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Abstract: The capacitive pressure sensor based on thin film elastic deflection and a parallel plate
capacitor uses a non-conductive elastic annular thin film centrally connected to a conductive, rigid,
flat, concentric-circular thin plate as a pressure sensing unit. On application of pressure, the non-
conductive thin film deflects elastically, which in turn moves the conductive thin plate (as a movable
upper electrode plate of the parallel plate capacitor) towards the lower electrode plate, resulting in
a change in the capacitance of the capacitor. Therefore, the applied pressure can be determined by
measuring the capacitance change, based on the closed-form solution for the elastic behavior of the
annular thin film under pressure. Such capacitive pressure sensors are more suitable for large-sized
sensors such as those used for building-facade wind pressure measurements, etc. In this paper,
a further theoretical study of such capacitive pressure sensors is presented. The newly presented,
more refined closed-form solution can greatly reduce the output pressure error under the same
input capacitance, in comparison with the previously presented closed-form solution. A numerical
example of how to use the resulting closed-form solution to numerically calibrate input–output
characteristics is given for the first time. The variation trend of pressure operation ranges and input–
output characteristics with important parametric variations, which can be used for guiding the design
of such capacitive pressure sensors, is investigated.

Keywords: capacitive pressure sensor; parallel plate capacitor; elastic deflection; annular membrane;
closed-form solution

1. Introduction

Many thin films are capable of exhibiting large elastic deflection under transverse load-
ing [1–6], which provides the possibility of the design and development of elastic-deflection-
based devices [7–14]. Pressure sensors based on thin film elastic deflection have widespread
applications in many areas, such as bio-medical applications, robotics, automobiles, and
environmental monitoring, and capacitive structures are widely used. These capacitive
types of pressure sensors convert the elastic deformation of thin films, corresponding to
the pressure applied on the thin films, into a change in capacitance. They usually use
single-crystal silicon and polysilicon [15], polymer/ceramic [16], low-temperature co-fired
ceramic [17], silicon carbide [18,19], or graphene–polymer heterostructure [20–23] thin
films in microelectromechanical systems (MEMS), and have the advantages of low cost,
small volume, high stability, high sensitivity, low temperature drift, and lower sensitivity
to environment effects.

Figure 1 illustrates the typical structure and modes of operation of a traditional
capacitive pressure sensor. On application of a pressure q, the conductive membrane, as
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the upper electrode plate of the capacitor, elastically deflects in response to the applied
pressure q. This elastic deflection is a measure of the applied pressure q and also changes
the capacitance of the capacitor. Therefore, the applied pressure q can be determined by
measuring the change in capacitance. In the so-called normal mode of operation, the
deflected conductive membrane, as the upper electrode plate of the capacitor, is always
kept at a distance away from the isolation layer coating the lower electrode plate, as shown
in Figure 1b, and thus a device operating in this state may also be called a non-touch-
mode capacitive pressure sensor. When in the so-called touch mode of operation, the
deflected conductive membrane is always kept in contact with the isolation layer, as shown
in Figure 1c, and therefore a device operating in this state is called a touch-mode capacitive
pressure sensor. Usually, the output capacitance of a non-touch-mode capacitive pressure
sensor is nonlinear with respect to the input pressure changes, and the sensitivity in the
near-linear region is not high enough to ignore the many stray capacitance effects. Touch-
mode capacitive pressure sensors are known to have robust structures to withstand harsh
industrial environments and higher sensitivity by one or two orders of magnitude than
in the normal mode of operation in the near-linear operation range, so that some of the
stray capacitance effects can be neglected. Moreover, the output capacitance of touch-mode
devices is mainly the isolation-gap capacitance of the touched area due to the very thin
isolation layer, and its capacitance per unit area is much larger than the air-gap capacitance
in the untouched area. This is the main reason why touch-mode capacitive pressure sensors
are often called linear sensors: the change in the touched area is usually designed to be
almost proportional to the applied pressure q, and thus the output capacitance–input
pressure characteristic is nearly linear.
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pressure q; (c) touch mode of operation under the pressure q.

However, there are two types of difficulties or problems in the design of traditional
capacitive pressure sensors. Firstly, there are difficulties in the preparation or selection
of conductive elastic membranes. The conductive membrane is used as both the mov-
able upper electrode plate of the capacitor and the deformation element that elastically
responds to the applied pressure. Therefore, the preparation or selection of the conductive
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membrane depends not only on its high electrical conductivity but also on its good elastic
deformation ability, which obviously places high requirements on the preparation or se-
lection of materials. Secondly, there are difficulties in balancing the linear input–output
characteristic and the wide operational pressure range. It is in fact very difficult to design
a touch-mode capacitive pressure sensor with a wide operational pressure range and a
nearly linear characteristic between the output capacitance and the input pressure. In
general, when the operational pressure range is too wide, there often is a strong nonlinear
relationship between the change in touched area and the applied pressure. As a result, the
designer must often choose between a wide operational pressure range and a nearly linear
input–output characteristic.

