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Abstract: Underdetermined DOA estimation, which means estimating more sources than sensors,
is a challenging problem in the array signal processing community. This paper proposes a novel
algorithm that extends the underdetermined DOA estimation in a Sparse Circular Array (SCA).
We formulate this problem as a matrix completion problem. Meanwhile, we propose an inverse
beamspace transformation combined with the Gridless SPICE (GLS) algorithm to complete the
covariance matrix sampled by SCA. The DOAs are then obtained by solving a polynomial equation
with using the Root-MUSIC algorithm. The proposed algorithm is named GSCA. Monte-Carlo
simulations are performed to evaluate the GSCA algorithm, the spatial spectrum plots and RMSE
curves demonstrated that the GSCA algorithm can give reasonable results of underdetermined DOA
estimation in SCA. Meanwhile, the performance of the algorithm under various configurations of
SCA is also evaluated. Numerical results indicated that the GSCA algorithm can provide access to
solve the DOA estimation problem in Uniform Circular Array (UCA) when random sensor failures
occur.

Keywords: DOA estimation; underdetermined; beamspace; gridless; GLS; SCA; UCA

1. Introduction

Estimating the directions of arrival (DOAs) of signals with a sensor array is one of
the critical research topics in the field of array signal processing, and plays an indispens-
able role in applications such as underwater object detection with sonar [1], radar target
localization [2], wireless communications [3] and radio astronomy systems [4], and so forth.

In particular, the performance of the DOA estimation system is significantly con-
strained by the number of sensors. For example, classical high-resolution DOA algorithms
including MUSIC [5], ESPRIT [6], and maximum likelihood (ML) type methods [7] can
distinguish up to N− 1 sources with N sensors. However, increasing the number of sensors
will also increase the system complexity and cost. Furthermore, occasional sensor failures
in array [8,9] severely degrade the DOA estimation performance. In this complex scenario,
the number of sources may be greater than or equal to the number of sensors, resulting in a
problem of underdetermined DOA estimation.

A sparse array combined with a sparse recovery algorithm offers a novel perspective
on solving this intractable underdetermined DOA estimation problem [10,11]. Notably,
array configurations play an important role in the DOA estimation system. Various kinds
of sparse arrays have been studied intensively under the framework of the sparse recovery
algorithm, such as the coprime array [12], nested array [13] and super nested array [14], and
so forth. However, sensors are located along a line in the above-mentioned array configura-
tions, which discards the scenarios of sensors being placed in a two-dimensional plane.

Among various planar arrays, the Uniform Circular Array (UCA) has attracted much
attention due to its advantages of covering a 360◦ azimuthal field of view and being easy to
conform to cylindrical structures. Therefore, the UCA is widely adopted in systems such
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as Massive MIMO [15], Ground-Based Radar [16], and the tracking of Unmanned Aerial
Vehicles (UAVs) [17], and so forth. Yet the UCA degenerates into a Sparse Circular Array
(SCA) when sensor failures occur. The underdetermined DOA estimation in SCA is still
an open problem. Following the idea of the nested sparse linear array (NSLA), a DOA
estimation algorithm in the nested sparse circular array (NSCA) has been proposed in [18];
it is worth noting that a L1 norm based sparse recovery method is adopted in [18–20].
Apparently, in this regime where a pre-defined dense grid dictionary of array steering
vectors evaluated at the concerned DOA angle range is necessary, a grid mismatch problem
is caused. Moreover, hyperparameters introduced in the above algorithms significantly
impact the performance, and the selection of those hyperparameters is not mentioned in
those papers [18,21,22].

Obviously, a gridless hyperparameter-free method for underdetermined DOA esti-
mation in SCA is urgently needed. The idea of gridless sparse recovery, firstly introduced
in [23], has received great attention from the spectral estimation community. Various promi-
nent algorithms have been developed such as atomic norm minimization (ANM) [24,25],
enhanced matrix completion (EMaC) [26], and the covariance fitting type method named
gridless SPICE (GLS) [27], and so forth. The GLS has been adopted intensively among the
above due to its outstanding ability to cope with multiple measurement vectors (MMV)
and a hyperparameter-free property.

