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Abstract: In general, one may have access to a handful of labeled normal and defect datasets. Most
unlabeled datasets contain normal samples because the defect samples occurred rarely. Thus, the
majority of approaches for anomaly detection are formed as unsupervised problems. Most of the
previous methods have typically chosen an autoencoder to extract the common characteristics of the
unlabeled dataset, assumed as normal characteristics, and determine the unsuccessfully reconstructed
area as the defect area in an image. However, we could waste the ground truth data if we leave them
unused. In addition, a suitable choice of threshold value is needed for anomaly segmentation. In
our study, we propose a semi-supervised setting to make use of both unlabeled and labeled samples
and the network is trained to segment out defect regions automatically. We first train an autoencoder
network to reconstruct defect-free images from an unlabeled dataset, mostly containing normal
samples. Then, a difference map between the input and the reconstructed image is calculated and
feeds along with the corresponding input image into the subsequent segmentation module. We
share the ground truth for both kinds of input and train the network with binary cross-entropy loss.
Additional difference images can also increase stability during training. Finally, we show extensive
experimental results to prove that, with help from a handful of ground-truth segmentation maps, the
result is improved overall by 3.83%.

Keywords: defect segmentation; deep learning; semi-supervised learning

1. Introduction

Defect detection/segmentation has wide applications in the quality control process in
manufacturing, medical diagnosis, and quality inspections. It aims to produce, given an
input image, a segmentation map that corresponds to the defect area. With the increasingly
stringent requirements for the quality of products, this process has become an indispensable
part of many manufacturing methods. However, manual inspection by humans is slow,
expensive, and error-prone, resulting in more and more automated inspection systems
running in the production lines. Most of the existing research formulates this problem as
anomaly detection with the assumption that normal examples are the majority in the total
collection of data. The distribution of normal samples is often learned in an unsupervised
manner and defect detection is achieved by discovering out-of-distribution samples [1–4].
In some applications, especially high-precision production, the location of defects can be
critical to the product. Some areas on a product’s surface are strictly not allowed to have
any small defects on them. It is more accurate to capture this kind of defect by machine.
Furthermore, the detection information can be an indicator of potential machine operation
failure. Noticing problems early aids in maintenance cost reduction.

With the advent of deep learning, attention has been paid to exploiting the strong
feature learning ability of neural networks for many applications [5,6], including anomaly
detection [2,4].
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In most cases, the number of defect samples is extremely minimal, although the
number of good samples is plentiful. An anomaly detector is often designed under one-class
classification using normal data only. To formulate the anomaly detection as a classification
problem, one-class SVMs [7] have been proposed to learn deep feature mapping such
that normal samples are embedded within a hypersphere and anomalous samples are
determined by a threshold.

A deep one-class method [4] employs a similar concept, which uses a hypersphere
to encapsulate the normal features. These features are extracted by convolutional layers
to obtain spatial information. However, a hypersphere is not always the best choice for
modeling complex manifolds, which are almost always inescapable.

Another line of works employs an autoencoder (AE) [8,9] to capture the main variance
of normal samples in a similar way to PCA, while benefiting from the power of non-linear
and deep feature learning capabilities.

Typically, we train models to capture patterns from normal instances and establish
anomalies if the test example cannot be properly represented by these models. Anomalies
are identified by comparing the input and reconstructed samples. Other works model the
manifold of normal samples by training a generative adversarial network (GAN) [10] and
anomalous samples are identified via measuring the deviation from the normal manifold [2].
Among these alternatives, autoencoder-based approaches have demonstrated superiority
due to the clear assumption of identifying the normal patterns by dimension reduction,
low computation cost, and the superior performance for anomaly detection benchmark [3].
More specifically, an autoencoder extracts the typical patterns of high-dimensional data
through the bottleneck latent layer. The compact coding has another benefit in preventing
the network from simply copying an input. Then, the high reconstruction error is inter-
preted as an anomaly score. For anomaly segmentation, the per-pixel error is computed
to indicate defect pixels. However, the methods described above mainly rely on recon-
struction. With the defect area filtered out, obtaining a perfect reconstructed output is
very difficult.

