = −(ω̃− bg)

(18)
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The corresponding Jacobian is:

∂zv

∂v
= I3×3,

∂za

∂θbw
= −[Rbwg]×,

∂zω

∂ba
=

∂zω

∂bg
= −I3×3 (19)

If the system detects that the robot is in a stationary state, it will not update the visual
observation feature points and pre-integration after completing the zero-velocity update.
When the speed of the robot is detected by the wheel odometer to be nonzero, dr and dl are
the moving distance of the right and left wheels of the differential drive wheel, respectively;
dr and dl satisfy [27]:

dr = εr · ∆dr + δr ∼ N(0, ‖K · εr · ∆dr‖)
dl = ε l · ∆dl + δl ∼ N(0, ‖K · ε l · ∆dl‖)

(20)

where ∆dr and ∆dl are the displacement in unit tick of the left and right wheel odometer,
respectively; εr and ε l are the scale coefficients; δr and δl are zero-mean Gaussian distribu-
tions whose variance is proportional to the moving distance of the left and right wheels
and the scale factor K. According to kinematics, the following formula can be obtained:

bk ∆sbk+1bk
= dr+dl

2
bk θbk+1bk

= dr−dl
d

(21)

where d is the center distance between the two wheels. Since the calculated result of
Formula (21) is one-dimensional, it needs to be expanded into a three-dimensional vec-
tor when performing the following calculation, that is: bk ∆sbk+1bk

← (bk ∆sbk+1bk
, 0, 0) and

bk θbk+1bk
← (0, 0, bk θbk+1bk

) . The rotation and displacement increments Rbjbi
and pbibj

of
the wheel odometer between image frames i and j can then be obtained by numerical
integration of the dynamic Equation (22); the initial condition Rbibi

is identity matrix and
pbibi

is a zero vector:
pbibk+1

= pbibk
+ RT

bkbi
Rbkbk′

bk ∆sbk+1bk

Rbk+1bi
= Rbk+1bk

Rbkbi

(22)

where Rbkbk′
represents the rotation transformation of the intermediate time between k and

k+1 relative to the time k, which can be calculated by bk θbk+1bk
. For the orientation error

propagation using SO(3) perturbation, we obtain:

θ̃bk+1bi
≈ R̂bk+1bk

(θ̃bkbi
+ Jr(−

dr − dl
d

)
nr − nl

d
) (23)

where superscript ˆ represents the true value and superscript ~ represents the perturbation.
Jr(·) is the right Jacobian of SO(3) that maps the variation in rotation angle in the parameter
vector space into the variation in the tangent vector space to the manifold. Then, the error
transfer coefficients can be obtained as:

∂θ̃bk+1bi

∂θ̃bkbi

= R̂bk+1bk
,

∂θ̃bk+1bi

∂nr
= R̂bk+1bk

Jr(− dr−dl
d )

d
,

∂θ̃bk+1bi

∂nl
= −R̂bk+1bk

Jr(− dr−dl
d )

d
(24)

Similarly, the error transfer equation in the translation direction can be obtained as:

p̃bibk+1
= p̃bibk

+ R̂T
bkbi

Rbkbk′
(

[
Jr(

∆θ

2
)

nr − nl
2d

]
×

bk ∆ ŝbk+1bk
+

nr − nl
2

) + R̂T
bkbi

[
θ̃bkbi

]
×

Rbkbk′
bk ∆ ŝbk+1bk

(25)
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The error transfer coefficient can be calculated as:

∂ p̃bibk+1
∂ p̃bibk

= I3,
∂ p̃bibk+1

∂θ̃bkbi

= −R̂T
bkbi

[
Rbkbk′

bk ∆ ŝbk+1bk

]
×

∂ p̃bibk+1
∂nr

= R̂T
bkbi

Rbkbk′
( 1

2 I3 −
[

bk ∆ ŝbk+1bk

]
×

Jr(
∆θ
2 ) 1

2d )

∂ p̃bibk+1
∂nr

= R̂T
bkbi

Rbkbk′
(− 1

2 I3 +
[

bk ∆ ŝbk+1bk

]
×

Jr(
∆θ
2 ) 1

2d )

(26)