Nevertheless, GLS is based on finding a Toeplitz or Hankel structured matrix to fit
the sample covariance matrix and interpolates the missing samples simultaneously, which
cannot be satisfied in SCA. The non-Vandermonde-structured steering vector of SCA creates
a big obstacle to the application of the GLS algorithm. Fortunately, a method named beam
space transformation (BT) which transforms the steering vector of the UCA into a virtual
Vandermonde-structured steering vector has been proposed in [28] and utilized in [20,29].
Inspired by this, we propose a gridless hyperparameter-free algorithm based on the inverse
beamspace (IBT) transformation of the Toeplitz matrix which offers a way to adopt the GLS
algorithm in the SCA . The sample covariance matrix of SCA in element space is completed
to a Toeplitz matrix in beam space, which also provides convenience for the application
of the efficient Root-MUSIC algorithm[2]. Computer simulations are performed which
demonstrate the ability of the proposed algorithm to handle the tricky underdetermined
DOA estimation problem in SCA. We summarize the differences and connections between
our work and other related works in Table 1.

Table 1. Differences and Connections.

Reference Array Geometry Scenario Core Method Others

Yin et al. [19] ULA Determined Sparse Representation of Array Covariance Vectors Grid
Zhao et al. [20] UCA Determined BT; Sparse Representation of Array Covariance Vectors Grid
Jiang et al. [18] Nested SCA Underdetermined Sparse Representation of Array Covariance Vectors Grid
Yadav et al. [30] Rotate SCA Underdetermined Sparse Representation of Array Covariance Vectors Grid

Our Work SCA Underdetermined IBT; Covariance Matrix Recovery with GlS Gridless

The main contributions of this work are summarized as follows:

1. We propose an inverse beam space transformation (IBT) of the Toeplitz matrix in SCA
scenario. The missing elements in the sample covariance of SCA are completed;

2. A gridless hyperparameter-free algorithm is proposed to cope with the underde-
termined DOA estimation problem in SCA. The efficient outstanding Root-MUSIC
method based on the completed covariance matrix can be adopted;

3. Numerical simulations are performed under various scenarios to evaluate the pro-
posed GSCA (Gridless DOA Estimation in Sparse Circular Array) algorithm.

Notations: In this paper, superscripts (·)−1 , (·)∗ , (·)T , and (·)H denote the inverse
operation, complex conjugate, transpose, and conjugate transpose, respectively; (·)† de-
notes the pseudo-inverse of a matrix. diag{·}, Toep{·}, and Tr{·} are the diagonal matrice
operator, Toeplitz matrix operator, and trace operator, respectively. δ(·) is the Delta function.
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Boldface lowercase letters such as a, b denote vectors, and boldface uppercase letters such
as A, B denote matrices, and [A]i,j denotes the (i, j)-th component of matrix A. IN is the
N × N identity matrix. ∠z means taking the argument of the complex number z.

The remainder of this paper is organized as follows. Section 2.1 describes the signal
model of SCA, and the GLS algorithm is introduced in Section 2.2. The inverse beamspace
transformation is introduced in Section 2.3. The proposed algorithm is introduced in
Section 3. The simulation results and related discussions are included in Section 4. Finally,
Section 5 concludes this paper.

2. System Model
2.1. Signal Model for SCA

As shown in Figure 1, we consider an SCA that is composed of Np physical sensors
selected from a N-element UCA with radius R. The n-th angle coordinate of the element
located on the UCA is given by:

α(n) =
2π(n− 1)

N
. (1)

Let Ω be the coordinate index set of Np integers selected from integers {1, 2, · · · , N},
and the angle coordinates generated by Ω are represented as follows:

βi = α([Ω]i), (2)

where [Ω]i is the i-th smallest number in the set Ω. Assume D far-field narrowband sources
with azimuthal DOAs φ = [φ1, φ2, · · · , φD]

T impinging on the SCA. The k-th observed
snapshot is modeled as:

yp(k) = Ap(φ)s(k) + n(k), k = 1, 2, · · · , K (3)

where s(k) = [s1(k), s2(k), · · · , sD(k)]T is the source signal vector, and n(k) ∼ CN (0, σ2
nIN)

is the additive white Gaussian noise vector. Ap(φ) corresponds to the manifold matrix of
SCA [18] which is formulated as:

Ap(φ) = [ap(φ1), ap(φ2), · · · , ap(φD)] ∈ CNp×D, (4)

where ap(φd) is the steering vector of the SCA, and the i-th element is given by:

[ap(φd)]i = ej2πR̃ cos(φd−βi), (5)

where R̃ = R/λ is the radius normalized by wavelength. Moreover, the K observed
snapshot vectors can be packaged into a matrix as Yp = [yp(1), yp(2), · · · , yp(K)] ∈ CNp×K.
Furthermore, the sample covariance matrix of SCA in element space is calculated as:

R̂p =
1
K

YpYH
p . (6)
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Figure 1. System Model.