In our earlier work [24], we proposed an improved capacitive pressure sensor using
non-conductive elastic membranes and conductive rigid thin plates instead of traditional
conductive elastic membranes. The topside structure of the proposed capacitive pressure
sensor uses a non-conductive elastic annular membrane (as an elastic deformation element
to respond to the applied pressure), whose inner edge is rigidly connected to the outer edge
of a conductive, rigid, flat, concentric-circular thin plate (as a movable upper electrode
plate of the capacitor), to substitute for the dual-function topside structure of traditional
capacitive pressure sensors, i.e., the traditional conductive elastic membrane used as both
an elastic deformation element and an upper electrode plate. The proposed capacitive
pressure sensor uses independent elastic deformation elements and upper electrode plates,
overcoming the shortcomings of traditional capacitive pressure sensors. Non-conductive
membranes with very good elasticity are abundant, and rigid thin plates with high electrical
conductivity are easier to find, making the preparation or selection of materials very easy.
Furthermore, the convenience of material preparation or selection allows a wider range
of material parameters to be selected, such as the Poisson’s ratio, Young’s modulus of
elasticity, and the thickness of the membrane, as well as the radius of the conductive, rigid,
flat, concentric-circular thin plate. In particular, the conductive, rigid, flat, concentric-
circular thin plate, as a movable upper electrode plate, forms a parallel plate capacitor
with the flat lower electrode plate, and the calculation for a parallel plate capacitor is well
known to be easier than that for a non-parallel plate capacitor. All of these advantages
provide great convenience for balancing a wide operational pressure range and a nearly
linear input–output characteristic.

The improved capacitive pressure sensors proposed in [24] have many advantages
over traditional capacitive pressure sensors: they are more suitable for large-volume (size)
sensors such as those used for building-facade wind pressure measurements, etc. However,
our earlier work [24] failed to accurately solve the behavior of the elastic deformation of
the annular membrane analytically, due to the complexity of the problem. An accurate
analytical solution is usually very important for sensor design, and the closed-form solution
presented in [24] could not meet the design requirements of the proposed capacitive pres-
sure sensor, due to the adopted assumption condition that the rotation angle θ of the annular
membrane is so small that “sinθ = tanθ” can be used to replace “sinθ = 1/(1 + 1/tan2θ)1/2”.
Obviously, such an assumption inevitably introduces computational errors and affects the
accuracy of the closed-form solution presented in [24] when the rotation angle of the annu-
lar membrane is relatively large, i.e., when the applied pressure is relatively large. As is well
known, the sine function sinθ can be approximated by the tangent function tanθ only when
θ is relatively small, and a large rotation angle θ will give rise to a significant approximation
error. For instance, the error caused by approximating sinθ to tanθ is about 1.54% when
θ = 10◦, 6.42% when θ = 20◦, 15.47% when θ = 30◦, and 30.54% when θ = 40◦. In fact, the
rotation angle θ of the annular membrane in the proposed parallel-plate-capacitor-based
pressure sensor may exceed 40◦. Therefore, it is necessary to reject the approximation of
replacing “sinθ = 1/(1 + 1/tan2θ)1/2” with “sinθ = tanθ” in the derivation of the closed-form
solution. Hence, the behavior of the elastic deformation of the annular membrane under
pressure must be analytically solved again.
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Our earlier work [24] also failed to give an illustration of how to use the closed-form
solution to achieve the numerical calibration of the relationship between the output pres-
sure and the input capacitance of the proposed capacitive pressure sensor. As can be
seen below, changes in material parameters such as the initial gap between the upper and
lower electrode plates of the parallel plate capacitor, the Young’s modulus of elasticity,
and the thickness of the membranes, have an important effect on the relationship between
the output pressure and the input capacitance of the proposed capacitive pressure sensor.
Therefore, the numerical calibration plays a very important role in the design phase of the
proposed capacitive pressure sensor as it determines the required operational pressure
ranges and input–output characteristics. In other words, it is impossible to achieve the
required operational pressure ranges and input–output characteristics by just changing
the actual materials used (i.e., by experimental calibration). Thus, closed-form solutions
are of unparalleled and irreplaceable value in sensor design. Therefore, as a purely theo-
retical study, since the closed-form solution is given, it is necessary to address how to use
the closed-form solution to achieve the numerical calibration of the proposed capacitive
pressure sensor. However, our previous work [24] failed to do this.

This paper renames the improved capacitive pressure sensor proposed in [24] as a
capacitive pressure sensor based on thin film elastic deflection and a parallel plate capacitor
(or an elastic-deflection-and-parallel-plate-capacitor-based pressure sensor for short) and
presents a further theoretical study of the pressure sensor. In this paper, in order to
improve the accuracy of analytical solutions, the assumption adopted in [24] is rejected,
resulting in a new and more refined closed-form solution for the behavior of the elastic
deformation of the annular membrane. For the first time, examples are given to illustrate
how to use the resulting closed-form solution to achieve the numerical calibration of the
relationship between the output pressure and input capacitance of the elastic-deflection-
and-parallel-plate-capacitor-based pressure sensor. In addition, the effect of important
parametric variations on the input–output characteristics is also discussed numerically.
The novelty or innovation of this paper mainly lies in the following three aspects. A
new and more refined closed-form solution is presented, where the newly presented
closed-form solution can greatly reduce the pressure measurement error for the same
input capacitance (i.e., under the same maximum elastic deflection, in comparison with
the previously presented closed-form solution. A numerical example of how to use the
resulting closed-form solution to numerically calibrate the input–output characteristics is
given for the first time. The effect of important parametric variations on the input–output
characteristics is addressed, which has important theoretical significance for guiding the
design of capacitive pressure sensors based on thin film elastic deflection and a parallel
plate capacitor. By changing some important parameters and carrying out a series of
numerical calibrations, the variation trend of the operational pressure ranges and input–
output characteristics with important parametric variations can be found. This can clarify
how to appropriately prepare or select materials to achieve the desired operational pressure
ranges and input–output characteristics.

