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Abstract: Heterogeneous cyberattacks against industrial control systems (ICSs) have had a strong
impact on the physical world in recent decades. Connecting devices to the internet enables new attack
surfaces for attackers. The intrusion of ICSs, such as the manipulation of industrial sensory or actuator
data, can be the cause for anomalous ICS behaviors. This poses a threat to the infrastructure that is
critical for the operation of a modern city. Nowadays, the best techniques for detecting anomalies in
ICSs are based on machine learning and, more recently, deep learning. Cybersecurity in ICSs is still an
emerging field, and industrial datasets that can be used to develop anomaly detection techniques are
rare. In this paper, we propose an unsupervised deep learning methodology for anomaly detection in
ICSs, specifically, a lightweight long short-term memory variational auto-encoder (LW-LSTM-VAE)
architecture. We successfully demonstrate our solution under two ICS applications, namely, water
purification and water distribution plants. Our proposed method proves to be efficient in detecting
anomalies in these applications and improves upon reconstruction-based anomaly detection methods
presented in previous work. For example, we successfully detected 82.16% of the anomalies in
the scenario of the widely used Secure Water Treatment (SWaT) benchmark. The deep learning
architecture we propose has the added advantage of being extremely lightweight.

Keywords: anomaly detection; pattern recognition; security

1. Introduction

Industrial control systems are used to manage and supervise industrial processes in
critical infrastructures. Due to the adoption of internet technologies, ICSs are increasingly
being targeted by cyberattacks [1]. This sharp increase in cyberattacks poses a threat to
the infrastructures (e.g., electric, water, and natural gas facilities) that are critical for the
operation of modern cities. A famous example of a cyberattack targeting an ICS, Stuxnet, is
a worm that was discovered in June 2010. Among others, Stuxnet is known to have caused
massive damage to Iran’s nuclear program [2].

An ICS is a cyber-physical system (CPS), that is characterized by its high degree
of complexity [3]. It typically consists of distributed computing elements, mechanical
parts, and electronic parts that communicate via IT network infrastructure, such as the
Internet. CPSs are augmenting critical public infrastructure [4] such as transportation,
electric power generation, water treatment, and distribution. In the context of Industry
4.0, these systems are increasingly automated, such that they can dynamically adapt to
production requirements.

The detection of anomalies in CPSs concerns the identification of unusual system
behaviors. The central issue with anomaly detection is to be able to distinguish between
normal behaviors and behaviors that are potentially disadvantageous or even dangerous [5].
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Although experts can very well define the desired system behavior of a CPS, anomalous
events can be anything out of the ordinary and are therefore difficult to recognize. In the
industrial domain, connecting devices to the internet is the cause for anomalies such as
cyber-attacks or information leaks. Anomalies can also result from malfunctions, operator
errors, or software misconfigurations. When an industrial plant is operating efficiently, this
may mean that certain safety precautions are taken (i.e., exceptional conditions such as
extreme temperatures, pressures, etc., are handled). The analysis of the system behavior
and the detection of anomalies in CPSs is quite essential to guarantee the safety and security
during systems operation as well as to facilitate CPS maintenance and repair.

The detection of anomalies in CPSs is difficult due to several challenges. When the size
of a CPS and its internal dependencies increase, complexity often reaches a point where it is
no longer trivial to identify anomalous system behavior. Typically, multimodal monitoring
sensors are mixed with actuator states. Water treatment and water distribution applications
often involve hundreds of sensors and actuators. For this reason, it is important to develop
anomaly detection techniques that can cope with data from various types of sensors and
actuators. Another challenge is temporal dependency of sensor and actuator signals. When
various plant processes are interdependent, timing plays an important role. This increases
the need for solutions that take the temporal nature of sensor signals into account. The use
cases we are targeting include intrusion detection, and systems health monitoring, as well
as event detection in sensor networks.

We successfully propose the adaption of a variational auto-encoder (VAE) with a
long short-term memory (LSTM) [6] network for anomaly detection in CPSs. Frequently,
techniques for detecting anomalies directly analyze the raw network communication of the
underlying IT infrastructure. In contrast, our proposed method detects anomalies by di-
rectly analyzing patterns in sensor measurements and actuator states. Our lightweight long
short-term memory variational auto-encoder (LW-LSTM-VAE) architecture is specifically
designed to be applied in unsupervised learning scenarios and to cope with various types
of sensors and actuators. Figure 1 visualizes the LW-LSTM-VAE architecture proposed in
this work.
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Figure 1. Overview of the methodology proposed in this work. The methodology consits of 3 phases:
the input phase (grey), the reconstruction phase (orange, blue), and the anomaly detection phase (green).



Sensors 2022, 22, 2886

30f23

Our methodology is evaluated against data collected from the SWaT and WADI
testbeds, built at the Singapore University of Technology and Design for cybersecurity
research [7]. The SWaT testbed is a scaled-down but fully functional water purification
plant. Its natural extension, the WADI testbed, is a water distribution system. Our proposed
solution proves to be effective in detecting anomalies in these applications. Moreover, it
consists of an extremely lightweight architecture with low memory and low training time
requirements. Compared to previous works, our proposed method only requires an ex-
tremely small amount of model parameters and hidden layers while achieving comparable
predictive performance.

An in-depth description of the methodology is presented in Section 3. The experi-
mental setup, including the datasets used for the experiments, data preprocessing, and
hyperparameter configurations are described in Section 4. Finally, in Section 5, the results
in comparison to previous works are presented, including an analysis that highlights the
lightness of our models.

2. Related Work

The recognition and prevention of unforeseen events in smart environments has
caught the attention of the research community in recent years [8]. Anomaly detection
can be understood as a one-class classification problem, where the normal behavior is
considered the dominant behavior. Any behavior that is out of the ordinary deviates from
the known normal behavior and is therefore considered an anomaly. Deep-learning-based
anomaly detection has been proven to perform well, as shown in many surveys [9-12].
Anomaly detection has also been comprehensively reviewed for intrusion detection in
previous literature [13-16].

Classically, researchers often detected anomalies by directly analyzing data patterns
in a reduced space [17] or by decomposing the data into normal, anomaly, and noise
subspaces [18]. However, a compressed representation of anomalous data may resemble
normal data patterns, such that anomalous data may not be distinguishable from normal
data in a reduced space.

Detecting anomalous system behaviors in ICSs is a common problem in smart in-
dustrial applications. A variety of different anomaly detection algorithms exist that have
been applied in this application domain. The classical anomaly detection algorithms in-
clude one-class support vector machines (OC-SVM) [19] and principal component analysis
(PCA) [20]. More recently, deep learning algorithms have emerged and have been ap-
plied for anomaly detection in ICSs, such as graph neural networks (GNN) [21], Bayesian
networks [22], convolutional neural networks (CNN) [20,23,24], generative adverserial
networks (GAN) [25,26], auto-encoders (AE) [27] and LSTM [19,28].

In [21], researchers used GNNSs to explicitly learn the relationships between sensor
and actuator variables in ICSs. Their graph deviation network (GDN) approach learns to
detect deviations from normal sensor—actuator relationships. Similarly, a Bayesian network-
based anomaly detection strategy was proposed by Lin et al. [22]. Their time automata
and Bayesian network (TABOR) approach discovers dependencies between sensors and
actuators variables. Deviations from the dependencies are used to recognize abnormal
system behaviors. Kravchik et al. [23] proposed the application of one-dimensional con-
volutional neural networks (1D CNN) for the detection of anomalies. The authors also
experimented with an ensemble of CNNs that consider the operational stages of an ICS
individually. In [20], Kravchik et al. applied 1D CNN, AE, VAE, and PCA algorithms to
the SWaT and WADI benchmark. The authors proposed to perform feature selection based
on the Kolmogorov—-Smirnov test (K-S test) [29] and considered the time domain as well as
the frequency domain of the time-series data.