Despite the success of existing AE-based anomaly detection methods, there are still
a few challenges that plague the unsupervised methods. Firstly, an AE requires careful
tuning of the compression rate, e.g., the dimension of the bottleneck layer. An overly low
compression rate may limit the ability to capture the inherent variation within normal
samples and the opposite would capture too much variation with a risk of reconstructing
the anomalies that totally fails the anomaly detection. Secondly, for anomaly segmentation,
AE-based methods rely on the difference between input and reconstruction; therefore, the
segmentation map may not be accurate at the boundaries and is prone to misalignment and
variation of visual patterns. As a result, existing AE-based methods often require careful
parameter tuning and generally achieve low precision.

Contrary to the common assumption that anomaly detection models are trained in
a totally unsupervised fashion, it is often possible to obtain a few labeled samples, e.g.,
in IC manufacturing some anomalous chips are identified and can be manually labeled.
Therefore, this raises the question of whether anomaly detection can be further improved
by a limited number of labeled samples, which method is termed semi-supervised anomaly
detection in this work. To the best of our knowledge, there are very few works addressing
such a scenario. Among these, L. Ruff et al. [11] extended the deep one-class classifica-
tion [4] by incorporating additional losses defined upon labeled data, but the method could
not be trivially adapted to anomaly segmentation tasks. Subsequent work proposed a
weakly supervised approach for anomaly segmentation [12]; however, it failed to directly
utilize the labeled anomalous segmentation map.

To tackle the aforementioned challenges, we propose a semi-supervised anomaly
segmentation approach.

Although there is a lot of diversity in the distribution of anomaly patterns, providing a
few defect samples to the model can help it acquire more discriminative features since they
come from real samples. Our approach consists of two parts. The first part, an autoencoder,
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is trained to reconstruct images upon all available data in a similar way to [13]. For the
limited labeled anomalous samples, both original and reconstructed images are fed into
the segmentation network to produce a final segmentation map.

In this way, the model can further fine-tune results from the autoencoder. To avoid
overfitting, we apply strong data augmentation to expand the variation of training images.
Some selected results are depicted in Figure 1.

To summarize, we make the following contributions in this work:

• To the best of our knowledge, this is the first work addressing defect segmentation in
a semi-supervised manner. It requires only 2% labeled training samples whereas it
achieves a 20% improvement over existing unsupervised approaches on the publicly
available MVTec dataset [3].

• We propose a novel framework by first exploiting an autoencoder to learn indiscrim-
inately from all unlabeled data. Then, a Unet segmentation network is trained on
labeled data with both classification and consistency losses. From our experimental
results, this method outperforms all state-of-the-art generic semi-supervised methods.

Figure 1. Examples of the objects and their segmentation maps. (Top row) Original input. (Middle row)
Our method’s results. (Last row) Segmentation ground truth.

The rest of the paper is organized as follows. In Section 2, we give a brief overview
of related works on semantic segmentation with a focus on semi-supervised learning.
Section 3 then describes our model and experimental results are given in Section 4. Finally,
the conclusions are summarized in Section 5.

2. Related Work
2.1. Anomaly Detection

Anomaly detection aims to discover unusual patterns from normal ones and is of-
ten formulated in an unsupervised fashion. Traditional methods include PCA, cluster
analysis [14], and one-class classification [1]. With the advent of deep learning, stronger
feature learning capability has been employed to avoid complicated feature engineering
and kernel construction. This leads to novel anomaly detection methods based on genera-
tive adversarial networks (GANs) [2,15] and autoencoders [13]. Among the former line of
works, the AnoGAN [2] was proposed to learn the manifold of normal samples and anoma-
lous samples could not be perfectly projected onto the normal manifold by the generator
learned from normal samples only. However, this method requires expensive optimization
for detecting abnormal samples and training GAN is prone to some well-known chal-
lenges including instability, mode collapse, etc. Among the autoencoder-based approaches,
P. Bergmann et al. [13] adopted an SSIM metric as the similarity measure between input
and reconstructed images. It was demonstrated to be better than the traditional L2 norm
for detecting anomalous pixels for anomaly segmentation, which is the major concern in
this paper.
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Nevertheless, the SSIM is well suited to clearly structured object images such as fabric.
For object-centric photos, it does not produce satisfactory results.