The paper is organized as follows. In the following section, the structure, the mode of
operation, and the working principle of the elastic-deflection-and-parallel-plate-capacitor-
based pressure sensor are briefly described. In Section 3, the behavior of the elastic deforma-
tion of the annular membrane of the elastic-deflection-and-parallel-plate-capacitor-based
pressure sensor under pressure is analytically solved again, the assumption condition
adopted in [24] is rejected, and a new and more refined closed-form solution is given. In
Section 4, some important issues are addressed. The validity of the closed-form solution
obtained in Section 3 is first addressed. Secondly, the new closed-form solution given in
this paper is numerically compared with the one given in [24], in terms of the pressure
measurement error under the same maximum elastic deflection (i.e., under the same input
capacitance). Next, an example is given to illustrate how to use the closed-form solution
obtained in Section 3 to achieve the numerical calibration of the relationship between the
output pressure and input capacitance of the elastic-deflection-and parallel-plate-capacitor-
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based pressure sensor. Finally, the effect of important parametric variations on input–output
relationships is numerically discussed, showing how the required operational pressure
ranges and input–output characteristics can be achieved based on a series of numerical
calibrations. Concluding remarks are given in Section 5.

2. Materials and Methods

The structure or geometry of the proposed elastic-deflection-and-parallel-plate-capacitor-
based pressure sensor is shown in Figure 2a, where a denotes the outer radius of the initially flat
non-conductive elastic annular membrane, b denotes the inner radius of the annular membrane,
as well as the outer radius of the conductive, rigid, flat, concentric-circular thin plate, and
g denotes the initial gap between the initially flat non-conductive elastic annular membrane and
the flat lower electrode plate. The inner edge of the initially flat non-conductive elastic annular
membrane is rigidly connected to the outer edge of the conductive, rigid, flat, concentric-circular
thin plate, forming the topside structure of the proposed pressure sensor. The conductive, rigid,
flat, concentric-circular thin plate, as a movable upper electrode plate, forms a parallel plate
capacitor with the flat lower electrode plate. On application of the pressure q, as shown in
Figure 2b, the initially flat non-conductive elastic annular membrane will deflect towards the
lower electrode plate and work as an elastic deformation element in response to the applied
pressure q, resulting in the upper electrode plate moving a distance wm (the maximum elastic
deflection) from its initial position (that of the initially flat annular membrane) towards the lower
electrode plate. Clearly, the movement of the upper electrode plate will result in a capacitance
change in the parallel plate capacitor. Therefore, the applied pressure q can be determined by
measuring the capacitance change caused in the parallel plate capacitor.
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The topside structure of the proposed elastic-deflection-and-parallel-plate-capacitor-
based pressure sensor can also be formed by a non-conductive elastic circular membrane
whose central region firmly adheres to the conductive, rigid, flat, concentric-circular thin
plate (such that the central region membrane will not produce elastic deformation when
the upper electrode plate moves). In addition, the initial gap g between the upper and
lower electrode plates should be far less than the diameter 2b of the upper and lower
electrode plates, such that the fringe effect in the capacitance calculation of the parallel plate
capacitor can be ignored. Therefore, the capacitance between the two parallel conductive,
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flat, circular thin plates with radius b, dielectric constant ε, and air gap g-wm (see Figure 2b),
after neglecting the fringe effect, may be written as [25]

C = ε
πb2

g− wm
. (1)

As mentioned above, the application of a pressure q will result in the maximum
elastic deflection wm. In other words, there is a one-to-one correspondence. Hence, wm is
a continuous function of q, i.e., wm(q). Therefore, once wm(q) is obtained, the relationship
between the pressure q and the capacitance C can be determined. We must solve for
the behavior of the elastic deformation with large deflection of the annular membrane
analytically, to obtain an accurate continuous function wm(q).

Analytical solutions for the large-deflection phenomenon of elastic membranes are
available in only a few cases, due to the difficulties of analysis. However, for the design
and development of elastic-deflection-based devices, accurate analytical solutions are often
found to be necessary [26,27]. Our earlier work [24] failed to accurately solve the behavior
of the elastic deformation with large deflection of the annular membrane (see Figure 2b)
analytically. The closed-form solution presented in [24] could not meet the accuracy
requirements for designing the proposed elastic-deflection-and-parallel-plate-capacitor-
based pressure sensor, as it introduced too many pressure-measurement errors for the same
input capacitance (i.e., under the same maximum elastic deflection wm). Therefore, the next
section is devoted to the new and more refined closed-form solution for the behavior of the
elastic deformation with large deflection of the annular membrane.