Reconstruction-based anomaly detection approaches very recently began to be applied
in the industrial application domain [24-27,30]. Reconstruction-based anomaly detection
is performed by first transforming the original input data into a low-dimensional represen-
tation based on spectral decomposition. The original data instances are then reconstructed
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from their lower-dimensional representations. After reconstruction, the reconstructed data
are compared to the original input data in order to compute a reconstruction error (i.e., the
deviation between the original input and the reconstruction of the input). The reconstruc-
tion error then directly serves as an anomaly score for the recognition of anomalous data
instances [31].

An AE is a representative example of a reconstruction-based approach. It is imple-
mented as a connected network with an encoder and a decoder [32]. For the detection of
anomalies in time-series signals (e.g., data recorded by monitoring sensors in industrial
facilities), AEs can be applied using a sliding time window [33]. When training an AE with
non-anomalous data only, anomalies can be detected based on high reconstruction errors
during inference. In [27], Audibert et al. proposed a reconstruction-based anomaly detec-
tion approach called USAD, which is based on a combination of two AEs and adversarial
training. In [30], Faber et al. proposed a framework to enhance the anomaly detection per-
formance of the USAD model, which was originally proposed by [27]. They also evaluated
an auto-encoder-based 1D CNN architecture [34] and an LSTM-VAE architecture [35] on
SWaT and WADI. Their framework evolves an ensemble model that is generated based on
evolution strategies and involves splitting the sensors and actuators of the facilities into
subgroups. In comparison to our proposed LW-LSTM-VAE, the LSTM-VAE architecture
originally proposed in [35] requires a significantly higher number of model parameters,
while the performance of our models is higher on both benchmarks, as will be presented
in Section 5. The method presented in [35] additionally requires to reconstruct the prob-
ability distribution of an observation to compute an anomaly score, while our method
reconstructs an observation directly. Using the reconstructed probability distribution, their
method computes the deviation to the original input distribution to obtain an anomaly
score. This is achieved by introducing a progress-based prior of the input data distribution
during training, which gradually changes in order to embed the temporal dependency of
time-series data into the VAE. Furthermore, in [35], state-based thresholding is introduced,
which does have the computational overhead of requiring support vector regression (SVR)
to recognize anomalies.

In addition to default AE architectures, VAEs have the potential to abstract over the di-
verseness of sensor and actuator data by observing statistics of expected distributions [36].
The motivation of using a VAE for anomaly detection is to avoid overfitting by taking into
account the statistical distribution of the input and to obtain a more robust latent represen-
tation. This is achieved by the means of variational inference. Bayer and Osendorfer [37]
used variational inference to estimate the underlying distribution of sequences. Variational
inference also opened the way for stochastic recurrent networks, which have been applied
to detect robot anomalies [38]. This work proposes a method for anomaly detection in ICSs
that is based on a VAE architecture.

For the detection of anomalies in industrial sensor and actuator signals, solutions are
needed that take into account the time dependency of the signals. LSTM networks are a
suitable choice to capture long- and short-term dependencies of sequential time-series data.
There are several advantages of using LSTM networks in comparison to classical approaches
(e.g., window approaches or Markov chains). An LSTM-based anomaly detector is expected
to have higher representational performance and the memory consumption is expected
to be significantly lower when tracking long-term dependencies of sequential time-series
data [6]. Additionally, LSTM networks can operate on continuous states. In this work, a
VAE architecture is proposed that has been extended using LSTM neural network layers.
In the following, previous work that incorporates LSTM networks is presented.

In [28], the authors propose the detection of anomalous events in time series by making
use of stacked LSTM neural network architectures. The authors evaluate their method
on a subset of the SWaT [7] dataset, but they only considered the first of six operational
processes of the SWaT facility. Inoue et al. [19] proposed the application of deep neural
networks (DNNs) and OC-SVMs. Their DNN architectures include an LSTM layer to take
the time dependence of the sensor values into account. Reconstruction-based methods are
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presented in [25,26]. Li et al. [26] suggested a GAN-based method for anomaly detection
in ICSs. The generator network of their generative adversarial networks-based anomaly
detection (GAN-AD) method uses LSTM layers instead of convolutional layers to handle
time dependencies. In [25], the same authors propose their multivariate anomaly detection
with GAN (MAD-GAN) framework, which is based on GANs and LSTMs for the generator
and discriminator. Their MAD-GAN framework outperformed the baseline algorithms the
authors report on. However, GANSs usually do not perform well when they are applied to
small datasets because complex discriminators tend to overfit small datasets. In [24], the
authors first extracted features using a stacked denoising auto-encoder (SDA). Features
were then predicted by a combination of a 1D-CNN with gated recurrent units (GRU). The
statistical deviation between the predicted features and the observed features is used as
anomaly score.

Unlike previous works, the methodology proposed in the work, our LW-LSTM-VAE
architecture, is a combination of a VAE with an LSTM network, specifically designed for
the purpose of anomaly detection in ICSs. Our proposed methodology has the additional
advantage of being extremely compact. The LSTM network is used to model the temporal
dependencies between sensor and actuator signals. The VAE is used to obtain a more
robust model that captures the underlying statistics of the data.

Dataset Overview

This section provides an overview of related datasets, addressing anomalies in in-
dustrial operations. Unlike datasets that are generally considered for the application of
anomaly detection algorithms, the availability of datasets that contain sensor and actuator
data from ICSs is limited [39]. In the following, a summary of the available industrial
datasets that contain sensor and actuator data is provided. The SWaT [7] and WADI [40]
datasets that are used for the development and evaluation of our method are described in
greater detail. The datasets provided in [41,42] originate from different ICSs. The Power
System [41] dataset contains synchrophasor measurements. A synchrophasor is a time-
synchronized phasor measurement unit (PMU) that measures the complex amplitude of
current and voltage at a given time. The dataset features network traffic logs recorded by
the open-source intrusion prevention system (IPS) Snort. Malicious data samples have
been generated based on 28 different attack scenarios. The Gas Pipeline [41] dataset con-
tains captured data logs from a gas pipeline supervisory control and data acquisition
(SCADA) system.

Remote terminal units (RTU) have been used to monitor the gas pipeline. RTUs
are electronic devices that can connect physical devices (e.g., sensors and actuators) to
SCADA automation systems. They transfer telemetry data to the systems and/or change
the physical state of connected objects based on control messages received from the SCADA
system. The dataset has been used to evaluate the ability of learning algorithms to identify
data injection attacks. Similarly, the Water Storage Tank [42] dataset focuses on a water
storage system.

The Center for Cyber Security Research, iTrust [43], built small-scale but fully func-
tional testbeds that mimic real-world industrial facilities. The testbeds were operated
under realistic conditions and datasets have been recorded. The Secure Water Treatment
(SWaT) [7], Water Distribution (WADI) [40], and Electric Power and Intelligent Control
(EPIC) [44] datasets feature network traffic logs, sensor measurements, and actuator states.
The samples contained in the datasets have been annotated to be either normal or anoma-
lous. Anomalous samples have been created by running false injection attacks against
the testbeds.

Another dataset originates from the BATtle of the Attack Detection ALgorithms
(BATADAL) [45] competition. The competition aims at the proposal of cyberattack detection
algorithms for industrial environments. The dataset contains samples recorded in a water
distribution network that involves seven storage tanks, eleven pumps, and five valves,
controlled by nine programmable logic controllers (PLCs). The network was generated
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with the epanetCPA toolbox, which allows the injection of cyberattacks and simulates the
network’s response to those attacks. The dataset is split into two training sets and a testing
set. The training set 1 was generated from a simulation that lasted for one year. It does not
contain any attacks; all the data pertain to normal operations. The training set 2 is partially
annotated and was recorded over 6 months. It contains several attacks, some of which are
approximately annotated. The testing set includes 2089 records with seven attacks. It was
recorded over a three-month-long period and was used to compare the performance of
the algorithms. From all the discussed datasets, only SWaT and WADI have the desired
properties to address the challenges targeted in this work. The SWaT and WADI datasets
have a high overall size, high dimensionality, and contain raw data from various types of
sensors and actuators, while the fraction of anomalous samples annotated in the datasets is
very small.