2.2. Covariance Matrix Recovery with GLS

In this subsection, we briefly review the GLS algorithm which is the underlying
framework of our algorithm. The GLS algorithm proposed in [27] is a gridless extension
of the sparse iterative covariance-based estimation (SPICE) [31] method. The core idea
of SPICE is to perform DOA estimation based on covariance fitting. The cost function of
covariance fitting is given as:

‖R−
1
2 (R̂− R)‖2

F

= Tr{R−1R̂2}+ Tr{R−1} − 2Tr{R̂}, K < N,
(7)

and

‖R−
1
2 (R̂− R)R̂−

1
2 ‖2

F

= Tr{R−1R̂}+ Tr{R̂−1R} − 2N, K ≥ N,
(8)

where R̂ = 1
K YYH is the observed sample covariance matrix, and Y ∈ CN×K is the matrix

of snapshots. In the ULA regime where the array steering vector has a Vandermonde
structure, the covariance matrix R can be re-parameterized as R = Toep{u}, which is
given by:

Toep{u} =


u1 u∗2 · · · u∗N
u2 u1 · · · u∗N−1
...

...
. . .

...
uN uN−1 · · · u1

. (9)

After a series of mathematical simplifications of (7) and (8), the semidefinite problem
(SDP) [32] is casted as (K < N):

min
S,u

Tr{S}+ Tr{Toep{u}},

s.t.
[

S R̂
R̂ Toep{u}

]
≥ 0,

(10)
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and (K ≥ N)
min
S,u

Tr{S}+ Tr{R̂−1Toep{u}},

s.t.

[
S R̂

1
2

R̂
1
2 Toep{u}

]
≥ 0.

(11)

Once we solve problem (10) or (11), the estimation of covariance matrix is obtained
from R? = Toep{u?}. Meanwhile, the covariance-based DOA estimation algorithm is
being adopted.

In the sparse linear array (SLA) scenario, the above SDPs are extended to the following
SDPs. In the case of (K < N), the SDP is given by:

min
S,u

Tr{S}+ Tr{ΓT
ΩΓΩToep{u}},

s.t.
[

S R̂Ω
R̂Ω ΓΩToep{u}ΓT

Ω

]
≥ 0;

(12)

when K ≥ N, the SDP is given as:

min
S,u

Tr{S}+ Tr{ΓT
ΩR̂−1

Ω ΓΩToep{u}},

s.t.

 S R̂
1
2
Ω

R̂
1
2
Ω ΓΩToep{u}ΓT

Ω

 ≥ 0,
(13)

where ΓΩ ∈ {0, 1}Np×N is the selection matrix with its entries being 1 only at the [ΓΩ]np ,[Ω]np
,

and RΩ = 1
K ΓΩYYHΓT

Ω is the sample covariance matrix of the SLA. Similarly, the estimated
covariance matrix is obtained as R? = Toep{u?}, which can be regarded as a completed
covariance matrix of the virtual ULA. Moreover, we are able to perform DOA estimation of
up to N − 1 sources with the above covariance matrix. As we can see, the GLS algorithm
offers a way to solve the underdetermined DOA estimation problem.

However, the Toeplitz structured covariance matrix is satisfied by ULA or virtual
ULA, which is an essential precondition of the GLS algorithm. However, in the scenarios of
UCA or SCA, the non-Vandermonde structured steering vector creates a big obstacle for
the application of GLS algorithm. Inspired by the BT method, we extend the GLS algorithm
into the SCA scenario by IBT. The IBT method is introduced in the following subsection.