3. Refined Closed-Form Solution

An initially flat, linearly elastic annular membrane with thickness h, outer radius a, in-
ner radius b, Poisson’s ratio v, and Young’s modulus of elasticity E is tightly fixed at its outer
edge and connected at its inner edge to a movable, weightless, rigid, concentric-circular
thin plate of radius b, resulting in an immovable and non-deformable outer edge and a
movable but non-deformable inner edge. At the same time, a uniformly distributed trans-
verse load q is quasi-statically applied to the annular membrane and movable, weightless,
rigid, concentric-circular thin plate, resulting in an out-of-plane displacement (deflection)
of the annular membrane, as shown in Figure 3. In the figure, a cylindrical coordinate
system (r, ϕ, w) is introduced, with the polar coordinate plane (r, ϕ) located in the plane in
which the geometric middle plane of the initially flat annular membrane is located, and
where o denotes the origin of the introduced cylindrical coordinate system (r, ϕ, w) (which
is placed in the centroid of the geometric middle plane), r denotes the radial coordinate,
ϕ denotes the angle coordinate (not represented in Figure 3), and w denotes the axial
coordinate as well as the transverse displacement of the deflected membrane. A free body,
a piece of annular membrane with radius r (b ≤ r ≤ a), is taken from the central portion
of the deflected annular membrane, to study the static problem of equilibrium of this free
body under the joint action of the external active force πr2q produced by the uniformly
distributed transverse loads q and the reactive force 2πrσrh produced by the membrane
force σrh acting on the boundary r, as shown in Figure 4, where σr denotes the radial stress
and θ denotes the rotation angle of the deflected annular membrane.

The so-called out-of-plane equilibrium equation can be obtained from the equilibrium
condition that the resultant force in the transverse (vertical) direction is equal to zero, and
is given by

2πrσrh sin θ = πr2q. (2)

If the transverse displacement of the deflected annular membrane at r is denoted by
w(r), then

sin θ = 1/
√

1 + 1/ tan2 θ = 1/
√

1 + 1/(−dw/dr)2. (3)
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Substituting Equation (3) into Equation (2), the out-of-plane equilibrium equation can
be written as

2σrh = rq
√

1 + 1/(−dw/dr)2. (4)

In the horizontal direction parallel to the initially flat annular membrane, there are
the actions of the radial membrane force σrh and the circumferential membrane force σth,
where σt denotes the circumferential stress. Therefore, the so-called in-plane equilibrium
equation may be written as

d
dr

(rσrh)− σth = 0. (5)

If the radial strain, circumferential strain, and radial displacement are denoted by er, et,
and u(r), respectively, then the relations between the strain and displacement, the so-called
geometric equations, may be written as

er =
du
dr

+
1
2
(

dw
dr

)
2

(6)

and
et =

u
r

. (7)

Moreover, the relations between the stress and strain, the so-called physical equations,
are still assumed to satisfy linear elasticity

σr =
E

1− ν2 (er + νet) (8)
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and
σt =

E
1− ν2 (et + νer). (9)

Substituting Equations (6) and (7) into Equations (8) and (9) yields

σr =
E

1− ν2 [
du
dr

+
1
2
(

dw
dr

)
2
+ ν

u
r
] (10)

and

σt =
E

1− ν2 [
u
r
+ ν

du
dr

+
ν

2
(

dw
dr

)
2
]. (11)

Eliminating du/dr from Equations (10) and (11) and further using Equation (5), it is
found that

u
r
=

1
Eh

(σth− νσrh) =
1

Eh
[

d
dr

(rσrh)− νσrh]. (12)

After substituting the u of Equation (12) into Equation (10), the so-called consistency
equation may be written as

r
d
dr

[
1
r

d
dr

(r2σr)] +
E
2
(

dw
dr

)
2
= 0. (13)

Equations (4), (5) and (13) are three equations for the solutions of σr, σt, and w. The
boundary conditions for solving Equations (4), (5) and (13) are

et = 0
(

or
u
r
= 0 ) at r = b, (14)

et = 0
(u

r
= 0 ) at r = a (15)

and
w = 0 at r = a. (16)

Let us introduce the nondimensionalization

Q =
aq
Eh

, W =
w
a

, Sr =
σr

E
, St =

σt

E
, α =

b
a

, x =
r
a

, (17)

and transform Equations (4), (5) and (12)–(16) into

2Sr = xQ
√

1 + 1/(−dW/dx)2, (18)

d(xSr)

dx
− St = 0, (19)

u
r
= (1− ν)Sr + x

dSr

dx
, (20)

x2 d2Sr

dx2 + 3x
dSr

dx
+

1
2
(

dW
dx

)
2
= 0, (21)

(1− ν)Sr + x
dSr

dx
= 0 at x = α, (22)

(1− ν)Sr + x
dSr

dx
= 0 at x = 1 (23)

and
W = 0 at x = 1. (24)



Sensors 2022, 22, 2848 9 of 33

From Equation (18), it is found that

(−dW
dx

)
2
=

x2Q2

4S2
r − x2Q2 . (25)

Eliminating dW/dx from Equations (21) and (25), we can obtain an equation which
contains only Sr:

x2 d2Sr

dx2 + 3x
dSr

dx
+

x2Q2

8S2
r − 2x2Q2 = 0. (26)

In view of the physical phenomenon that the values of stress, strain, and displacement
are all finite within the range α ≤ x ≤ 1, we can expand Sr and W into a power series of
(x−β), i.e.,

Sr =
∞

∑
i=0

ci(x− β)i (27)

and

W =
∞

∑
i=0

di(x− β)i, (28)

where β = (1 + α)/2. For convenience we introduce X = x − β, then Equations (25)–(28) can
be transformed into

(−dW
dx

)
2
=

(X + β)2Q2

4S2
r − (X + β)2Q2

, (29)

(X + β)2 d2Sr

dX2 + 3(X + β)
dSr

dX
+

(X + β)2Q2

8S2
r − 2(X + β)2Q2

= 0, (30)

Sr =
∞

∑
i=0

ciXi (31)

and

W =
∞

∑
i=0

diXi. (32)

Substituting Equation (31) into Equation (30) and letting the sums of all coefficients of
the same powers of X be equal to zero yields a system of equations for determining the
recursion formulas for the coefficients ci. The solution to this system of equations shows
that the coefficients ci (i = 2, 3, 4, . . . ) can be expressed as polynomial functions with regard
to the first two coefficient c0 and c1 (see Appendix A). Further, by substituting Equations
(31) and (32) into Equation (29), the coefficients di (i = 1, 2, 3, . . . ) can also be expressed in
terms of c0 and c1 (see Appendix B).