3. Methodology

This section presents the methodology proposed in this work. A visualization of the
methodology, including the processing pipeline, is shown in Figure 1. The pipeline of the
methodology consists of three main phases: the input phase, the reconstruction phase, and
the anomaly detection phase. In the following, we provide an overview of the methodology
and describe the particular phases.

In the first phase, the input phase, a dataset is preprocessed. Our methodology
involves several preprocessing steps, namely, feature selection, feature normalization, and
window extraction.

Feature selection is performed for the individual features of an input dataset since
the features do not contribute equally to the anomaly detection task. A feature might be
redundant (i.e., a feature separates anomalous from non-anomalous samples less well than
another feature) or the distribution of feature values in the training set differs greatly from
the distribution of feature values in the testing set. Feature selection is important because it
greatly influences the performance of the anomaly detector.

In the feature normalization step, the individual feature values are normalized. Fea-
ture normalization has a significant effect on the anomaly detection performance because
machine learning algorithms are highly sensitive to varying degrees of feature magni-
tudes. Section 4.2 describes the feature selection and feature normalization process in
further detail.

After feature selection and feature normalization are performed on the input data,
windows are extracted from the training and testing sets of the respective datasets. The
window extraction step divides time-series data into smaller time-series sub-sequences
(i.e., windows) by sliding a fixed size window across the data. A window then consists
of multiple samples that are in sequential order over time. Creating windows of samples
enables our methodology to cope with the temporal dependency of the sequential time-
series data. The window extraction process is further described in Section 3.4. The windows
obtained thus serve as input to the reconstruction phase.

In the reconstruction phase, our LW-LSTM-VAE neural network architecture attempts
to reconstruct the individual input windows. The intuition behind this is that the algorithm
learns to model normality, such that it is able to effectively reconstruct windows that
resemble normal data patterns, but it fails at reconstructing windows that resemble anoma-
lous data patterns. After reconstruction, the original input window and the reconstructed
window serve as input for the final anomaly detector phase. Further details about the
LW-LSTM-VAE architecture are provided in Section 3.3.

In the anomaly detector phase, the deviation between an input window and a re-
constructed window is computed. The deviation (i.e., reconstruction error) is used as a
measure for normality of a respective window and directly serves as an anomaly score.
If the reconstruction error exceeds a defined reconstruction error threshold, a window is
classified anomalous, otherwise it is classified normal. Details about the computation of
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the reconstruction error are provided in Section 3.5. The reconstruction error threshold is
described in Section 3.6.

3.1. Preliminary: Auto-Encoder

This section describes the foundations of auto-encoders and how sparse auto-encoders
(SAE) can be used for reconstruction-based anomaly detection. The anomaly detector
presented in this work is based on an AE architecture; therefore, it is important to highlight
the fundamental working principles.

An AE performs dimensionality reduction because it reduces the number of input
features by combining these features into a reduced number of latent features in the
encoding process. An AE assigns each input state to an equivalent point in latent space
from where the original input is then derived from its embedded analog in the decoding
phase. Formally, a latent space Z along with the input data space X is defined. An encoder
function E relates both spaces by representing a mapping from the input space X into the
latent space Z (E(X) : X — Z).

A decoder function D relates the spaces Z and X by representing a mapping from the
latent space Z into the reconstructed input data space X (D(Z) : Z — X). The decoder
function is subject to continuity and therefore returns close data points in the reconstructed
input space X, if the data points are close in the latent space Z. The trained decoder D
reflects the normal data’s distribution. It is possible to find a latent representation Z for
each testing window X!*! (i.e., anomalous or non-anomalous data) under D, where D(Z;)
denotes the reconstructed testing window. Anomalies are then identified by a deviation
from the normal data’s distribution and scored based on the reconstruction error between
X't and D(Zy).

The intuition behind auto-encoders is that the encoder and a decoder form a bottleneck
for the data and are trained in a way that they lose as little information as possible during
the encoding/decoding process. With the goal of reducing the reconstruction error in mind,
the mean squared error (MSE) loss function is applied during training by gradient descent
iterations. The MSE loss function is given by:

1& .
Lmse = Y (X — X))~ 1
i=1

The encoder transformation from X to Z (E(X) : X — Z) and the decoder transforma-
tion Z to X (D(Z) : Z — X) are learned in a single process during model training.

3.2. Preliminary: Variational Auto-Encoder

This section describes how an AE is extended such that it is capable of capturing
the variability of the input data. The latent space of an AE can become irregular due to
overfitting, meaning that close data points in the latent space can result in distant data
points after applying the decoder function (i.e., render the decoded data meaningless). To
address this problem of latent space irregularity, the AE architecture is extended by the
means of variational inference. A VAE trains the encoder in such a way that it returns a
distribution over the latent space instead of a single data point [46]. To enable the neural
architecture to learn a distribution, two dense linear layers are introduced; one layer for
the approximation of the mean y and one layer for the variance . The loss function of
a VAE is called evidence lower bound (ELBO) and can be derived using the statistical
technique of variational inference. The ELBO loss function consists of a reconstruction
term and a regularization term. The reconstruction term ensures that the reconstruction
error between the input and the output of the network is reduced. It maximizes the
probability of obtaining the observed data x estimated by the model with parameters 6.
The reconstruction term is given by:

LReconstruction = — IOg(Pe(x))- )
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The regularization term reduces the distance between the two distributions g (z | x)
and py(z | x). The regularization term is given by:

LRegularizution = DKL(qCD(Z | x) H p@(z | x)) 3)

The complete loss function of our methodology is composed of the reconstruction loss
and the regularization loss given by:

L = LReconstruction + LRegularization 4)

The optimal parameters of the neural network model are obtained by minimizing the
loss function:
6%, ®* = argmin L (5)
0,®
The reparameterization trick is necessary to make the ELBO loss function differen-
tiable [46]. The latent space of the VAE can be considered a set of multivariate Gaussian
distributions that is given by:

2~ qp(z | x) = N(p,0%) ©
The equation is modified by the reparameterization trick:
z=u+00g )

where ¢ ~ N (0,I) and © is the element-wise product. This transformation excludes the
stochasticity from the update process. The stochasticity is injected into the latent space
through a random vector e. Using the reparameterization trick, the VAE is trainable [46].
The probabilistic encoder maps a compressed representation of the input into the latent
vectors y and o.

3.3. Our Long Short-Term Memory Variational Auto-Encoder Architecture

This section presents our proposed LW-LSTM-VAE neural network architecture. Our
LW-LSTM-VAE is an adaption of a VAE that has been extended using an LSTM network.
The LSTM network enables the architecture to cope with the temporal dependency of
sensor and actuator signals in sequential time-series data. Our LW-LSTM-VAE neural
network architecture attempts to reconstruct the individual windows. The intuition behind
this is that the algorithm learns to model normality, such that it can effectively reconstruct
windows that resemble normal data patterns, but fails at reconstructing windows that
resemble anomalous data patterns. The reconstruction mechanism involves an encoder
and a decoder. The encoder performs dimensionality reduction by compressing an input
window into a reduced representation in latent space Z. The encoder consists of an LSTM
layer and two dense layers. The LSTM layer encodes the window, including the temporal
dependency between the samples in a window, into a compressed representation. The
dense layers map the compressed representation of the input into the latent vectors u
and o, such that the distribution of the input data is approximated. The ¢ in the encoder
represents the random vector ¢ for the reparameterization trick that is sampled from a
Gaussion normal distribution as shown in Equation (7). The latent representation Z is then
passed to the decoder to reconstruct the original input window. The decoder consists of an
LSTM layer and a dense layer. The LSTM layer in the decoder reconstructs the samples of
a window by taking their temporal dependency into account.