The wheel odometer error transfer calculation can then be performed according to
Equation (7). In the mobile robot system, vision information can be used to detect whether
the wheel odometer is slipping. According to the positional relationship ORC and OPC
between the camera and the wheel odometer coordinate frame, the relative movement
Ci RCj

and Ci PCj
of the rotation and position of the camera can be calculated. Then, the

essential matrix E =
[

Ci PCj

]
×

Ci RCj
between two frames can be constructed. According

to the camera internal parameter K, we can calculate the essential matrix F = K−TEK−1.
Assume that the corresponding feature point observations of image frames i and j are
P1 = (u1, v1, 1)T and P2 = (u2, v2, 1)T . The distance from P1 to the corresponding epipolar
line can then be calculated as:

DP1P2 =
PT

1 FP2√
(FP2)

2
x + (FP2)

2
y

(27)

According to the threshold th, count the number of feature points with DP1P2 < th
and calculate the ratio to the total number of feature points. If the ratio exceeds a certain
threshold, the wheel odometer is considered to be slipping. If there is no slip, the state in the
sliding window can be updated by using the pre-integration component measured by the
wheel odometer, which is similar to the method of updating by using IMU pre-integration.
In addition, note that the state variables in the sliding window are defined in the IMU
coordinate frame, so the extrinsic parameters from the wheel odom coordinate frame to the
IMU coordinate frame need to be used during the update process to convert Rbjbi

and pbibj

in the wheel odom coordinate frame to the IMU coordinate system.

2.5. Helmert Variance Component Estimation

In the update process of the system proposed in this article, because it involves visual
feature points, IMU pre-integration, and observation information from the wheel odometer,
the determination of the weight between observations is very important. However, their
weights are generally inappropriate because of the errors of parameter calibration and cal-
culation and the corresponding unit weight variances. Taking observations of visual feature
points and IMU pre-integration as an example, the update equation of the observations to
the state variables of the system based on extended Kalman filter is:

X̂ = X + K(Zm − HmX) = X + Krm

N̂−1 = (I − KHm)N−1
(I − KHm)

T + KRmKT

K = N−1HT
m(HmN−1HT

m + Rm)
−1

(28)

where m = f or I, which indicate that the system state is updated by visual feature points
and IMU pre-integration, respectively. X and X̂ represent the state variables of the system
before and after the update; N−1 and N̂−1 are the covariance matrices of the system state
vector variables before and after the update; Zm is the observation and Rm is corresponding
covariance matrix; Hm is the Jacobian matrix of the observed measurement to the system
state vector variables, and its definition is the same as Equations (12) and (17); K is the
gain matrix and I is the identity matrix; rm can be calculated by Equations (12) and (17).
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Then, the calculation equation of weight can be obtained by Helmert variance component
estimation theory [18,20] as:[

r f R−1
f r f

rI R−1
I rI

]
=

[
n1 − tr(N f N−1) + tr(N f N−1N f N−1) tr(N f N−1NI N−1)

tr(N f N−1NI N−1) n2 − tr(NI N−1) + tr(NI N−1NI N−1)

][
σ2

1
σ2

2

]
(29)

where N f = HT
f R−1

f H f and NI = HT
I R−1

I HI . R f and RI are the covariance of visual feature
points and pre-integration observations, respectively. The “tr” item represents the trace
of the matrix. Because it is much smaller than the observation numbers n1 and n2 in
the sliding window calculation process, the trace items can be ignored in the calculation
to improve the calculation efficiency. Using Equation (29), σ2

1 and σ2
2 can be calculated.

Furthermore, the covariance matrices R f =
σ2

1
σ2

0
R f and then RI =

σ2
2

σ2
0

RI can be updated,

where σ2
0 is an arbitrary constant and the unit weight variance σ2

f of the feature point can be
taken here. The system state vector variables and their covariance can be updated directly
using Equation (28) after R f and RI are determined.