The remaining three coefficients c0, c1, and d0 are three undetermined constants, which
depend on the specific problem addressed and can be determined by using the boundary
conditions of Equations (22) and (23), as follows. Substituting Equation (31) into Equations
(22) and (23) yields

(1− ν)
∞

∑
i=0

ci(α− β)i + α
∞

∑
i=1

ici(α− β)i−1 = 0 (33)

and

(1− ν)
∞

∑
i=0

ci(1− β)i +
∞

∑
i=1

ici(1− β)i−1 = 0. (34)

If all the recursion formulas for the coefficients ci in Appendix A are repeatedly
substituted into Equations (33) and (34), Equations (33) and (34) will contain only c0 and c1.
Therefore, the values of c0 and c1 can be determined by simultaneously solving Equations
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(33) and (34), and the expression for Sr can be determined. Further, substituting Equation
(32) into the boundary condition of Equation (24) yields

d0 = −
∞

∑
i=1

di(1− β)i. (35)

Therefore, with the known c0 and c1, the value of d0 can finally be determined using
Equation (35), and the expression for W can also be determined. The expression for St, with
the known expression of Sr, can easily be determined by Equation (19).

The problem addressed here is thus solved analytically, and its closed-form solutions
for stress and deflection are given. The closed-form solution for stress will be used to check
whether the thin film used meets the mechanical strength required, while the closed-form
solution for deflection will be used to determine the important analytical relationship
between the applied pressure q and the maximum deflection wm.

The maximum deflection of the deflected annular membrane wm is at x = α, and from
Equations (17) and (28) it may finally be written as

wm = a
∞

∑
i=0

di(
b− a

2a
)

i
. (36)

The maximum stress of the deflected annular membrane σm is also at x = α, and from
Equations (17) and (27) it may be written as

σm = σr(b) = E
∞

∑
i=0

ci(
b− a

2a
)

i
. (37)

4. Results and Discussion
4.1. Validity of the Closed-Form Solution Obtained

Clearly, under the same transverse loads q, an annular membrane with outer ra-
dius a and inner radius b should have the same deflection curve as a circular membrane
with radius a when b→0. Therefore, the validity of the closed-form solution given in
Section 2 can be proved by examining whether the deflection curves of the annular
membrane with outer radius a and inner radius b can gradually approach the deflection
curve of the circular membrane with radius a, as the inner radius b gradually approaches
zero. To this end, a numerical example is presented, where a circular membrane with
Young’s modulus of elasticity E = 7.84 MPa, Poisson’s ratio v = 0.47, thickness h = 0.2 mm,
and radius a = 70 mm, and four annular membranes with Young’s modulus of elasticity
E = 7.84 MPa, Poisson’s ratio v = 0.47, thickness h = 0.2 mm, outer radius a = 70 mm, and
inner radii b = 60 mm, 40 mm, 20 mm, and 10 mm are subjected to the same transverse loads
q = 0.0001 MPa. The deflections of the annular membranes are calculated by using the
closed-form solution obtained in Section 2, while the deflection of the circular membrane
is calculated by using the closed-form solution presented in [24], which is also obtained
using “sinθ = 1/(1 + 1/tan2θ)1/2” rather than “sinθ = tanθ”. The results of the deflection
calculation are shown in Figure 5, where “Solution 1” refers to the closed-form solution
given in Section 2, and “Solution 2” refers to the closed-form solution presented in [28]. It
may be seen from Figure 5 that the deflection curves of the annular membranes gradually
approach the deflection curve of the circular membrane as the inner radius b decreases
gradually from 60 mm to 10 mm, which to some extent shows that the closed-form solution
given in Section 2 is correctly derived and basically reliable.
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4.2. Comparison of the Closed-Form Solutions before and after Improvement

Figure 6 shows the differences between the deflection curves calculated under the
same loads q by the closed-form solutions before and after improvement, where the annular
membrane used has Young’s modulus of elasticity E = 7.84 MPa, Poisson’s ratio v = 0.47,
thickness h = 0.2 mm, outer radius a = 70 mm, and inner radius b = 40 mm. “Solution 1”
refers to the closed-form solution after improvement (given in this paper), and “Solution 3”
refers to the closed-form solution before improvement (presented in [24]). In Figure 6, the
maximum deflection values for q = 0.0001 MPa are about 4.108 mm (calculated in Solution
1) and 4.097 mm (calculated in Solution 3), the maximum deflection values for q = 0.01 MPa
are about 20.010 mm (Solution 1) and 19.017 mm (Solution 3), and the maximum deflection
values for q = 0.03 MPa are about 29.824 mm (Solution 1) and 27.427 mm (Solution 3). From
Figure 6 it may be seen that the solutions before and after improvement agree quite closely
for the lightly loaded case and diverge slowly as the loads q increase. This is because the
rotation angle θ of the annular membrane increases gradually as the loads q increase, and
therefore, the error in the deflection calculation introduced by the closed-form solution
before improvement (obtained using “sinθ = tanθ” rather than “sinθ = 1/(1 + 1/tan2θ)1/2”)
increases gradually as the rotation angle θ increases. This means that it is necessary
to use “sinθ = 1/(1 + 1/tan2θ)1/2” (rather than “sinθ = tanθ”) in the derivation of the
closed-form solution.