2.2. Semantic Segmentation

Typically, a classification network reduces the size of the output when it goes deeper.
This affects the performance of segmentation tasks. The fully convolutional network, cre-
ated by J. Long et al. [16], is one of the pioneer works in semantic segmentation tasks.
Their previous layer features are summed with the output of the layer before upsampling
and finally, prediction. Later, O. Ronneberger et al. [17] devised the Unet architecture
designed to concatenate more feature from previous layers, introducing richer raw features
from early layers. L. Chen et al. [18] employed an atrous convolution layer in DeepLab
to extract context in a wider receptive field while preserving the same computation cost.
Y. Liu et al. [19] performed knowledge distillation, training small networks by making
use of large networks for each pixel separately. Context is known to be crucial for se-
mantic segmentation. H. Ding et al. [20] and Y. Zhou et al. [21] used context information
to further enhance the network performance. However, most existing works focus on
detecting semantic segmentation from object-centric natural images with fully supervised
labeled samples. This does not generalize well in anomaly localization with limited defect
labeled samples.

2.3. Semi-Supervised Learning

A deep neural network trained with full supervision needs a huge amount of data. It
is known to be sensitive to labeled training data with supervised tasks, e.g., classification,
regression, segmentation, etc. However, in some cases, labeled data are costly and time
consuming to collect. J. E. Van Engelen and H. H. Hoos [22] give good overall details of
semisupervised methods. Since unlabeled data are much easier to gather, semi-supervised
approaches are designed to extract knowledge from unlabeled data along with a handful
of labeled data.

To learn generalizable models with limited labeled data, semi-supervised learning [23,24]
has been investigated to exploit additional large amounts of unlabeled data, with an
extensive review given by [22]. Although there has been substantial progress in image
recognition [24], and semantic segmentation [25], etc., have been witnessed, SSL is rarely
studied in the context of anomaly detection. It is often reasonable to assume that a small
number of anomalous samples are identified and labeled with ground-truth and SSL is the
most appropriate approach towards this setting. As the first attempt to formulate anomaly
detection in a semi-supervised manner, deep semi-supervised anomaly detection [11]
added supervision loss for labeled data into a one-class network [4]. However, there
is no trivial way to generalize such an approach to anomaly segmentation tasks, where
identifying anomalies for individual pixels is more difficult than classifying a whole image.
In this work, we proposed to combine an autoencoder and a segmentation network to
simultaneously exploit very few labeled and a large amount of unlabeled images for
anomaly segmentation.

3. Methodology

Given N (mostly N I1, ..., IN and M labeled samples ( Ĩ1, Ỹ1), ..., ( ĨM, ỸM)), where ỹij
could be 0 or 1, denoting normal and defective pixels (i, j) in each image, the task is to learn
a model that detects anomalous regions in an image.

Our auto-encoder takes an image I as input with size W × H × C, where C is the
number of channels, learns latent embedding and then reconstructs the image. A classifier
(Unet) is adopted, and is then applied to produce a segmentation map W × H × K, where
K is the number of classes. For our task, K is equal to one due to the nature of binary
segmentation, defect, and non-defect classes. The overall framework is summarized in
Figure 2.
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Figure 2. The overall architecture: Input unlabeled data are fed into a pre-trained autoencoder.
The difference image from reconstructed and original images is then calculated. For training Unet
to predict the segmentation map, both input and difference images are concatenated to obtain
better results.

3.1. Unsupervised Feature Learning

Autoencoders perform dimensionality reduction by encoding the input into a far lower
dimension, which is called the latent representation. Fascinatingly, during the process of
dimensionality reduction, outliers are identified. This latent representation will have far
less dimension that would store only the main pattern. The main pattern is considered
by the frequency of appearance of that pattern. Therefore, when the network tries to
reconstruct the anomaly, which occurs rarely, it fails. Principal component analysis (PCA) is
known as the classical useful tool to detect outliers by dimensionality reduction. However,
PCA transforms the input into latent representation and transforms it back linearly. In
contrast, the autoencoder techniques can perform non-linear transformations with their
non-linear activation function following each convolutional layer. It is more efficient to
train several layers with an autoencoder, rather than training one huge transformation
with PCA. The autoencoder techniques are thus more suitable when the data problems are
complex and non-linear in nature.