3. Simulations
3.1. Simulation Environment Settings

To verify the effect of the algorithm proposed in this article on the localization accuracy,
we first conduct a simulation analysis of the algorithm in a simulation environment built in
Gazebo. We directly use the simulation environment provided by the Chinese Academy
of Sciences [28], which contains rich environmental feature information, and import the
Mir robot URDF model, as shown in Figure 2. Mir is a differential drive robot equipped
with a camera, IMU, and wheel odometer. The camera can output images with a resolution
of 1080 × 1920 at a rate of 10 Hz, and the IMU outputs acceleration and angular velocity
information at 150 Hz. The wheel odometer outputs speed information and angular velocity
information at 50 Hz. During the simulation process, the maximum linear velocity and
maximum angular velocity of the robot motion are 1.0 m/s and 0.7 rad/s, respectively.
Sensor data are sent and received in the form of ROS (Robot Operating System) topics. The
computer is configured with Intel Core i7-7700K CPU with 3.5 GHz, 16 GB RAM, and the
system is Ubuntu 18.04 and ROS Melodic.
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3.2. Analysis of Localization Accuracy

The following is the analysis of the trajectory estimation accuracy of the algorithm
proposed in this paper and the original OpenVINS trajectory estimation accuracy of the
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robot in two motion situations, that is, the motion mainly composed of uniform circular
motion or uniform linear motion. All algorithm tests are based on stereovision fusion
with IMU and wheel odometer information. We use the open source tool evo [29] and use
absolute pose error (APE) as the error evaluation standard to analyze the accuracy of the
trajectory. Figure 3a,c,e shows several comparison heat maps of predicted trajectory and
true trajectory (without alignment and scale correction). The motion of the robot is mainly
composed of uniform circular motion. The redder the color in the figure, the greater the
translation error. The corresponding errors are shown in Figure 3b,d,f.
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Table 1 shows statistics of trajectory RMSE (Root Mean Squared Error) of translation
and rotation. In circular motion, the stereo VIO system will not increase the trajectory
estimation error sharply as does the monocular VIO system. Because the stereo can provide
the system with a certain scale of observability, therefore, the RMSE of the translation
during its circular motion is not very large, which is only 0.1826 m. After introducing
the IMU pre-integration as the observation and using the HVCE method to obtain the
maximum a posteriori weight of the covariance between the visual observation and the
IMU pre-integration, using this constraint to update the system state can reduce the RMSE
to 0.1368 m and improve the accuracy by 25.08%. If the system introduces wheel odometer
information at the same time, the error can be further reduced which the RMSE of the
translation is reduced to 0.1197 m and the accuracy is improved by 34.45%. This fully proves
that the algorithm proposed in this paper has a positive effect on localization accuracy after
introducing pre-integration information.

Table 1. The Root Mean Square Error (RMSE) results of OpenVINS and the proposed algorithm.

Evaluation OpenVINS OpenVINS + IMU +
HVCE

OpenVINS + IMU +
Odom + HVCE

RMSE
Trans (m) Rot (◦) Trans (m) Rot (◦) Trans (m) Rot (◦)

0.1826 2.1098 0.1368 1.6815 0.1197 0.7797
Improvement 25.08% 20.30% 34.45% 63.04%

When the robot is mainly in uniform linear motion and in a closed loop, the heat maps
of the estimated trajectory of the algorithm and the real trajectory are shown in Figure 4a,c,e
and the corresponding errors are shown in Figure 4b,d,f. The statistical results of the RMSE
of translation and rotation are shown in Table 2. The RMSE of the translation part of the
original OpenVINS algorithm is 0.1011 m. After using the IMU pre-integration as the
observation constraint and obtaining the optimal a posterior weight to update the state
of the system by HVCE method, the RMSE of translation of the system can be reduced to
0.0787 m, and the position accuracy can be improved by 22.15%. Because the robot moves
on a plane in the simulation environment, and the wheel odometer pre-integration can
provide such constraints, the positioning error can be further reduced to 0.0698 m, and
the position accuracy can be improved by 30.95%. It can be seen that in both cases the
robot’s motion error is relatively small, mainly because the robot’s motion speed in the
simulation environment is low (maximum 0.8 m/s) and stable, so the error is relatively
small. However, in actual situations, especially in the process of autonomous navigation,
there are situations where the speed and angular velocity change drastically which may
cause error increased rapidly in the absence of loopback. Therefore, next we conduct
experiments on the actual data collected and the actual robot to verify and evaluate the
performance of the algorithm in real world scenarios.