2.3. Inverse Beamspace Transformation (IBT) of SCA

The beamspace transformation method is presented in [28], which provides a general
way to reformulate the DOA estimation problem with UCA into virtual ULA. Let M denote
the highest order mode that can be excited on a circle of normalized radius R̃ at a reasonable
strength, which is given as:

M = b2πR̃c, (14)

where b·c is the round-down operator. The m-th, m ≤ |M| phase mode is excited by the
normalized beamforming vector in terms of

bm =
1
N
[e−jmα1 , e−jmα2 , · · · , e−jmαN ]T . (15)

The resulting UCA far-field beam pattern of mode m is

fm(φ) = bH
m a(φ) =

1
N

N

∑
n=1

ejmαn ej2πR̃ cos(φ−αn)

= jm Jm(2πR̃)ejmφ +
∞

∑
c=1

(jp Jp(2πR̃)e−jpφ + jq Jq(2πR̃)e−jqφ),

(16)
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where p = cN−m and q = cN + m [29]. In order to make the first item jm Jm(2πR̃)ejmφ in (16)
be the dominant one, the number of antennas N needs to meet the following condition:

N > 2M . (17)

By using the property J−m(2πR̃) = (−1)m Jm(2πR̃) of Bessel functions, and the resid-
ual terms are being omitted, the UCA beam pattern for mode m can be expressed as:

fm(φ) ≈ j|m| J|m|(2πR̃)ejmφ |m| ≤ M . (18)

For brevity, we define the following matrix in terms of:

B = [b−M, · · · , b−1, b0, b1, · · · , bM] ∈ CN×NB , (19)

and
CJ = diag{jM JM(2πR̃), · · · , j1 J1(2πR̃), j0 J0(2πR̃),

j1 J1(2πR̃), · · · , jM JM(2πR̃)} ∈ CNB×NB ,
(20)

where NB = 2M + 1 is the number of beam [20]. The Vandermonde structured array
steering vector in beamspace is defined as:

aB(φ) = [e−jMφ, · · · , e−jφ, 1, ejφ, · · · , ejMφ]T . (21)

By introducing CJ , (16) can be represented as:

bH
−M
...

bH
−1

bH
0

bH
1
...

bH
M


· a(φ) ≈ CJ · aB(φ), (22)

which is
BH · a(φ) ≈ CJ · aB(φ). (23)

Obviously we have:

a(φ) ≈ (BH)†CJ · aB(φ) = TB · aB(φ). (24)

To sum up, the relation between a(φ) and av(φ) is given as:

a(φ) ≈ TBaB(φ), (25)

where TB is defined as
TB = (BH)†CJ . (26)

Apparently, TB transforms the steering vectors in beamspace into element space,
which is exactly the reverse of the original beamspace transformation. Therefore, the above
process is named Inverse Beamspace Transformation (IBT).

As we can see, (25) offers great convenience for handling the non-Vandermonde
structured steering vector of UCA which is the basic framework of our algorithm.

3. Proposed Algorithm GSCA

The proposed algorithm named GSCA (Gridless DOA Estimation in Sparse Circular
Array) is summarized in Algorithm 1. In order to visualize the principle of the algorithm,
we draw the main steps of the algorithm in Figure 2.
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Algorithm 1 Proposed Algorithm: GSCA
Input: Np, N , NB , D , R , Yp , ΓΩ

Output: Estimated DOAs {φ̂1, φ̂2, · · · , φ̂D}
Step 1: Calculate R̂p via (6),
Step 2: Calculate TB via (25),
Step 3: If K < NB, perform (31) ;
Else K ≥ NB, perform (32),
Step 4: Formulate R̃v,
and calculate its EVD via (34),
Step 5: Perform Root-MUSIC based on (37)–(40),
Step 6: Return DOAs via (41).

Figure 2. Schematic of Proposed GSCA Algorithm.