Given a large amount of unlabeled data, we employ an autoencoder (AE) as shown in
Figure 3 to learn normal feature patterns in an unsupervised fashion. Given a proper bottle-
neck dimension, it has been demonstrated that an AE will only capture the major variations
of normal data, hence the reconstructed images would remove the outlier patterns [13]. One
is able to directly compare the difference between input and reconstruction for anomaly
segmentation. Specifically, an AE consists of an encoder function E : RW×H×C −→ Rd and a
decoder function D : Rd −→ RW×H×C, where d denotes the dimension of the latent vector,
which is viewed as a compact representation of an input image. Allowing d�W × H × C
encourages the architecture to avoid trivial identity mapping from input to output and
prune out noisy signals. In general, the process can be expressed as,

Î = D(E(I)) = D(z) (1)
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MSE =
1

NWH

N

∑
k=1

W,H

∑
i,j

∥∥Iij − Îij
∥∥2

2 (2)

Figure 3. Details of encoder in our autoencoder architecture.

In order to reconstruct the input image in a pixelwise manner, the encoder will encode
the major variations in input data and, as a result, the reconstructed image will be largely
defect-free. If the input image contains any anomaly, it will be ideally detected by measuring
the absolute difference between input and reconstruction as,

Dij = |Iij − Îij| (3)

where D denotes the difference image. Some of results are presented in Figure 4. However,
the accuracy of the difference image heavily depends on the intra-class (normal to normal)
vs. inter-class (normal to abnormal) variation and a proper selection of the bottleneck layer
dimension. The former depends on the data distribution and the latter is not trivial to select.
To resolve these issues, we exploit the limited labeled samples to train a discriminative
model for more accurate prediction.

Figure 4. (Top) Original image. (Middle row) Reconstructed images from AE. (Last row) Difference
images. The magnitudes of misalignment pixels are obviously high and result in false detection.

3.2. Semi-Supervised Anomaly Segmentation

Given extremely limited labeled anomalous samples, we specify a Unet as the seg-
mentation model. Because of possessing huge parameters, the Unet can easily overfit this
limited dataset. To avoid overfitting, the model requires additional knowledge for the
segmentation task. First, we utilize an autoencoder to learn the pattern from good samples.
In this way, the model can detect the anomaly area. This does, however, rely greatly on the
quality of the reconstruction. We solve this limitation by introducing the Unet to further
localize the defect regions using the result calculated from the autoencoder output. Unet
is one of the popular architecture choices for semantic segmentation tasks. The network
comprises a contracting path and an expansive path, also perceived as encoder and de-
coder. There are skip links between these two parts to propagate the context information to
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successive layers. This gives the architecture a u-shaped form. It benefits from learning
feature maps at multiple scales to capture both the detailed structural information and
rough spatial extent. Because our work occasionally necessitates the detection of small
defect regions, the features transmitted from the very earliest layers may provide useful
information for capturing these types of defects. A standard Unet [17] is adopted here.

The contracting path consists of the repeated application of two 3 × 3 convolution
layers with padding to preserve the size of the output, each followed by a rectified linear
unit (ReLU). The 2 × 2 max pooling operation with stride 2 is employed for downsampling
the layer after every two convolutional layers. Then, the number of feature channels is
doubled after each downsampling step. For an expansive path, it consists of an upsampling
of the feature map followed by a 2 × 2 convolution (“up-convolution”). The number of
feature channels is reduced to half in this step. The features from the contracting path are
propagated to the expansive path by concatenating with the corresponding feature map.
Then, each is followed by two 3 × 3 convolutions and a ReLU. At the final layer, a 1 × 1
convolution layer maps 64 feature channels to the desired number of classes for each pixel,
which is two classes in our case.

Importantly, we concatenate the raw input image and the different image obtained
from the auto-encoder. In this work, Unet maps an original image and the corresponding
difference image, the result from the pre-trained autoencoder, to the segmentation ground
truth. The advantages of the difference image is that it contains the guidance of possible
defect regions. This is reasonable because the defect areas have been potentially captured by
the difference image and the Unet will benefit from feeding with features with richer prior
information. Let φ((·)W , b) be the function represented by our Unet network; we have

Ŷ = φ(([I; D])W , b) (4)

where ; denotes a channel-wise concatenation andW , b indicates the parameters, weights,
and biases of network. The final input is channel-wise concatenation of the original raw
image I and difference image D. Finally, we define a pixel-wise sigmoid cross-entropy loss
as follows,

LCE =
M

∑
k

W,H

∑
i,j

[Ỹijk log Ŷijk + (1− Ỹijk) log (1− Ŷijk)] (5)

where M is the number of labeled samples.