Table 2. The Root Mean Square Error (RMSE) results of OpenVINS and the proposed algorithm.

Evaluation OpenVINS OpenVINS + IMU +
HVCE

OpenVINS + IMU +
Odom + HVCE

RMSE
Trans (m) Rot (◦) Trans (m) Rot (◦) Trans (m) Rot (◦)

0.1011 0.7536 0.0787 0.5475 0.0698 0.3743
Improvement 22.15% 27.34% 30.95% 50.33%
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4. Experiments
4.1. Public Dataset Test

To verify the effectiveness of the algorithm, we tested it on the EuRoc MAV Dataset.
The EuRoc dataset includes the global shutter camera and Micro Electro Mechanical Systems
(MEMS) IMU configured on the drone to simultaneously collect stereoimages and IMU data.
The true value of the drone’s motion trajectory is provided through the motion capture
system. The collection environment of the dataset includes three environments, one is
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the machine hall and the other two are the Vicon room. The algorithm proposed in this
paper compared the performance of trajectory estimation with three classical VIO methods
which include S-MSCKF, OpenVINS, and VINS-Fusion without loop closure. S-MSCKF
supports stereo and OpenVINS supports monocular and stereo mode. They are both VIO
methods that tightly couple visual information and IMU measurements with extended
kalman filters. VINS-Fusion is an optimization method which supports a monocular and
stereo visual-inertial navigation system and uses tight coupling of visual measurement and
pre-integration in a sliding window.

In the experiments, we use the open source tool evo to evaluate the accuracy of
the results of the algorithm running on the dataset and use Absolute Pose Error (APE)
as the error evaluation standard. Table 3 lists the Root Mean Square Errors (RMSE) of
translation and rotation of the estimated trajectory of the proposed method and the state-
of-art stereo visual-inertial navigation system. From the table, it can be seen intuitively that
OpenVINS gives better positioning performance than the other two mainstream methods
by adopting the strategies of using FEJ, adding camera intrinsic parameters, IMU and
camera extrinsic parameters, time drift between IMU and camera, and SLAM features to
the state vector. Our algorithm adds pre-integration constraints to the basic framework
of OpenVINS as observations, which can also further improve the positioning accuracy
of the system. Especially when the dataset contains long linear motion, which is similar
to the motion of indoor mobile robot, the algorithm proposed in this paper improves the
positioning accuracy more obviously. For example, for the OpenVINS system with excellent
positioning performance, in the MH-04-difficult and MH-05-difficult sequence, the RMSE
of the translation is reduced from 0.1625 m and 0.1518 m to 0.1162 m and 0.1031 m, a
reduction of 28.49% and 32.08%, respectively. The symbol “×” indicates that the dataset
could not be completed in the program.

Table 3. The Root Mean Square Error (RMSE) results of OpenVINS and the proposed algorithm.

Seq
S-MSCKF VINS-Fusion OpenVINS The Proposed

Trans (m) Rot (◦) Trans (m) Rot (◦) Trans (m) Rot (◦) Trans (m) Rot (◦)

V1_02_medium 0.1082 2.4125 × × 0.0542 1.8723 0.0480 1.8564
V1_03_difficult 0.1654 4.1323 0.1076 6.8387 0.0516 2.5557 0.0512 2.3123
V2_02_medium 0.1174 1.7794 0.1167 2.8392 0.0462 1.4552 0.0469 1.3057
V2_03_medium × × × × 0.0708 0.9819 0.0601 0.8100

MH_03_medium 0.2889 2.0835 0.2856 1.4097 0.1079 1.3833 0.0980 1.3748
MH_04_difficult 0.2804 1.1874 0.4241 2.3703 0.1625 1.2023 0.1162 1.0628
MH_05_difficult 0.4001 1.1348 0.3081 1.7703 0.1518 1.2390 0.1031 0.9418

To display the estimation results intuitively, Figure 5 shows the comparison of trajec-
tory estimation between the original OpenVINS and the algorithm proposed in this paper
in the MH-04-difficult and MH-05-difficult sequences. This sequence involves the drone
entering a dark environment; it is difficult to extract feature points and the probability
of mismatching increases. Only using visual features to update the system status leads
to larger errors. Here, the pre-integration of the IMU, which is not affected by light, is
introduced as an observation to update the status of the system, which can improve the
positioning accuracy of the system.
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4.2. Real-World Test