Clearly, if a capacitive pressure sensor based on thin film elastic deflection and a
parallel plate capacitor is designed using the closed-form solution before improvement,
then its pressure measurement error can be estimated directly by the error in the pressure
values under the same maximum deflection wm (in order to keep the capacitance of the
parallel plate capacitor the same (see Figure 1)), calculated by using the closed-form so-
lutions before and after improvement. Figure 7 shows the pressure difference under the
same maximum deflection wm, where “Solution 1” refers to the closed-form solution after
improvement (presented in this paper) and “Solution 3” refers to the closed-form solution
before improvement (presented in [24]). The relative error of “Solution 3” compared to
“Solution 1”, that is, the pressure measurement error caused by using the closed-form solu-
tion before improvement, is about 0.782% for wm = 4.108 mm, 16.477% for wm = 20.010 mm,
and 28.575% for wm = 29.824 mm. This suggests that the improvement of the closed-form
solution is very important for the design of the proposed capacitive pressure sensors.
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4.3. Numerical Calibration Based on the Closed-Form Solution Obtained

The proposed capacitive pressure sensors based on thin film elastic deflection and a
parallel plate capacitor may be numerically calibrated based on the closed-form solution for
the large deflection problem in Figure 2b, which was not addressed in our earlier work [24].
In this section, based on the closed-form solution given in Section 2, the numerical calibra-
tion of the proposed capacitive pressure sensors is detailed as follows.

Suppose that an annular elastic thin film is used as the deformable element of a pres-
sure sensor to be calibrated, where the outer radius of the pressure sensor is a = 70 mm, in-
ner radius is b = 40 mm, thickness is h = 1 mm, Young’s modulus of elasticity is E = 7.84 MPa,
Poisson’s ratio is v = 0.47, and yield strength is σy = 2.4 MPa. The pressure-measurement
range of the capacitive pressure sensor to be designed can be determined by the strength of
the elastic thin film used; that is, the maximum elastic stress of the deflected annular thin
film σm must be less than its yield stress σy. Suppose that the maximum elastic stress of
the deflected annular thin film is controlled at σm ≤ 0.7σy = 1.68 MPa, and the initial air
gap g (see Figure 1) takes values of 17 mm, 19 mm, 21 mm, and 25 mm. Table 1 shows the
calculation results for the maximum stress σm, maximum deflection wm, and capacitance C
when the pressure q ranges from 0 to 23.50 KPa. Figure 8 shows the relationship between
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pressure q and capacitance C when the initial air gap g takes values of 17 mm, 19 mm,
21 mm, and 25 mm.

Table 1. The calculation results when a = 70 mm, b = 40 mm, E = 7.84 MPa, ν = 0.47, and h = 1 mm,
with values of g of 17 mm, 19 mm, 21 mm, and 25 mm.

q/KPa σm/MPa wm/mm
C/pF

g = 17 mm g = 19 mm g = 21 mm g = 25 mm

0.00 0.00 0.000 2.619 2.344 2.121 1.781
0.06 0.03 2.022 2.973 2.623 2.346 1.938
0.10 0.04 2.398 3.050 2.682 2.394 1.970
0.30 0.08 3.462 3.289 2.866 2.539 2.068
0.45 0.11 3.965 3.416 2.962 2.614 2.117
1.00 0.19 5.184 3.769 3.223 2.816 2.247
1.50 0.25 5.942 4.027 3.410 2.957 2.337
2.00 0.30 6.548 4.260 3.576 3.081 2.413
3.00 0.40 7.511 4.693 3.876 3.301 2.546
3.70 0.46 8.066 4.984 4.073 3.443 2.630
4.00 0.49 8.283 5.108 4.155 3.502 2.664
5.00 0.57 8.938 5.523 4.425 3.692 2.772
6.00 0.64 9.512 5.947 4.694 3.876 2.875
7.00 0.72 10.029 6.388 4.964 4.059 2.974
8.00 0.79 10.500 6.851 5.239 4.241 3.071
9.00 0.85 10.935 7.342 5.521 4.424 3.166