Next, the GSCA algorithm is introduced in detail. The GSCA algorithm is mainly
based on the GLS algorithm combined with the aforementioned IBT. Notably, the elements
of SCA are selected from a UCA, with utilizing the predefined selection matrix ΓΩ, the
relation between the physical snapshot of SCA and the complete snapshot of UCA is
established as:

yp = ΓΩy. (27)

Thus, the covariance matrix of SCA is written as:

Rp = E{ypyH
p }

= ΓΩE{yyH}ΓT
Ω

= ΓΩRΓT
Ω,

(28)

where
R = E{yyH} = E{(As + n)(As + n)H}

= AE{ssH}AH +E{nnH}
= ARsAH + Rn

= Rx + Rn,

(29)
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with E{snH} = E{sHn} = 0 being used; meanwhile, Rs and Rn are the signal covariance
matrix and noise covariance matrix, respectively. By taking advantage of the IBT, matrix
Rx can be reparameterized as:

Rx = ARsAH

≈ TBAvRsAH
v TH

B

= TBToep{u}TH
B .

(30)

Similarly, with an application of the GLS algorithm, the SDPs arising in the SCA
scenario are shown below. In the case of (K < NB), the SDP is given as:

min
S,u

Tr{S}+ Tr{ΓT
ΩΓΩTBToep{u}TH

B },

s.t.
[

S R̂p
R̂p ΓΩTBToep{u}TH

B ΓT
Ω

]
≥ 0.

(31)

When K ≥ NB, the SDP is given as:

min
S,u

Tr{S}+ Tr{ΓT
ΩR̂−1

p ΓΩTBToep{u}TH
B },

s.t.

 S R̂
1
2
p

R̂
1
2
p ΓΩTBToep{u}TH

B ΓT
Ω

 ≥ 0.
(32)

Once problem (31) or (32) is solved, the completed covariance matrix of the UCA in
element space is obtained as R? = TBToep{u?}TH

B . The middle part of R? is a Toeplitz
structured covariance which can be regarded as a beamspace transformed covariance
matrix of the UCA. Next, we focus on the middle part which is marked as R̃B = Toep{u?}.
Apparently, a classical Root-MUSIC algorithm [33] can be performed thanks to the Toeplitz
structure of R̃B.

The eigenvalue decomposition (EVD) of R̃B is given as:

R̃B = UsΛsUH
s + UnΛnUH

n , (33)

where the signal subspace Us, noise subspace, Un and corresponding eigenvalues Λs, Λn
have the following forms:

Us = [u1, · · · , uD] Λs = diag{λ1, · · · , λD}
Un = [uD+1, · · · , uNB ] Λn = diag{λD+1, · · · , λNB}.

(34)

As we all know, the noise subspace Un is orthogonal to the signal subspace Us, and
Us spans the same subspace as the steering matrix which is written as

AB = [aB(φ1), aB(φ2), · · · , aB(φD)]. (35)

It is obvious to formulate the following equation:

Un ⊥ AB ⇐⇒ UnAB = 0. (36)

The null spectrum is formed as:

f (z) = ‖UnaB(φ)‖2
2 = aB(φ)

HUnUH
n aB(φ),

= p
(

1
z

)T
UnUH

n p(z),
(37)
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for z = ejφ, and p(z) is defined as:

p(z) = [1, z, · · · , zNB−1]T . (38)

Moreover, the null spectrum is also able to reformulate into a polynomial as follows:

G(z) = h−(NB−1)z
−(NB−1) + · · ·+ h(NB−1)z

(NB−1), (39)

where hi is calculated by:

H = UnUH
n

hi =
NB

∑
n1,n2

[H]n1,n2 , n1 − n2 = i.
(40)

The D roots inside the unit circle with the largest magnitude are chosen.Then the
DOAs are obtained by:

φ̂d = ∠zd. (41)

4. Simulation Results

In this section, computer simulations are carried out to demonstrate the performance of
the proposed DOA estimation algorithms. The root-mean-square error (RMSE) is adopted,
which is defined as:

RMSE =

√√√√ 1
PD

P

∑
p=1

D

∑
d=1

(φ̂d(p)− φd(p))2, (42)

where P = 200 is the number of Monte Carlo trials.
Additionally, the spatial spectrum is depicted in the polar coordinate to visualize

the performance of DOA estimation. To obtain the spatial spectrum, we replace step 5
of the GSCA algorithm in Algorithm 1 (Root-MUSIC [33]) with a spatial spectrum search
(MUSIC [5]). The spatial search step is 0.1◦, and the search range is [0◦, 360◦).