To verify the performance of the algorithm in real-world scenarios, the self-built Mir
robot mobile platform is used for experiments, as shown in Figure 6a. The Mir robot
is equipped with front and back laser sensors and wheel odometer. At the same time,
the platform is also equipped with a ZED2i camera produced by STEREOLABS, which
can output the stereoimage and IMU message required by the algorithm described in
this paper. The image accepted by the algorithm is a three-channel color image and is
first converted into a single-channel grayscale image with 720 × 1280 resolution and 20
Hz frequency. In this experiment, the cartographer algorithm [30] is used to build the
environment map through the laser sensors. Since the loop closure can be used to eliminate
the cumulative error of the map in the process of map building, it can achieve a high
map-building accuracy. During the movement of the robot, the adaptive Monte Carlo
localization algorithm is used, which applies the acquired laser scanning information and
the established environment map to obtain globally consistent positioning information.
The localization of the robot on the map is shown in Figure 6b, and its positioning accuracy
reaches 5 cm, which meets the requirements of the visual–inertial odometry (without closed
loop) accuracy evaluation benchmark. The test trajectory of the robot is a closed-loop
motion in an indoor environment. The feature point tracking and the estimated trajectory
displayed in RVIZ during motion are shown in Figure 6c,d, respectively.

The trajectory length of the entire test is about 122 m, and the maximum linear velocity
and maximum angular velocity are 1.0 m/s and 0.7 rad/s, respectively, during robot
motion. As with the above method for accuracy analysis, we continue to use evo_ape for
trajectory accuracy analysis, as shown in Figure 7. Figure 7a,c,e shows the comparison
of the estimated trajectory with the ground truth, and Figures 6b and 7d,f indicate the
corresponding errors. The RMSE of translation is counted separately, the error of the
original OpenVINS algorithm is 0.3145 m, the trajectory error after constraint update using
IMU pre-integration is 0.2132 m, and the error after further using wheel odometer pre-
integration update is 0.1841 m. It can be seen that adding IMU pre-integration constraints
can greatly improve the positioning accuracy of the system, and the accuracy is increased
by 32.21% compared with the original OpenVINS method. Furthermore, by adding the
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wheel odometer as another observation constraint, the accuracy can be further improved
by 41.46%.
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(red points indicate SLAM feature points).
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5. Discussion

In this paper, in order to make full use of the sensor information to improve the
positioning accuracy of the system, three main works were carried out in the VIO system
based on the MSCKF framework. The first was to use the pre-integration of the IMU as the
observation information of the system, and use the standard EKF method to update the
state of the system. Secondly, in the positioning process for indoor mobile robots, we used
the same idea to extract the pre-integrated information of the wheel odometer, and constrain
and update the state of the system. In addition, visual features are collected and used as
observations to update the system state in the MSCKF framework. This paper uses the
Helmert variance component estimation method to determine a more reasonable covariance
weight between visual features and IMU pre-integration. To verify the effectiveness of the
algorithm proposed in this paper, we tested it in the Gazebo simulation environment, public
dataset, and actual environment. In the Gazebo simulation environment, the accuracy
analysis was carried out on the situation where the robot mainly moved in a circular motion
or in a uniform linear motion. The results show that the algorithm proposed in this paper
has a significant improvement in accuracy compared to the OpenVINS algorithm. In the
case of using IMU pre-integration with the HVCE method, the positioning accuracy of
translation can be improved by 25.08% and 22.15% in two cases, respectively. Meanwhile, if
the pre-integration information of the wheel odometer is used, the accuracy can be further
improved by 34.45% and 30.95%. On the public dataset, we compared the positioning
accuracy performance of the proposed algorithm with several mainstream algorithms:
S-MSCKF, VINS-Fusion, and OpenVINS. All test results show the excellent performance of
the algorithm proposed in this paper. Especially in a complex environment, such as the
MH-04-difficult and MH-05-difficult sequences, due to obvious changes in illumination, it
has a greater impact on visual measurement. Compared with OpenVINS, the algorithm
proposed in this paper can reduce the RMSE of translation from 0.1625 m and 0.1518 m
to 0.1162 m and 0.1031 m and increase the accuracy by 28.49% and 32.08%. Finally, we
also conducted the corresponding accuracy analysis experiments in the actual robot, and
proved that the proposed algorithm can improve the accuracy by 32.21% compared with
OpenVINS after introducing IMU pre-integration as the observation constraint. Similarly,
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after we introduce the pre-integration of the wheel odometer as the observation constraint,
the accuracy of the system can be further enhanced, which is 41.46% higher than the
original OpenVINS. However, in our actual experimental verification process, we also
found that the parameters of the IMU, including the noise variance of the accelerometer
and the gyroscope, and the variance of the random walk noise, have a greater impact on
the performance of the system. Even if the parameter selection is inappropriate, it may
cause the system to crash. In the next step, we will conduct further research on how to
improve the robustness of the system to parameters. There are also problems including the
estimation of external parameters between the wheel odometer and the camera while using
the wheel odometer. The time stamp between the two sensors are not strictly hardware
aligned, which will be further solved in the future.