If the application is more to classify fixed length sequences, 1D CNNs can usually be
trained much faster and perform better. However, in industrial applications, determining
an appropriate sequence length is not trivial, as can be seen from the various sequence
lengths proposed in previous work. In cases where the data has an unknown length, it is
more intuitive to use RNNs than to try to include CNNSs. For this reason, we have focused
our research on the practical application of LSTMs.
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The models we propose require only an extremely small number of model parameters.
The main reason for this is that our models make use of LSTM layers in the encoder and
decoder; thus, the number of model parameters does not increase with the number of
samples in an input window. In the case of fully dense AEs or 1D CNNs, the samples
in an input window are usually concatenated; thus, the number of model parameters
significantly grows with increasing window sizes. The number of hidden layers used in
our models is also significantly smaller compared to the majority of deep-learning methods
reported in previous work. In addition, our investigations indicated that a relatively small
dimensionality of the latent representation Z is sufficient to capture relevant statistics of
normal system behavior.

Similar to the default loss function of a VAE, the loss function of our architecture
comprises a reconstruction term and a regularization term. The regularization term is given
by Equation (3). The reconstruction term we use is the MSE loss function. Minimizing the
MSE is equivalent to applying maximum likelihood estimation to our model. The recon-
struction term is given by Equation (1). The model parameters are optimized based on the
combined loss function given by Equation (4). In the testing phase, the anomalous testing
windows are fed into the architecture. The LW-LSTM-VAE architecture then reconstructs
the testing windows.

3.4. Window Extraction

This section describes how the time-series data are converted. The time series is
converted because a suitable data format is required such that it can be further processed
by our proposed neural network architecture. Another reason is the temporal dependency
between sequential data, which needs to be preserved such that anomalous data patterns
can be effectively recognized. The time-series data are converted into individual feature
vectors (i.e., windows) using the sliding window method [47]. A window is considered to
be a tuple of the form W; = (s;,s;11,Si14_1), Where s; denotes the i-th sample and w is the
window size. During inference, our LW-LSTM-VAE architecture classifies each window to
be either normal or anomalous. The entire time-series dataset consists of k samples. By slid-
ing a fixed-size window across the entire time series, k — w + 1 windows Wy, Wa, ..., Wy _,,11
are extracted. In the training phase, all windows are extracted from the training data. The
obtained training windows do not contain any anomalous samples and are passed to the
reconstruction mechanism and used for architecture optimization. In the testing phase, all
windows from the testing data are extracted including the normal/anomalous label for
every sample. Each window is then classified as follows: the entire window is classified
as anomalous if the reconstruction error of the window is higher than the reconstruction
error threshold; otherwise, the window is labeled normal. The reconstruction error and
reconstruction error threshold will be explained in Sections 3.5 and 3.6, respectively. The
normal/anomalous verdict of our anomaly detector is then compared with the ground-
truth labels for evaluation. Our anomaly detector labels a window anomalous, regardless
of the location of an anomalous sample that occurs in the window. As a consequence, the
first occurrence of an anomalous sample can be w — 1 samples off. Thus, the temporal
resolution of the anomaly detector’s verdicts decreases with increasing window sizes.

3.5. Reconstruction Error

This section describes how the deviation (i.e., reconstruction error) between an input
window and a reconstructed window is computed. The reconstruction error serves directly
as an anomaly score. It measures the degree to which a window resembles normal data
patterns. First, the MSE over each feature (i.e., standardized sensor or actuator values)
in a window is computed. Second, the mean over the entire window is computed. By
computing the MSE over the features of a sample, the individual deviations of each feature
are taken into account. This results in an anomaly score for each sample in a window. The
degree to which the entire window is anomalous is then measured by taking the mean over
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the individual reconstruction errors of the samples. The reconstruction error of a window
is then given by:

4% N
. 1 0
Reconstruction Error = W Z N Z(Xsi — Xsi)?, ®)

where WV denotes the number of samples in a window, A denotes the number of features
of a sample, X denotes the features of a particular sample, and X denotes the reconstructed
features. The reconstruction errors of the windows are compared with the reconstruction
error threshold to decide whether a processed window is anomalous. The method of
setting the reconstruction error threshold is explained in Section 3.6.

3.6. Reconstruction Error Threshold

This section describes how the reconstruction error threshold is chosen. The recon-
struction error threshold directly serves as a decision function to differentiate between
normal and anomalous data.

After model training, the reconstruction errors for the training windows are computed.
Only the reconstruction errors obtained from the training windows are used to set the
reconstruction error threshold. Since the reconstruction error threshold setting has a large
impact on the performance of the anomaly detector, we employ two different ways of
setting the reconstruction error threshold: (a) the p-th percentile; (b) the standard deviation
from the mean. In the following, both settings are described greater detail.

The P-th percentile (0 < P < 100) of a list of A ordered values is the value below
which P percent of the observations fall. The PP-th percentile is obtained by first calculating
the ordinal rank r and then taking the value from the ordered list that corresponds to that
rank. The ordinal rank r is given by:

P
r= {100 x N -‘ , )
where P is the percentile and NV is the number of values in the list. Every window extracted
from the testing data that results in a higher reconstruction error than the P-th percentile
score is considered to be anomalous.

The standard deviation from the mean is computed by taking the mean y from the
training window reconstruction errors and adding the standard deviation ¢ to the mean.
The reconstruction error threshold is then given by:

Threshold = u + 0. (10)

4. Experimental Setup

This section presents the experimental setup. Section 4.1 presents the datasets used for
the evaluation of our proposed methodology. The feature selection and feature normaliza-
tion process is described in Section 4.2. The experimental hyperparameter configurations
are described in Section 4.3.

4.1. Datasets Utilized in This Work

The SWaT [7] and WADI [40] datasets are the most important for our work. The
datasets originate from the SWaT and WADI testbeds, which are small-scale but fully
functional testbeds that mimic real-world industrial facilities. The corresponding datasets
feature network traffic logs as well as sensor measurements and actuator states. A major
reason for our decision to use these datasets for our developments is the application domain.
Water treatment and distribution facilities represent critical infrastructure that is important
for the operation of a city as well as to maintain the quality of life of its inhabitants. The
SWaT and WADI datasets are also very challenging because they have high dimensionality
(i.e., a high number of discrete and continuous features), while the fraction of anomalous
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samples in the testing set is very small. Table 1 lists the properties of the SWaT and WADI
datasets. The reported properties include the number of training and testing samples,
the dimensionality (i.e., the number of recorded sensors/actuators), and the fraction of
anomalous testing samples.

Table 1. Properties of the SWaT and WADI datasets.

Dataset Train Test Dimensions Attacks Anomalies (%)
SWaT [7] 496,800 449,919 51 36 11.98
WADI [40] 1,048,571 172,801 126 16 5.99
4.1.1. SWaT

The SWaT testbed is a scaled-down but fully operational industrial water purification
plant. The SWaT testbed was coordinated with the Public Utility Board of Singapore in
2016. SWaT is capable of producing five gallons of drinking water per minute and it mimics
the functionalities of real systems in this field. Table 2 lists the features (i.e., sensors and
actuators) of the SWaT dataset. Additionally, the table indicates whether the respective
sensor/actuator variables are discrete or continuous. Large-scale urban applications could
result from the scientific knowledge gained in the SWaT project [7]. The data collected with
the SWaT testbed was accumulated over 11 days. In the last four days of data collection, 36
attack scenarios were executed [48]. The attacks carried out are reflected in the dataset by
modified sensor and actuator values. The attacks targeted various attack points, including
the physical sensors and actuators, as well as access points to the network communication
infrastructure of the CPS (e.g., the attacker sends a malicious command to an actuator).
Based on the large number of possible the attack points, 28 attacks focused on a single attack
point, while 8 attacks focused on multiple attack points simultaneously. In some cases, the
researchers performed the attacks sequentially, and in other cases, they allowed the system
to normalize before the next attack was executed. Furthermore, the operational processes
of the SWaT testbed are divided into six processes P1-P6. The attacks either targeted a
single process or multiple processes of the testbed. For a more detailed description about
the attack scenarios, we refer the reader to the original publication [48].