4.1. Selection of N, Np and Ω

In this subsection, the simulation results are presented to illustrate the selection of N,
Np, and Ω. We explored the effect of various Np on the performance of DOA estimation
under a selected N. The SNR and K are chosen as 15 dB and 1024, and the number of
Monte Carlo trials P is 200. The number of sources D and the number of physical elements
Np are equal in order to satisfy the underdetermined scenario. Obviously, multiple label
sets Ω will be generated under each pair of (N, Np). In order to exclude the influence of
the particularity of Ω on the results, label set Ω is randomly generated in each trial. We
set a threshold of RMSE (43) to evaluate the simulation results. The simulation results are
shown in parts a–c of Table 2, respectively. (The minimum Np that succeeds under each N
is bolded.)

RMSE

{
< 8◦ Success

≥ 8◦ Failed
(43)
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Table 2. Simulation Results of Various (N, Np).

(a) N = 7, SNR = 15 dB, K = 1024

Np(D) 3 4 5 6

Results Failed Failed Success Success

(b) N = 9, SNR = 15 dB, K = 1024

Np(D) 4 5 6 7 8

Results Failed Failed Success Success Success

(c) N = 11, SNR = 15 dB, K = 1024

Np(D) 5 6 7 8 9 10

Results Failed Failed Success Success Success Success

From the above results, we can roughly draw the following empirical conclusions to
select Np, which is given by:

Np ≥ d
2
3

Ne, (44)

where d · e is the round-up operator. To sum up, we choose the minimum Np that succeeds
when N = 7 or 9.

Apparently, when sensor failure occurs, the locations of the faulty sensors are random.
Considering the circular symmetry, there are three different array configurations when
N = 7 and Np = 5; and the number of different array configurations is seven when N = 9
and Np = 6. We have plotted these arrays in Figures 3 and 4, respectively.

(a) Type 1: Ω = {1, 2, 3, 4, 5} (b) Type 2: Ω = {1, 2, 3, 5, 7} (c) Type 3: Ω = {1, 2, 3, 5, 6}

Figure 3. Different Array Configurations, (N = 7, Np = 5).

We perform the following simulations to evaluate the performance of the GSCA algo-
rithm under different array configurations when the SNR and the number of snapshots
K are fixed at a moderate value (SNR = 15 dB, K = 1024). The number of sources D is an
integer variable selected from

[
Np, N

)
to satisfy the underdetermined scenario. The simu-

lation results are shown in Figure 5a and 5b, respectively. Obviously, when the simulation
parameters {SNR, K, D, N, Np} are the same, the RMSEs of different array configurations are
almost at the same level, which means the robustness of our method to various array con-
figurations with the same N and Np. Therefore, in the following simulations, we selected
one type of array from each group to study the effects of SNR and K.
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(a) Type 1:
Ω = {1, 2, 3, 4, 5, 6}

(b) Type 2:
Ω = {1, 2, 3, 4, 6, 9}

(c) Type 3:
Ω = {1, 2, 3, 5, 6, 9}

(d) Type 4:
Ω = {1, 2, 4, 5, 6, 9}

(e) Type 5:
Ω = {1, 2, 3, 5, 7, 9}

(f) Type 6:
Ω = {1, 2, 4, 5, 7, 9}

(g) Type 7:
Ω = {1, 2, 4, 5, 7, 8}

Figure 4. Different Array Configurations, (N = 9, Np = 6).

D=5 D=6
1.5

2.0

2.5

3.0

3.5

R
M

SE
 (

de
g 

)

 Type 1
 Type 2
 Type 3

(a) N = 7, Np = 5

D=6 D=7 D=8
1

2

3

4

5

R
M

SE
 (

de
g 

)
 Type 1
 Type 2
 Type 3
 Type 4
 Type 5
 Type 6
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Figure 5. RMSE under Different Array Configurations; SNR = 15 dB, K = 1024.

4.2. Effects of SNR and K: N = 7, Np = 5

In this simulation, we study the performance of DOA estimation versus SNR and K.
The number of sensors in UCA: N is set to 7, and the number of physical sensors Np is set
to 5 with label Ω = {1, 2, 3, 5, 7} (Type 2 in Figure 3). A schematic of this SCA is shown
in Figure 3b. The normalized radius R̃ is set to 0.65, in this case, NB is 7 based on (14).
Notably, the source number D is set to 5 and 6 in order to perform underdetermined DOA
estimation, and DOAs are set to be equidistantly distributed in [0◦, 360◦) [34].