6. Conclusions

In this paper, the pre-integration of the IMU is introduced as an observation, and the
state vector in the sliding window is updated, making full use of the information of the IMU
and improving the system positioning accuracy in the MSCKF framework. At the same time,
since the system also involves the observation of visual feature points, in order to obtain
the appropriate covariance between the two observations, this paper uses the Helmert
variance component estimation method to estimate the maximum a posterior weight of the
covariance. For indoor mobile robots, the same method is used, and the pre-integration of
the wheel odometer is used as the constraint of the pose estimation, which further improves
the positioning accuracy of the system. Additionally, through the Gazebo environment
simulation, public dataset EuRoc, and actual experiments the performance of the proposed
algorithm is verified. Analysis of the results leads to following conclusions. One is that
introducing pre-integration by IMU and wheel odometer as observation constraints in
MSCKF framework can help improve the positioning accuracy of the system. The other one
is that with the Helmert variance component estimation method, the largest a posteriori
covariance weight between visual observation and pre-integration observation can be
obtained. This method can further improve the positioning accuracy of the system. Since
the wheel odometer can only provide plane constraint information, namely x, y, yaw
directions, and in an indoor environment, the ground is not completely flat. In the next
task, we will model the ground more accurately so that higher localization accuracy can be
obtained after using the wheel odometer information.
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Appendix A

We define the IMU error state vector and the noise vector at time k as[
θ̃bk

α̃bk
β̃bk

b̃g
k b̃a
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]T
and
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, respectively. Then
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the IMU error state vector at time k + 1 can be expressed by the error state propagation
equation as: 
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Jr(−[ŵ∆t]×) 0

f21 I I∆t f24 − 1
4 (Rbibk

+ Rbibk+1
)∆t2

f31 0 I f34 − 1
2 (Rbibk

+ Rbibk+1
)∆t

0 0 0 I 0
0 0 0 0 I



G =


1
2 Iδt 0 1

2 Iδt 0 0 0
g21

1
4 Rbibk

(−∆t2) g23
1
4 Rbibk+1

(−∆t2) 0 0
g31 − 1

2 Rbibk
∆t g33 − 1

2 Rbibk+1
∆t 0 0

0 0 0 0 I 0
0 0 0 0 0 I


(A2)

f21 = − 1
4 Rbibk
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Jr(−[ŵ∆t]×)

∆t
2

g23 = 1
4 Rbibk+1
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where Jr(·) is the right Jacobian of SO(3) that maps the variation in rotation angle in
the parameter vector space into the variation in the tangent vector space to the mani-
fold. The covariance of the pre-integration can be calculated iteratively according to the
Equation (A1):

∑bibk+1
= F ∑bibk+1

FT + GQdGT (A4)

The covariance matrix at the initial iteration is ∑bibk
= I and Qd is the covariance of

the IMU raw measurements. Meanwhile, the Jacobian matrix of the pre-integration with
respect to the error state can be directly iteratively calculated Jik+1 = FJik with Jii = I. This
Jacobian matrix can be used in Equation (10) to complete the pre-integration update due to
bias changes.
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