Table 2. Sensors and actuators of the SWaT testbed.

Type Device Name Variable
Flow meter FIT101, FIT201, FIT301, FIT401, FIT501, FIT502, FIT503, FIT504, FIT601 continuous
Level transmitter LIT101, LIT301, LIT401 continuous
Analyzer AIT201, AIT202, AIT203, AIT401, AIT402, AIT501, AIT502, AIT503, AIT504 continuous
Differential pressure transmitter ~ DPIT301 continuous
Pressure meter PIT501, PIT502, PIT503 continuous
Motorized valve MV101, MV201, MV301, MV302, MV303, MV304 discrete
Pump P101, P102, P201, P202, P203, P204, P205, P206, P301, 302, P401, P402, P403, discrete
P404, P501, P502, P601, P602, P603
Dechlorinator Uv401 discrete

The processes of the SWaT testbed are divided according to their respective operational
function. Process P1 manages the supply and storage of the water to be processed. In P2,
the water undergoes pretreatment and is tested for quality. P3 consists of an ultrafiltration
process in which unwanted substances are filtered out. In P4, the remaining chlorine is
removed by dechlorination. In P5, inorganic impurities are reduced by reverse osmosis.
Finally, in P6, the purified water is stored for distribution. For our experiments, specifically
the neural network parameter optimization of our deep-learning architecture, sensor, and
actuator data recorded over seven days of continuous operation is used. Evaluation of
our models is performed on the remaining four days of logged data, which include the 36
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different attack scenarios. The raw network logs that were provided with the dataset have
not been considered.

4.1.2. WADI

The WADI testbed can be considered an extension of the SWaT testbed. Although the
WADI testbed is similar to the SWaT testbed, it contains components such as analyzers,
booster pumps, and chemical dosing systems [40]. Table 3 list the sensor and actuator
features contained in the WADI dataset.

Table 3. Sensors, actuators, and controllers of the WADI testbed.

Type

Device Name Variable

Analyzer indicator transmitter

1_AIT_001_PV, 1_AIT_002_PV, 1_AIT_003_PV, 1_AIT_004_PV, 1_AIT_005_PV,  continuous
2A_AIT_001_PV, 2A_AIT_002_PV, 2A_AIT_003_PV, 2A_AIT_004_PV,

2B_AIT_001_PV, 2B_AIT_002_PV, 2B_AIT_003_PV, 2B_AIT_004_PV,

3_AIT_001_PV, 3_AIT_002_PV, 3_AIT_003_PV, 3_AIT_004_PV, 3_AIT_005_PV

Flow indication transmitter 1_FIT_001_PV, 2_FIT_001_PV, 2_FIT_002_PV, 2_FIT_003_PV, 3_FIT_001_PV continuous

Level transmitter 1_LT _001_PV,2_LT_001_PV,2_LT_002_PV,3_LT_001_PV continuous

Pressure meter 2_PIT_001_PV, 2_PIT_002_PV, 2_PIT_003_PV continuous

Differential pressure transmitter ~2_DPIT_001_PV continuous

Flow totalizer 2_FQ 101_PV,2_FQ_201_PV, 2_FQ 301_PV, 2_FQ_401_PV, 2_FQ _501_PV, continuous
2_FQ 601_PV

Modulating valve 2_MCV_101_CO,2_MCV_201_CO, 2_MCV_301_CO, 2_MCV_401_CO, continuous
2_MCV_501_CO, 2_MCV_601_CO, 2_MCV_007_CO

Level switch 1_LS_001_AL,1_LS_002_AL,2_LS 001_AL,2_LS_002_AL,2_LS_101_AH, discrete

2_LS 101_AL,2_LS_201_AH,2_LS_201_AL,2 LS 301_AH,2 LS _301_AL,
2_1S_401_AH,2_1S_401_AL,2_LS 501_AH,2_LS 501_AL,2_LS 601_AH,
2_LS 601_AL, 3_LS_001_AL

Pump

Motorized valve

Solenoid valve

Pump speed

1_P_001_STATUS, 1_P_002_STATUS, 1_P_003_STATUS, 1_P_004_STATUS, discrete
1_P_005_STATUS, 1_P_006_STATUS, 2_P_001_STATUS, 2_P_002_STATUS,
2_P_003_STATUS, 2_P_004_STATUS, 3_P_001_STATUS, 3_P_002_STATUS,
3_P_003_STATUS, 3_P_004_STATUS

1_MV_001_STATUS, 1_MV_002_STATUS, 1_MV_003_STATUS, discrete
1_MV_004_STATUS, 2_MV_001_STATUS, 2_MV_002_STATUS,

2_MV_003_STATUS, 2_MV_004_STATUS, 2_MV_005_STATUS,

2_MV_006_STATUS, 2_MV_009_STATUS, 2_MV_101_STATUS,

2_MV_201_STATUS, 2_MV_301_STATUS, 2_MV_401_STATUS,

2_MV_501_STATUS, 2_MV_601_STATUS, 3_MV_001_STATUS,

3_MV_002_STATUS, 3_MV_003_STATUS

2_SV_101_STATUS, 2_SV_201_STATUS, 2_SV_301_STATUS, discrete
2_SV_401_STATUS, 2_SV_501_STATUS, 2_SV_601_STATUS
2_P_003_SPEED, 2_P_004_SPEED continuous

Flow indicator controller

Pressure indicator controller

2_FIC_101_CO, 2_FIC_101_PV,2_FIC_101_SP, 2_FIC_201_CO, 2_FIC_201_PV, continuous
2_FIC_201_SP, 2_FIC_301_CO, 2_FIC_301_PV, 2_FIC_301_SP, 2_FIC_401_CO,

2_FIC_401_PV, 2_FIC_401_SP, 2_FIC_501_CO, 2_FIC_501_PV, 2_FIC_501_SP,

2_FIC_601_CO, 2_FIC_601_PV, 2_FIC_601_SP

2_PIC_003_CO, 2_PIC_003_PV, 2_PIC_003_SP continuous

Due to the scale of the numerous pipelines used in real water distribution systems, there
can be many possible occasions for anomalies, such as water leakage, congestion, or malicious
actuator control. Therefore, scientists built the WADI testbed to be able to simulate attacks
and to enable the development of methodologies that can detect these attacks. The training
set consists of data that were collected with the WADI testbed for 14 days under normal
operating conditions. The testing set was collected during the last 2 days of operation and
includes various attacks scenarios. Similarly to the attacks that were carried out on the SWaT
testbed, the attacks on the WADI testbed are reflected in the dataset by modified sensor and
actuator values and targeted various attack points and operational processes. Additional
information about the attacks is provided in the original publication [40].
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The WADI testbed is divided into three processes. In P1-W, water delivered from the
SWaT testbed is extracted and stored in two tanks. Based on a preset demand pattern that
simulates water consumption, P2-W controls the distribution from the storage tanks and
six consumer tanks. In P3-W, the water is recycled and returned to P1-W.