3.3. Data Augmentation

To avoid overfitting from limited labeled data, data augmentation is performed during
the training stage. We first normalize all pixel values into the range [0, 1]. The input images
are downsampled to 256 × 256 pixels. We apply random rigid affine transformations,
rotation and translation, to increase the variation of the training set. Random flipping along
X and Y axes is also applied wherever possible. In the affine case, a pixel coordinate is
transformed by [

x̂i
ŷi

]
= Aθ

xi
yi
1

 =

[
θ11 θ12 θ13
θ21 θ22 θ23

]xi
yi
1

 (6)

where (x̂i, ŷi) and (xi, yi) represent input and transformed coordinates, respectively. Aθ is
an affine transformation matrix for rigid body transformation and can be written as

Aθ =

[
cosα −sinα tx
sinα cosα ty

]
(7)

where α, tx and ty control rotation angle and translation distance, respectively. This
augmentation is randomly and differently performed in every training batch.
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For texture object categories, we down-size the image into 512× 512 before apply-
ing random transformation. Finally, we crop the transformed image into a size of 256
× 256 pixels for training. The effect of the mentioned augmentation in both non-texture
and texture categories is displayed in Figure 5.

(a)

(b)

Figure 5. (a) Augmentation for non-texture object categories and (b) augmentation for texture object
categories.

4. Experiment
4.1. Dataset

MVTec Dataset [3]: This dataset contains 15 object categories, including 10 non-
texture object categories and 5 texture object categories. The texture categories consist
of regular (carpet, grid) or random (leather, tile, wood) textures, while the non-texture
categories represent various types, such as rigid with a fixed appearance (bottle, metal nut),
deformable (cable), and natural variations (hazelnut).

Each category contains around 60–300 normal samples for training and 30–400 normal
and defect samples for testing. We augment the training set by selecting a couple of defect
samples from the testing set. For the supervised labeled sample, we pick an image from
each defect type. Therefore, the percentage of labeled samples ranges from 2 to 4% in each
of the categories. Table 1 summarizes the details of the number of samples in all categories.

Table 1. Number of unlabeled, labeled, and test samples in the dataset for each category of the
MVTec-AD dataset.

Category Bottle Cable Capsule Hazelnut Metal nut
Unlabeled 217 242 231 401 230

Labeled 4 9 6 5 5
Test 71 123 114 95 100

% Labeled 1.80 3.58 2.53 1.23 2.12

Category Pill Screw Toothbrush Transistor Zipper
Unlabeled 283 332 64 223 256

Labeled 8 6 2 5 8
Test 143 142 36 85 127

% Labeled 2.74 1.77 3.03 2.19 3.03

Category Carpet Grid Leather Tile Wood
Unlabeled 292 276 257 242 259

Labeled 6 6 6 6 6
Test 396 240 424 396 244

% Labeled 2.02 2.12 2.28 2.42 2.26
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4.2. Implementation Details

Both the autoencoder and Unet were trained separately using the Adam optimizer.
The learning rate was initially set to 0.0001 with a decay rate equal to 0.8 in every 30 epochs,
for a total of 200 epochs. The batch size was set to 16 while the latent vector dimension was
set to 500 for the autoencoder. The code was implemented in TensorFlow and experiments
were run on a server equipped with an NVIDIA 1080Ti GPU (12 GBs). All methods were
evaluated with the same test dataset as shown in Table 1.

The autoencoder was trained prior to training the Unet. We utilized the autoencoder to
obtain a good sample pattern from an unlabeled dataset. The Unet was then used to further
localize the defect regions using data calculated from the autoencoder output combined
with the labeled dataset. Both were trained with augmentation as explained in Section 3.3.