The RMSE versus SNR and number of snapshots K are plotted in Figure 6, respectively.
As shown in Figure 6a, the RMSE is gradually dropping as the SNR increases; yet the
RMSE is slightly dropping as K increases. In addition, the RMSE increases as the number
of sources D increases when the SNR and K are fixed (Figure 6b).

Furthermore, Figure 7a,b depicts the normalized spatial spectrums under D = 5 and
D = 6, respectively. The SNR is set to be 10 dB, and the number of snapshots K is 1024.
Apparently, as the number of sources D increases, the number of outlier peaks increases
when SNR and the number of snapshots K are fixed.
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Figure 7. Normalized Spatial Spectrum of 5 and 6 Sources, N = 7, Np = 5; (SNR=10 dB, K = 1024).

4.3. Effects of SNR and K: N = 9, Np = 6

In this simulation, the number of sensors in UCA, N, is set to 9, and the number of
physical sensors Np is set to 6. The index vector of the physical sensor is Ω = {1, 2, 3, 5, 7, 9}
(Type 5 in Figure 3). The normalized radius R̃ is set to 0.7, and NB is calculated as 9
with (14). The array structure is shown in Figure 4e. In contrast with the simulation of
N = 7, Np = 5, the RMSE curves and the normalized spatial spectrum are drawn in
Figures 8 and 9, respectively. Moreover, the RMSE curve of D = 6 in Figure 8a converges to
1.2◦ while the RMSE curve of D = 6 in Figure 6a converges to 2.8◦. Furthermore, comparing
Figures 7b and 9a, it is evident that the number of outlier peaks decreases when D is fixed
as 6. Those benefits come with the enlarged array aperture R̃ and the increased number of
physical sensors Np.
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Figure 9. Normalized Spatial Spectrum of 6, 7 and 8 Sources, N = 9, Np = 6; (SNR = 10 dB, K = 1024).

4.4. Complexity Analysis

The major computational complexity of the proposed GSCA algorithm corresponds
to the step (31) or (32). A well-known off-the-shelf SDP solver SDPT3 [35] is employed
to solve our algorithm. The SDPT3 is an interior-point-based method that has the com-
putational complexity of O(n2

1n2.5
2 ) [36], where n1 denotes the number of variables and

n2 × n2 is the dimension of the positive semi-definite matrix in the SDP. In our cases,
n1 = NB + N2

p and n2 = 2Np, such that the computational complexity of solving SDP is
O((NB + N2

p)
2(2Np)2.5). In addition, the EVD (34) step also contributes a large part of

the computational complexity, which is O(N3
B). The complexity of polynomial rooting

steps (37)–(41) is O(DNB). Thus the major computational complexity of the proposed GSCA
algorithm is O((NB + N2

p)
2(2Np)2.5 + N3

B + DNB). We evaluate the algorithm under CPU
I7-10510U at 2.30 GHz and 12 GB RAM. The average CPU running time of 200 Monte-Carlo
trials is given in parts a and b in Table 3, respectively.

Table 3. CPU Running Time (SNR = 15 dB, K = 1024).

(a) N = 7, Np = 5, Various Ω (b) N = 9, Np = 6, Various Ω

D 5 6 D 6 7 8

Time (s) 2.902 2.918 Time (s) 3.102 3.084 3.195

5. Conclusions

In this paper, we have proposed the GSCA algorithm to perform underdetermined
DOA estimation in SCA. The GSCA algorithm takes advantage of the inverse beamspace
transformation (IBT), together with the GLS algorithm; in this way, the covariance matrix
of SCA is completed to a Toeplitz matrix in beamspace; meanwhile, the Root-MUSIC
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is adopted and DOAs are obtained. We have performed computer simulations, and
results demonstrate that the proposed algorithm is able to produce reasonable results
of underdetermined DOA estimation in SCA. Furthermore, the GSCA algorithm still works
well in various array configurations, which means the tricky DOA estimation problem in
UCA with random sensor failures can be handled. In the future, we will work on improving
the performance of the algorithm and strive to extend our algorithm to the two-dimensional
DOA estimation problem.
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