10.00 0.92 11.340 7.867 5.813 4.610 3.260
11.00 0.98 11.720 8.434 6.117 4.799 3.353
11.50 1.01 11.902 8.735 6.274 4.895 3.400
12.00 1.05 12.079 9.049 6.434 4.992 3.446
13.00 1.11 12.420 9.723 6.767 5.190 3.540
14.00 1.17 12.745 10.464 7.118 5.394 3.633
16.00 1.28 13.352 12.208 7.885 5.823 3.823
18.00 1.40 13.914 14.431 8.756 6.285 4.017
20.00 1.51 14.439 17.385 9.762 6.787 4.216
21.00 1.56 14.689 19.266 10.329 7.056 4.319
22.00 1.62 14.931 21.526 10.945 7.338 4.423
22.50 1.64 15.050 22.837 11.274 7.484 4.475
23.00 1.67 15.167 24.297 11.618 7.635 4.529
23.50 1.68 15.283 25.933 11.980 7.789 4.583
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put pressure per unit capacitance, in addition to increasing the edge effect in the capaci-
tance of the parallel plate capacitor. Therefore, it is best not to do so unless it is necessary. 
Figure 9 shows the effect of least-squares data fitting for processing the data in Table 1, 
where Function 1 is a quartic function, Function 2 is a cubic function, Function 3 is a quad-
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It is often desirable that a sensor is designed with a linear input–output relationship.
From Figure 8 it can be seen that the analytical relationship between output pressure q
and input capacitance C can be made more linear by increasing the initial air gap g. This,
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however, will narrow the range of capacitance variation and eventually increase the output
pressure per unit capacitance, in addition to increasing the edge effect in the capacitance of
the parallel plate capacitor. Therefore, it is best not to do so unless it is necessary. Figure 9
shows the effect of least-squares data fitting for processing the data in Table 1, where
Function 1 is a quartic function, Function 2 is a cubic function, Function 3 is a quadratic
function, Function 4 is a straight line, and Function 5 is also a straight line. Functions
1−4 correspond to g = 17 mm, and Function 5 corresponds to g = 25 mm. The change
in the ranges of the input capacitance C and the output pressure q and the expressions
for Functions 1−5 are listed in Table 2. It can be seen from Figure 9 or Table 2 that if the
ranges of input capacitance and output pressure are expected to be as large as possible and
the output pressure per unit capacitance as small as possible, then the sensor must be a
nonlinear sensor, that is, it must be calibrated with Function 3 or Function 2, or especially
Function 1 (see Figure 9). It can be found from Table 2 that the output pressure per unit
capacitance is about 2.003 KPa/pF and 8.863 KPa/pF corresponding to the two straight-line
functions Function 4 and Function 5, respectively. Therefore, if an output pressure of
0.06~11 KPa can meet the design requirements, it is obvious that Function 4 should be used
for linear calibration, rather than Function 5.
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Figure 9. Fitting functions when a = 70 mm, b = 40 mm, E = 7.84 MPa, ν = 0.47, and h = 1 mm, with
values of g of 17 mm and 25 mm.

Table 2. The ranges of pressure q and capacitance C and the expressions for the fitting functions in
Figure 9.

Functions Pressure q/KPa Capacitance C/pF Functional Expressions

Function 1 0.06~23.5 2.973~25.933 q = −9.4543 + 3.2678C − 0.1174C2 + 1.6969 × 10−3C3

− 5.9 860 × 10−6C4

Function 2 0.06~22 2.973~21.526 q = −9.1345 + 3.1225C − 9.8607 × 10−2C2

+ 9.4000 × 10−4C3

Function 3 0.06~14 2.973~10.464 q = −7.7200 + 2.5500C − 4.1960 × 10−2C2

Function 4 0.06~11 2.973~8.434 q = −6.7190 + 2.1193C
Function 5 0.06~23.5 1.938~4.583 q = −20.2787 + 9.4467C

Note: Average sums of fitting error squares for Functions 1−5 are 0.0927, 0.0949, 0.0694, 0.0473, and 0.5593,
respectively.

4.4. Effect of Important Parametric Variations on Input–Output Relationships

Now, let us address the effect of changes in the Young’s modulus of elasticity E and
thickness h of the membranes on the input–output analytical relationship for sensors. This
work has important theoretical significance for guiding the design of capacitive pressure
sensors based on thin film elastic deflection and a parallel plate capacitor. By changing
the Young’s modulus of elasticity E and thickness h of the membranes and carrying out a
series of numerical calibrations, the variation trend of the operational pressure ranges and
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input–output characteristics with important parametric variations can be found. This can
clarify how to appropriately prepare or select materials to achieve the desired operational
pressure ranges and input–output characteristics. To this end, the annular elastic thin film
used above still maintains an outer radius a = 70 mm, inner radius b = 40 mm, Poisson’s
ratio v = 0.47, and yield strength σy = 2.4 MPa. In order to investigate the effect of the
Young’s modulus of elasticity, the thickness of the thin film maintains h = 1 mm and its
Young’s modulus of elasticity takes the values E = 5 MPa and E = 2.5 MPa, while in order to
investigate the thickness effect, the Young’s modulus of elasticity maintains E = 7.84 MPa
and the thickness takes the values h = 0.7 mm and h = 0.4 mm.

Figure 10 shows the relationship between pressure q and capacitance C when a = 70 mm,
b = 40 mm, E = 5 MPa, ν = 0.47, and h = 1 mm, with values of g of 21 mm, 23 mm, 25 mm,
and 29 mm. Figure 11 shows the fitting functions when a = 70 mm, b = 40 mm, E = 5 MPa,
ν = 0.47, and h = 1 mm, with values of g of 21 mm and 29 mm, where Functions 1−4
correspond to g = 21 mm, Function 5 corresponds to g = 29 mm, and the range of input ca-
pacitance and output pressure and the functional expressions fitted using the least squares
method are listed in Table 3.
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Figure 10. Relationship between pressure q and capacitance C when a = 70 mm, b = 40 mm, E = 5 MPa,
ν = 0.47, and h = 1 mm, with values of g of 21 mm, 23 mm, 25 mm, and 29 mm.
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Table 3. The ranges of pressure q and capacitance C and the expressions for the fitting functions in
Figure 11.