4.3. Evaluated Methods

We compared our results against those from both unsupervised anomaly segmenta-
tion methods and generic semi-supervised methods. For comparisons to unsupervised
methods, we first compared with the traditional dimension reduction method, PCA. We
then reproduced the vanilla autoencoder (AE) employed in [13] and (AnoGan) employed
in [2], which was trained on unlabeled data only. During the inference time, the per-pixel
error score between the original and reconstructed images was calculated. The defect
regions were extracted by thresholding the error map. We selected the threshold value
from the value giving the maximum gap between the true positive and false positive from
the ROC curve.

For semi-supervised methods, we first evaluated a vanilla Unet [17], which was
trained on labeled data only. In addition, we evaluated two generic semi-supervised
learning methods, the Π model [23] and MeanTeacher model [24]. Both exploited the
unlabeled data and enforced a consistency constraint on the prediction between two
different augmentations of input images. We sampled two random augmentations in the
same way introduced in Section 3.3 for consistency-based semi-supervised learning. Finally,
we evaluated our AE + Unet model by pre-training the AE on all available data and then
trained the Unet with limited labeled data.

4.4. Evaluation Metric

We used the mean IoU (intersection over union) to evaluate the performance of each
model. The IoU for each class is given by

IoU =
TP

TP + FP + FN

where TP, FP, and FN are the numbers of true positive, false positive, and false negative
pixels, respectively.

Table 2 reports the results from four experimental settings on fifteen object categories.
The Unet trained with few labeled data in a supervised fashion outperformed unsupervised
learning approaches by a large margin although it was highly over-fit. The reason is
that segmentation labeling provided very strong supervision to the model. Moreover,
unsupervised learning methods usually find the difference between the reconstructed
result and the input defect sample. The fault localization is aided by the reconstruction
error from the texture of the object. The error can be high in an imperfect reconstruction
area. Another possible reason is that the selected threshold is not maximized in terms of
IoU. A very small false positive rate can have a huge effect on the IoU score. Although the
Π model leverages both unlabeled and labeled data, it is worth noting that it only improves
performance insignificantly compared to the over-fit Unet-based line, around 0.4% overall.
However, it tends to have better results in texture object categories. The model may suffer
from highly imbalanced defect pixels versus non-defect pixels in an image.
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Table 2. Semantic segmentation performance of several evaluated methods. We report the IoUs of
unsupervised PCA, unsupervised AnoGan, unsupervised autoencoder (AE), Unet, pi models (Π*),
mean teacher, and our method (AE + Unet).

Category PCA AnoGan AE Unet Π* Mean
Teacher

AE +
Unet

Bottle 0.131 0.008 0.543 0.606 0.605 0.740 0.655
Cable 0.090 0.001 0.376 0.696 0.695 0.665 0.695
Capsule 0.048 0.023 0.480 0.545 0.544 0.557 0.579
Hazelnut 0.087 0.067 0.437 0.791 0.791 0.769 0.791
Screw 0.006 0.008 0.470 0.587 0.585 0.664 0.589
Pill 0.090 0.075 0.520 0.631 0.650 0.579 0.759
Metal Nut 0.194 0.172 0.519 0.866 0.866 0.568 0.888
Toothbrush 0.070 0.038 0.486 0.544 0.544 0.574 0.542
Transistor 0.102 0.071 0.436 0.560 0.530 0.563 0.605
Zipper 0.035 0.001 0.455 0.722 0.720 0.698 0.730
Grid 0.009 0.008 0.469 0.533 0.561 0.500 0.636
Carpet 0.017 0.020 0.381 0.713 0.630 0.700 0.681
Leather 0.017 0.016 0.462 0.673 0.676 0.666 0.635
Tile 0.096 0.065 0.477 0.603 0.746 0.714 0.674
Wood 0.070 0.057 0.502 0.591 0.570 0.761 0.652
Mean Total 0.071 0.042 0.467 0.644 0.647 0.6478 0.666

Overfitting is caused by training a network with a much higher number of parameters
compared to the dataset size. Although the network can estimate a complex function, it
also fits well to noise with the dataset instead of finding its trend. Since Unet has a lot
of parameters, the overfitting effect cannot be avoided with the limitation of the training
data size. However, our method adds another image as the network input. This can
increase useful data implicitly, thus it can help to mitigate the overfitting effect. The result
in Table 3 shows that there was a sizable gap of IoU between evaluation in training and
testing datasets. However, the gap was reduced when applying our method as shown by
the mean IoU.