4.2. Feature Selection and Feature Normalization

This section describes the process of feature selection and data preprocessing for our
experiments. Feature selection and data preprocessing is necessary to allow for the removal
of unwanted data such that the dataset contains more valuable information after the
preprocessing steps. Our proposed reconstruction-based method aims at the reconstruction
of the system behavior during normal operation. This is possible if the training data are
representative of the testing data. The system’s states and transitions between the states
that appear in the training data should also appear in the testing data (i.e., the probability
distribution of the training data and the testing data should be similar). Only the samples
that were generated by simulating attacks should have a different distribution. For this
reason, following the suggestions of [20], feature selection is performed based on the K-5
test. The K-S test measures the similarity between the probability distributions of the
training and testing data [29]. In [20], Kravchik et al. performed the K-S test between the
training and testing set, as well as between the training and validation set, to prove that
the validation set serves as a good approximation for the testing set. The authors then
removed the features based on the results they obtained on the validation set only because
the testing set is supposed to be unknown. Following [20], data from the following sensors
has been removed from the respective datasets: AIT201, AIT202, AIT203, P201, AIT401,
AIT402, AIT501, AIT502, AIT503, AIT504, FIT503, FIT504, PIT501, PIT502, PIT503 from
SWaT; and 1 AIT 001 PV, 1 AIT 003 PV, 1 AIT 004 PV, 1 AIT 005 PV, 2 LT 001 PV, 2 PIT 001
PV, 2A AIT 001 PV, 2A AIT 003 PV, 2A AIT 004 PV, 2B AIT 001 PV, 2B AIT 002 PV, 2B AIT
003 PV, 2B AIT 004 PV, 3 AIT 005 PV from WADI. Additionally, our analysis shows that the
variables 2_SV_101_STATUS, 2_SV_201_STATUS, 2_SV_301_STATUS, 2_SV_401_STATUS,
2_SV_501_STATUS, and 2_SV_601_STATUS from the WADI dataset are constant in the
training and testing set. Previous work considered these variables for anomaly detection
purposes. However, these variables do not contribute to the recognition of the anomalous
system states that are annotated in the testing data and, therefore, could be neglected.
To demonstrate the generalization capabilities of our proposed method, the constant
sensor and actuator variables were also included in our experiments. Furthermore, these
variables open up potential attack surfaces and should therefore be taken into account in
real applications. According to [48], the system reached stabilization 5-6 h after turning it
on. For this reason, the first 21,600 samples from the training data (i.e., normal data) from
each dataset were removed, following [25]. Additionally, the features of the training data
were normalized by removing the mean and scaling them to unit variance. The features
of the testing data were normalized by using the mean and variance of the training data.
Following [20], we use 80% of the training data for training and 20% for validation. The
testing data (i.e., data annotated with anomaly labels) was not considered during the
training phase of our models but for the evaluation of the anomaly detection performance.

4.3. Hyperparameter Configuration

This section presents the hyperparameter configurations that were used for the ex-
periments conducted. Table 4 lists the hyperparameter configurations that led to the
best-performing instances. In our experiments, we divided the time-series data into smaller
time-series sub-sequences by sliding a fixed size window across the data. To investigate the
effect on the anomaly detection performance and to find a window size that is sufficient
to capture the system dynamics, we experimented with a set of different window sizes,
namely w = 2, 4, 8, 16, 32. Following [19], our investigation showed that a window size of
w = 4 samples resulted in the best performing instances.
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Additionally, we varied the latent and intermediate layer dimensionality in the range
of 16-128. To study the effect of the latent and intermediate layer dimensionality, we
provide an ablation experiment including a small version of our architecture, which we
refer to as LW-LSTM-VAE-S, and a medium version, which we refer to as LW-LSTM-VAE-M.
In the case of the LW-LSTM-VAE-M model, we increased the dimensionality of the latent
as well as the intermediate layers and included an additional LSTM layer in the decoder.
Table 4 lists the hyperparameters we used for both versions. The particular building blocks
of the neural network architectures, the type of the blocks, the output shapes, and the
number of required parameters are listed in Tables 5 and 6 for both architecture versions
and datasets, respectively.

Table 4. The hyperparameters we used to obtain the reported results on the respective datasets.

Model Hyperparameter SWaT WADI
Window size 4 4
Window shift (training) 1 1
Window shift (evaluation) 4 4
Batch size 128 128
LW-LSTM-VAE-S Learning rate 0.001 0.001
Intermediate dimension 32 64
Latent dimension 16 32
Training epochs 29 11
Window size 4 4
Window shift (training) 1 1
Window shift (evaluation) 4 4
Batch size 128 128
LW-LSTM-VAE-M Learning rate 0.001 0.001
Intermediate dimension 64 128
Latent dimension 32 64
Training epochs 35 14

Table 5. The neural network architecture of our LW-LSTM-VAE-S models. The particular architecture
blocks, the type of the blocks, the output shapes, and the number of required parameters are listed
for the respective datasets.

Model Block (Type) Inl:;;t from Output Shape Parameters
ock
1. Input (InputLayer) (128, 4, 36) 0
2. Encoder (LSTM) 1 (128, 32) 8832
3. Encoder y (Dense) 2 (128, 16) 528
4. Encoder ¢ (Dense) 2 (128, 16) 528
LW-LSTM-VAE-S 5. Z (Lambda) 3,4 (128,16) 0
(SWaT) 6. Decoder (Repeat) 5 (128, 4, 16) 0
7. Decoder (LSTM) 6 (128, 4, 32) 6272
8. Output (Dense) 7 (128, 4, 36) 1188
Total number 17,348
of parameters
1. Input (InputLayer) (128, 4,112) 0
2. Encoder (LSTM) 1 (128, 64) 45,312
3. Encoder y (Dense) 2 (128, 32) 2080
4. Encoder ¢ (Dense) 2 (128, 32) 2080
LW-LSTM-VAE-S 5. Z (Lambda) 3,4 (128, 32) 0
(WADI) 6. Decoder (Repeat) 5 (128, 4, 32) 0
7. Decoder (LSTM) 6 (128, 4, 64) 24,832
8. Output (Dense) 7 (128, 4,112) 7280
Total number 81,584

of parameters
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Table 6. The neural network architecture of our LW-LSTM-VAE-M models. The particular architecture
blocks, the type of the blocks, the output shapes, and the number of required parameters are listed
for the respective datasets.

Model Block (Type) In};{:}g(om Output Shape Parameters
1. Input (InputLayer) (128, 4, 36) 0
2. Encoder (LSTM) 1 (128, 64) 25,856
3. Encoder y (Dense) 2 (128, 32) 2080
4. Encoder ¢ (Dense) 2 (128, 32) 2080
: . 3 5. Z (Lambda) 3,4 (128, 32) 0

w L(nglt,/i ,}])AE M 6. Decoder (Repeat) 5 (128, 4, 32) 0
7. Decoder (LSTM) 6 (128, 4, 64) 24,832
8. Decoder (LSTM) 7 (128, 4, 64) 33,024
9. Output (Dense) 8 (128, 4, 36) 2340
Total number 90,212
of parameters
1. Input (InputLayer) (128, 4, 112) 0
2. Encoder (LSTM) 1 (128, 128) 123,392
3. Encoder y (Dense) 2 (128, 64) 8256
4. Encoder o (Dense) 2 (128, 64) 8256

: . 3 5. Z (Lambda) 3,4 (128, 64) 0

Lw L(Sv"l\;lZ[D\{)AE M 6. Decoder (Repeat) 5 (128, 4, 64) 0
7. Decoder (LSTM) 6 (128, 4, 128) 98,816
8. Decoder (LSTM) 7 (128, 4, 128) 131,584
9. Output (Dense) 8 (128, 4,112) 14,448
Total number 384,752

of parameters

The LW-LSTM-VAE neural network architectures were optimized using the Adam
optimizer with early stopping enabled. The LSTM layers of the architecture use the
rectified linear unit (ReLU) activation function, while the dense output layers use the
linear activation function. Experiments were conducted using both the P-th percentile and
standard deviation (STD) reconstruction error thresholds introduced in Section 3.6. We set
the percentile reconstruction error threshold to the 99th percentile score (denoted by Pyge,)
of the training reconstruction errors.

4.4. Algorithm Performance Metrics

This section presents the anomaly detection performance metrics used for the evalua-
tion of the anomaly detection on the SWaT and WADI datasets. The anomaly detection
performance is mainly reported using the Fl-score performance metric. The SWaT and
WADI datasets are highly unbalanced in their class distribution. Thus, the performance
metrics reported for our method have to be suitable for unbalanced data. For the evalu-
ations conducted in this work, the anomaly detection performance is reported using the
precision (Pre), recall (Rec), and F1-score (F1) metrics that are given by:

.. TP
Precision = TP + D’ (11)
TP
Recall = TP+ IN (12)
Fl—2 Precision - Recall (13)

" Precision + Recall’

where TP, TN, FP, FN are the numbers of true positives, true negatives, false positives, and false
negatives, respectively. Additionally, we report the performance of our models using receiver
operating characteristic (ROC) curves, including the area under the curve (AUC) metric.
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5. Results

This section presents our results on the SWaT and WADI datasets, respectively. To
place the achieved results in perspective, we also report all previous works that reported
on the used datasets. The results are listed in Table 7. The reported performance metrics
include precision (Pre), recall (Rec), and the F1-score (F1).

Table 7. Comparison of our solution to previous work.

Datasets Methods Pre Rec F1
KNN [25] 7.83 7.83 8.00
FB [25] 10.17 10.17 10.00
PCA [25] 24.92 21.63 23.00
EGAN [25] 40.57 67.73 51.00
AE [25] 72.63 52.63 61.00
MAD-GAN [25] 98.97 63.74 77.00
GAN-AD [26] 93.33 63.64 75.00
OC-SVM [19] 92.50 69.90 79.63
DNN [19] 98.30 67.85 80.28
LSTM-VAE [30] 95.69 55.18 72.00
CNN 1D [30] 95.24 63.73 78.00
USAD [30] 98.10 66.01 79.00
DAGMM [21] 27.46 69.52 39.00
GDN [21] 99.35 68.12 81.00
TABOR [22] 86.17 78.80 82.32

SWaT USAD [27] 98.70 74.02 84.60
1D CNN (comb. records) [23] 95.00 65.60 76.60
1D CNN (ensemble records) [23] 86.70 85.40 86.00
1D CNN (comb. attacks) [23] 95.00 78.70 86.10
1D CNN (ensemble attacks) [23] 100.00 85.30 92.00
PCA (frequency domain) [20] 92.50 72.70 81.50
VAE [20] 94.00 78.50 85.50
1D CNN [20] 86.80 85.40 86.10
UAE [20] 96.50 77.80 86.10
PCA [20] 92.00 84.10 87.90
UAE (frequency domain) [20] 91.10 86.00 88.50
SDA + 1D-CNN + GRU [24] 99.65 83.34 91.94
LW-LSTM-VAE-S (Pg90;,) 86.84 71.81 78.61
LW-LSTM-VAE-S (STD) 84.18 76.68 80.25
LW-LSTM-VAE-M (Pg9e,) 7391 82.16 77.82
LW-LSTM-VAE-M (STD) 89.88 79.65 84.46
KNN [25] 7.76 7.75 8.00
FB [25] 8.60 8.60 9.00
PCA [25] 39.53 5.63 10.00
EGAN [25] 11.33 37.84 17.00
AE [25] 34.35 34.35 34.00
MAD-GAN [25] 41.44 33.92 37.00
USAD [27] 64.51 32.20 42.96
LSTM-VAE [30] 21.22 29.12 28.00
USAD [30] 71.24 31.41 43.00
1D CNN [30] 63.76 43.54 52.00

WADI DAGMM [21] 54.44 26.99 36.00
GDN [21] 97.50 40.19 57.00
PCA [20] 80.70 59.30 68.30
1D CNN [20] 69.70 73.10 71.40
VAE [20] 85.30 62.10 71.80
UAE [20] 91.60 64.00 75.40
LW-LSTM-VAE-S (Pyg9,) 58.04 31.80 41.09
LW-LSTM-VAE-S (STD) 41.66 33.45 37.11
LW-LSTM-VAE-M (Pggs,) 49.48 34.67 40.77
LW-LSTM-VAE-M (STD) 72.71 31.25 43.72

In the following, we present the results of our ablation experiment. The performances
of our LW-LSTM-VAE-S and LW-LSTM-VAE-M models, taking into account the choice of
the reconstruction error threshold, are listed in Table 7. In the case that the reconstruction
error threshold is determined based on the Pygo, method, the LW-LSTM-VAE-S models tend
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to perform slightly better than the LW-LSTM-VAE-M models. With an F1-score of 78.61%,
compared to 77.82%, there is a difference of 0.79 percentage points on SWaT. On WAD], the
difference in F1-score is 0.32 percentage points. In the case that the reconstruction error
threshold is determined based on the STD method, the LW-LSTM-VAE-M models perform
significantly better than the LW-LSTM-VAE-S models. The difference in F1-score is 4.21 and
6.61 percentage points on SWaT and WAD], respectively. Overall, our LW-LSTM-VAE-M
models perform better compared to our LW-LSTM-VAE-S models on both datasets. The
LW-LSTM-VAE-M models achieve an F1-score of 84.46% on SWaT and 43.72% on WADI.
The difference in performance is also indicated by the ROC curves. Figures 2 and 3 show
the ROC curves of our LW-LSTM-VAE-S models. The AUC is 0.87 and 0.80 for SWaT and
WAD], respectively. In the case of our LW-LSTM-VAE-M models, the AUC is 0.93 and 0.81
for SWaT and WADI, respectively, as shown in Figures 4 and 5.
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Figure 2. LW-LSTM-VAE-S (SWaT).
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Figure 3. LW-LSTM-VAE-S (WADI).
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Figure 4. LW-LSTM-VAE-M (SWaT).
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Figure 5. LW-LSTM-VAE-M (WADI).

In the following, we compare the performance of our solution to previous work that
reported on the widely used SWat and WADI benchmarks. With 84.46% F1-score on SWaT
and 43.72% F1-score on WADI, our LW-LSTM-VAE-M models outperform the majority of
the methods reported in previous work.

In [25], Li et al. reported on several classical baseline algorithms, including PCA,
K-nearest neighbors (KNN), feature bagging (FB), and AE. In addition to their MAD-GAN
framework, the authors also reported on another GAN-based method, namely, efficient
GAN (EGAN). Their MAD-GAN framework proved to outperform the reported baseline
algorithms by a large margin. The baseline algorithms, namely, PCA, KNN, FB, and AE, also
did not perform well on the WADI dataset, which has significantly higher dimensionality
compared to the SWaT dataset. In comparison to their MAD-GAN framework, the F1-score
of our solution is 7.46 percentage points higher on SWaT and 6.72 percentage points higher
on WADI. Our solution outperforms the GAN-AD method presented in [26], in terms of
Fl-score, by 9.46 percentage points on the SWaT benchmark. The results in [19] indicate
that LSTM-based DNNs perform slightly better than OC-SVM models in terms of precision
and F1-score. However, the recall and F1-score our LW-LSTM-VAE-M achieves is higher.
We outperform their DNN by 4.18 percentage points in terms of F1-score. Additionally,
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the authors stated that training their DNN architecture with 100 dimensions takes about
two weeks on eight NVIDIA Tesla P100s. This indicates a much larger and, thus, less
efficient model, in comparison to our LW-LSTM-VAE-M. The training time required by our
solution is significantly lower in comparison, as listed in Table 8. The USAD method [27]
yields an F1-score of 84.60% on SWaT and 42.96% on WADI. Their method performs similar
to our LW-LSTM-VAE-M in terms of Fl-score on both datasets. Their method performs
0.14 percentage points better on SWaT. Our method performs 0.76 percentage points better
on WADI. With respect to the Fl-score, we outperform the methods reported in [30] by
5.46 percentage points on the SWaT benchmark. On the WADI benchmark, only the 1D
CNN that the authors optimized using their framework outperforms our solution, by
8.28 percentage points. The model parameter and training time requirements, however, are
far above the requirements of our models, as listed in Table 8. Deng et al. [21] applied the
DAGMM method and their GDN graph-based method to the SWaT and WADI benchmark.
Only on the WADI benchmark does their GDN method outperform our solution, by
13.28 percentage points. On the SWaT benchmark, we achieve better results with respect to
the Fl-score. The TABOR approach presented in [22] is outperformed by our solution. The
method proposed in [24] yields the second-highest F1-score reported in previous work on
the SWaT benchmark. With an F1-score of 91.94%, their method outperforms our solution
by 7.48 percentage points. However, their method requires computationally expensive
preprocessing using an SDA. Kravchik et al. [23] experimented with an ensemble of 1D-
CNN:s that considers each operational stage of the SWaT testbed individually. The authors
report the performance metrics on all data instances and, in addition, on data instances that
are annotated as anomalous only. With an F1-score of 92%, their ensemble method ranks
among the highest F1-scores on SWaT reported in previous works. However, the F1-score
of 92% is reported on anomalous data instances only and does not consider the normal
data instances for evaluation. In comparison to their single instance 1D CNN, the Fl-score
of our solution is 7.86 percentage points higher on all data instances. In [20], the authors
applied the learning methods to both the time and frequency domain of the time-series
data. They achieved high performance by applying UAEs to the time domain as well as
the frequency domain of the time-series data, obtaining F1-scores of 88.50% on SWaT and
75.40% on WADI. However, the authors varied the window sizes and set the reconstruction
error thresholds in different ways, depending on the dataset. This is an indicator for
overfitting, such that the reported methods might not generalize well on unseen industrial
datasets using the same set of hyperparameters. In comparison, our proposed method was
evaluated using the same window size and reconstruction error threshold methodologies
on both datasets, highlighting its generalization capabilities. Additionally, considering the
frequency domain of the time series adds an additional overhead in size and training time
requirements to their models.