Table 3. Evaluation of the overfitting effect between Unet and our method. We report the IoUs of the
results from both training and testing data.

Category
Unet AE + Unet

Train Data Test Data Train Data Test Data

Bottle 0.980 0.597 0.987 0.655
Cable 0.968 0.628 0.968 0.695
Capsule 0.938 0.553 0.940 0.579
Hazelnut 0.981 0.785 0.980 0.791
Screw 0.940 0.569 0.945 0.589
Pill 0.926 0.597 0.931 0.759
Metal Nut 0.990 0.857 0.990 0.888
Toothbrush 0.968 0.481 0.984 0.542
Transistor 0.984 0.558 0.983 0.605
Zipper 0.966 0.721 0.967 0.730
Grid 0.915 0.580 0.921 0.636
Carpet 0.969 0.598 0.969 0.681
Leather 0.956 0.615 0.955 0.635
Tile 0.966 0.634 0.966 0.674
Wood 0.978 0.579 0.978 0.652
Mean Total 0.961 0.623 0.964 0.666

Our proposed method outperforms substantially compared to the unsupervised au-
toencoder and fully-supervised Unet baseline. It also beats the Unet Π model, which is
trained in semi-supervised learning fashion. This is because our method extracts the useful
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knowledge to the anomaly detection task. The high values in the difference image indicate
potential anomaly pixels. The subsequent Unet learns to take advantages from features in
both raw data and difference maps. The experiment shows that the difference maps can
enhance the resulting segmentation maps. The qualitative results are shown in Figure 6.

More comprehensive evaluation results are given in Appendix A.

Figure 6. Qualitative results of all object categories. From left to right: original image, reconstructed
image from AE, difference image, ground truth, results from PCA, unsupervised AnoGan, unsuper-
vised AE, results from mean teacher, and results from our proposed method.
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4.5. Ablation Study

In this section, we show the results of the ablation study for two scenarios, i.e., ablation
study for data augmentation as well as that for feeding different inputs to the network.

From Table 4, it can be noted that data augmentation can bring the result up sig-
nificantly. Data augmentation increases the amount of data by adding slightly modified
copies of already existing data or newly created synthetic data from existing data. With this
technique, it helps the model to have more data exposure. The result in Table 4 also shows
that different images can assist the network to identify the defect regions. Thus, feeding
both original and different images also yields a visibly marked-up IoU score.

Table 4. Ablation study of data augmentation and different types of input. We report the IoUs of
feeding the original image with and without data augmentation, the augmented different image, and
the augmented original image combined with the different image.

Category w/o
Data Aug Data Aug Diff Original

+Diff

Bottle 0.583 0.597 0.637 0.655
Cable 0.620 0.628 0.642 0.695
Capsule 0.565 0.553 0.555 0.579
Hazelnut 0.766 0.785 0.701 0.791
Screw 0.590 0.569 0.559 0.589
Pill 0.607 0.597 0.579 0.759
Metal Nut 0.805 0.857 0.882 0.888
Toothbrush 0.478 0.481 0.532 0.542
Transistor 0.574 0.558 0.587 0.605
Zipper 0.731 0.721 0.672 0.730
Grid 0.563 0.580 0.584 0.636
Carpet 0.381 0.598 0.619 0.681
Leather 0.607 0.615 0.666 0.635
Tile 0.595 0.634 0.669 0.674
Wood 0.557 0.579 0.608 0.652
Mean Total 0.614 0.623 0.632 0.666

5. Conclusions

In this work, we proposed a network for semantic anomaly detection. The solution has
been designed for costly ground truth obtaining. Due to highly imbalanced defect pixels
compared to normal pixels in an image, the conventional semi-supervised methods cannot
work well in this setting. We first introduced an autoencoder to extract useful information
from unlabeled data by capturing the potential defect pixels as a difference image. Then,
the successive segmentation module was trained by this difference image from labeled
data along with its original input. The result from the autoencoder helps the segmentation
network to suffer less from over-fitting and instability due to a very small training set. The
experimental results show a reduced gap between evaluation of the training and testing
datasets. Moreover, they provide guidance about possible defect pixels.