Table 8. The training efficiency of the lightweight neural network architectures presented in this
work. Unfortunately, only [30] reported the specific model parameters for direct comparison with
previous works. * The model size is computed based on the Float32 data type. ** The memory
consumption refers to a batch size of 128 that we used for training our models.

** Training

Model Parameters * Model Size Memory Tra‘lmng
. Time
Consumption

LSTM-VAE (SWaT) [30] 2,378,496 ~ 9291 KiB - 24h

USAD (SWaT) [30] 3,937,360 ~ 15,380 KiB - 32h

1D CNN (SWaT) [30] 366,476 ~ 1431 KiB - 16 h
LW-LSTM-VAE-S (SWaT) 17,348 67.77 KiB 347.77 KiB 21 min
LW-LSTM-VAE-S (WADI) 81,584 318.69 KiB 1038.69 KiB 13 min
LW-LSTM-VAE-M (SWaT) 90,212 352.39 KiB 52,712.39 KiB 38 min

LW-LSTM-VAE-M (WADI) 384,752 1502.94 KiB 116,542.94 KiB 25 min
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The discrepancy in the performance of our method compared to previous work is
due to several reasons. In [23], the authors used an ensemble of 1D CNNs to consider
each operational process of the SWaT testbed individually. The authors stated that a
single compact model might not have the representational power to capture the complex
operational processes. In [20], the authors included the frequency domain of the time
series. Although the addition of the frequency domain adds a significant overhead to their
models, the authors justify that particular anomalous data samples can only be recognized
in the frequency domain of sensor and actuator signals. In [24], the authors included a
more sophisticated, but also a more computationally expensive, means of feature extraction
using SDAs. Intuitively, removing noise from sensory signals contributes to better anomaly
detection results because physical sensors and actuators have tolerances in measurement
accuracy and manufacturing quality. In [21], the authors proposed to explicitly learn the
relationships between sensor and actuator variables using GNNs. The explicit graph-based
representation of sensor and actuator variables contributed to a more precise depiction of
the interrelationships between the individual variables. Deviations in the behavior could
then be recognized more precisely, as indicated by the high precision their method achieved.

Overall, the results for the WADI benchmark are worse than for the SWat benchmark,
as listed in Table 7. This is because the WADI dataset reflects a more complex and larger
system, containing more than twice as many sensor and actuator variables as listed in
Table 1. In addition, the proportion of anomalous samples in the testing set is half that of
the SWaT benchmark. Furthermore, the testing set of WADI is relatively small compared
to the testing set of the SWaT benchmark. Therefore, the small proportion of anomalous
samples in the WADI dataset is much more difficult to detect.

Our proposed models do have a significant advantage in terms of memory require-
ments and training time, because our models only require an extremely small amount
of model parameters. Additionally, our method does not involve concatenating the indi-
vidual features of an input window. In the case of fully dense DNNs or 1D CNNSs, the
concatenation of the individual features results in significantly larger layer sizes. Instead,
our models use LSTM layers that have higher representational power for time-series data.
The efficiency of training our LW-LSTM-VAE neural network architecture is shown in
Table 8. Unfortunately, the authors of most previous works neither reported the number of
model parameters and training efficiency nor provided implementation details sufficient to
calculate that precisely. In Table 8, we therefore compare our method to all previous works
that specifically reported on the number of parameters the models require. To train the
LW-LSTM-VAE models, we used a machine with a Intel Xeon Gold 6130 processor, 256 GB
RAM, and an Nvidia GTX 2080Ti-11GB GPU. In the case of the SWaT dataset, training our
best-performing LW-LSTM-VAE-M model takes about 38 min for 35 training epochs. In
the case of the WADI dataset, training takes about 25 min for 14 training epochs. In [30],
Faber et al. report on the number of model parameters and on the training time that the
USAD model [27], 1D CNN [34], and the LSTM-VAE originally proposed in [35] require.
Regarding the authors, the smallest model they trained on the SWaT dataset, the 1D CNN
model, requires 366,476 model parameters compared to the 17,348/90,212 parameters that
our LW-LSTM-VAE-S and LW-LSTM-VAE-M models require. Additionally, with a training
time of 21/38 minutes on one Nvidia GTX 2080Ti GPU for the respective datasets, our
solution only requires a fraction of the training time compared to 16 h for the 1D CNN
method on eight Nvidia Tesla V100-SXM2-32GBs. Additionally, we estimated the size of
the particular models by using the number of model parameters that the authors report.
The number of parameters that our models require is extremely small in comparison.

The detection performance of our proposed method ranks among the best-performing
algorithms proposed in previous work. Although not achieving the best recognition
performance, we highlight its unique combination of advantages. Based on variational
inference, our proposed method learns to capture the variations of sensor and actuator
signals. By assuming a simple underlying probabilistic model to describe the data, we
enable better latent space organization compared to default AE architectures. We extended
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the models generalization capabilities and prevented overfitting, such that a more robust
anomaly detector is obtained. Additionally, our algorithm is capable of intrusion detection
given only past or current data observations. Discrete and continuously valued sensor
and actuator signals are treated equally, such that the architecture can easily be adapted to
other anomaly detection scenarios. The extremely low memory requirements also point
towards future research avenues. Our proposed architecture can potentially be deployed
on embedded systems, enabling anomaly detection in other application domains, such as
smart buildings or smart homes, where storage requirements and energy consumption
play an important role.

6. Conclusions

In this work, we propose a reconstruction-based multivariate time-series anomaly de-
tection solution based on our lightweight long short-term memory variational auto-encoder
(LW-LSTM-VAE) architecture. Our solution aims at learning the underlying statistics of
sensor and actuator data patterns. Our solution is successful in detecting deviations from
normal data patterns, such that anomalous system behaviors of CPS are recognized. We
considered two real-world datasets for the evaluations conducted. These enable the focus
on two applications, anomaly detection in water treatment facilities (e.g., the detection
of sensor, actuator fault), and anomaly detection in water distribution facilities (e.g., the
detection of intrusions targeting the water supply). Our solution outperforms the majority
of methods suggested in previous work in terms of the reported performance metrics.
Additionally, our solution is extremely lightweight because the model parameter and
training time requirements are extremely low.
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