The experimental results show that the proposed strategy improves the performance
substantially in certain object categories and the overall result from all categories is in-
creased by approximately a 3% margin. In this work, we employed Unet as a choice for
the segmentation network. However, the choice of network architecture can be changed
accordingly in different conditions. The limitation lies in the challenge of the defect appear-
ance. The shape of some faults is quite thin and small. The model will have difficulty in
detecting them as a result of this.



Sensors 2022, 22, 2915 13 of 15

Author Contributions: Supervision, W.K.; Conceptualization, P.K.; methodology, B.S. All authors
have read and agreed to the published version of the manuscript.

Funding: The first author was supported by the Thailand Research Fund (TRF) and Western Digital
(Thailand) Co., Ltd., Phra Nakhon Si Ayutthaya, Thailand. under the Research and Researchers for
Industry Program (RRI) program, grant no. PHD57I0049.

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are available from the MVTec website, https://www.mvtec.com/company/research/datasets/
mvtec-ad (accessed on 3 May 2020).

Acknowledgments: We would like to thank Sarapong Choumwong, Tirawat Tarawatcharasart, and
Chakkrit Supavasuthi for their assistance and suggestions. Special thanks go to Du-Ming Tsai and
Pradit Mittrapiyanuruk for their advice and fruitful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. We Provide the Average Process Time in for Each Object Class

Table A1. Semantic segmentation performance of several evaluated methods. We report average
processing time in milliseconds of unsupervised PCA, unsupervised AnoGan, unsupervised au-
toencoder (AE), Unet, pi models (Π*), mean teacher, and our method (AE + Unet). Only PCA was
executed on the CPU. Other methods were run on a GPU. It turns out that Unet, pi mean teacher, and
AE + Unet have no significant difference in processing time.

Category PCA AnoGan AE Unet Π* Mean
Teacher

AE +
Unet

Bottle 67 19 25 55 52 49 51
Cable 106 15 16 45 42 44 38
Capsule 99 16 17 49 44 39 40
Hazelnut 90 16 19 53 49 45 43
Screw 106 19 15 44 41 42 36
Pill 116 15 14 45 43 39 36
Metal Nut 89 17 20 50 47 42 41
Toothbrush 53 21 44 54 56 58 53
Transistor 85 16 20 56 54 49 46
Zipper 107 15 15 34 41 44 38
Grid 66 19 10 37 35 35 29
Carpet 106 16 17 32 29 31 26
Leather 107 16 17 32 30 32 26
Tile 91 15 17 32 30 27 26
Wood 78 17 11 36 34 30 29
Mean Total 91 17 18 43 40 40 37

Appendix A.2. Mean Absolute Error for Each Object Class. We Compute the Mean of the Sum of
All the Pixels That Are Incorrectly Classified

Table A2. Semantic segmentation performance of several evaluated methods. We report the mean ab-
solute error (MAE) of the unsupervised PCA, unsupervised AnoGan, unsupervised autoencoder(AE),
Unet, pi models (Π*), mean teacher, and our method (AE + Unet).

Category PCA AnoGan AE Unet Π* Mean
Teacher

AE +
Unet

Bottle 59,216 968 25,138 2952 2833 2096 2485
Cable 38,224 496 10,784 21,925 1154 2039 1392
Capsule 22,466 1717 17,787 1002 587 927 634
Hazelnut 32,664 3171 2321 1548 1406 665 678
Screw 48,335 2964 1672 345 224 177 172
Pill 49,431 5695 5379 2871 1892 1671 1481

https://www.mvtec.com/company/research/datasets/mvtec-ad
https://www.mvtec.com/company/research/datasets/mvtec-ad
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Table A2. Cont.

Category PCA AnoGan AE Unet Π* Mean
Teacher

AE +
Unet

Metal Nut 82,348 6200 4809 12,105 7593 6653 1595
Toothbrush 32,227 4887 1042 5273 1875 1258 925
Transistor 49,926 4403 2979 15,916 2655 2018 1868
Zipper 71,271 346 3577 7624 859 868 1278
Grid 63,086 1751 1240 2745 439 450 379
Carpet 78,140 4275 1578 2321 664 665 1023
Leather 46,093 1096 879 558 311 342 319
Tile 26,854 4123 4457 3074 4617 2779 2522
Wood 44,790 5188 4698 3524 7826 1339 8731
Mean Total 47,494 3152 5889 5585 2329 1596 1698
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