Functions Pressure q/KPa Capacitance C/pF Functional Expressions

Function 1 0.03~28.1 2.327~23.677 q = −10.387 + 4.4539C − 1.7499 × 10−1 C2

+ 1.8465 × 10−3C3 + 2.0127 × 10−5C4

Function 2 0.03~26 2.327~18.503 q = −10.320 + 4.4173C − 0.1713C2 + 2.0446 × 10−3C3

Function 3 0.03~16 2.327~8.308 q = −8.4201 + 3.4455C − 5.3760 × 10−2C2

Function 4 0.03~12 2.327~6.484 q = −7.7372 + 3.0429C
Function 5 0.03~28.1 1.641~4.507 q = −19.0409 + 10.4528C

Note: Average sums of fitting error squares for Functions 1−5 are 0.1565, 0.1714, 0.1218, 0.0924, and 0.5301,
respectively.

Figure 12 shows the relationship between pressure q and capacitance C when a = 70 mm,
b = 40 mm, E = 2.5 MPa, ν = 0.47, and h = 1 mm, with values of g of 28 mm, 30 mm, 32 mm,
and 36 mm. Figure 13 shows the fitting functions when a = 70 mm, b = 40 mm, E = 2.5 MPa,
ν = 0.47, and h = 1 mm, with values of g of 28 mm and 36 mm, where Functions 1−4
correspond to g = 28 mm, Function 5 corresponds to g = 36 mm, and the range of input
capacitance and output pressure and the functional expressions fitted by the least squares
method are listed in Table 4.
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Function 3 0.02~20 1.716~7.089 q = −10.232 + 5.7650C − 0.2012C2 

Figure 12. Relationship between pressure q and capacitance C when a = 70 mm, b = 40 mm,
E = 2.5 MPa, ν = 0.47, and h = 1 mm, with values of g of 28 mm, 30 mm, 32 mm, and 36 mm.

Table 4. The ranges of pressure q and capacitance C and the expressions for the fitting functions in
Figure 13.

Function Pressure q/KPa Capacitance C/pF Function Expression

Function 1 0.02~33 1.716~22.884 q = −12.084 + 7.1260C − 0.4660C2 + 1.4223 × 10−2C3

− 1.6188 × 10−4C4

Function 2 0.02~30 1.716~15.710 q = −11.667 + 6.7954C − 0.3895C2 − 7.9564 × 10−3C3

Function 3 0.02~20 1.716~7.089 q = −10.232 + 5.7650C − 0.2012C2

Function 4 0.02~13 1.716~4.734 q = −8.6055 + 4.5583C
Function 5 0.02~33 1.312~4.477 q = −16.2264 + 11.2672C

Note: Average sums of fitting error squares for Functions 1−5 are 0.2123, 0.2276, 0.1922, 0.1251, and
0.5426, respectively.
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Figure 13. Fitting functions when a = 70 mm, b = 40 mm, E = 2.5 MPa, ν = 0.47, and h = 1 mm, with
values of g of 28 mm and 36 mm.

Figure 14 shows the relationship between pressure q and capacitance C when a = 70 mm,
b = 40 mm, E = 7.84 MPa, ν = 0.47, and h = 0.7 mm, with values of g of 17 mm, 19 mm, 21 mm,
and 25 mm. Figure 15 shows the fitting functions when a = 70 mm, b = 40 mm, E = 7.84 MPa,
ν = 0.47, and h = 0.7 mm, with values of g of 17 mm and 25 mm, where Functions 1−4
correspond to g = 17 mm, Function 5 corresponds to g = 25 mm, and the range of input
capacitance and output pressure and the functional expressions fitted by the least squares
method are listed in Table 5.
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Figure 15. Fitting functions when a = 70 mm, b = 40 mm, E = 7.84 MPa, ν = 0.47, and h = 0.7 mm, with
values of g of 17 mm and 25 mm.
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Table 5. The ranges of pressure q and capacitance C and the expressions for the fitting functions in
Figure 15.

Functions Pressure q/KPa Capacitance C/pF Functional Expressions

Function 1 0.04~16.5 2.967~26.183 q = −6.6373 + 2.2999C − 8.3342 × 10−2C2

+ 1.2233 × 10−3C3 − 4.3521 × 10−6C4

Function 2 0.04~15.5 2.967~21.887 q = −6.5162 + 2.2415C − 7.5228 × 10−2C2

+ 8.4881 × 10−4C3

Function 3 0.04~10 2.967~10.690 q = −5.5317 + 1.8389C − 3.4383 × 10−2C2

Function 4 0.04~8 2.967~8.691 q = −4.6602 + 1.4732C
Function 5 0.04~16.5 1.935~4.590 q = −14.1664 + 6.6212C

Note: Average sums of fitting error squares for Functions 1−5 are 0.0413, 0.0468, 0.0351, 0.0260, and 0.2448,
respectively.

Figure 16 shows the relationship between pressure q and capacitance C when a = 70 mm,
b = 40 mm, E = 7.84 MPa, ν = 0.47, and h = 0.4 mm, with values of g of 17 mm, 19 mm,
21 mm, and 25 mm. Figure 17 shows the fitting functions when a = 70 mm, b = 40 mm,
E = 7.84 MPa, ν = 0.47, and h = 0.4 mm, with values of g of 17 mm and 25 mm, where
Functions 1−4 correspond to g = 17 mm, Function 5 corresponds to g = 25 mm, and the
range of input capacitance and output pressure and the functional expressions fitted by the
least squares method are listed in Table 6.
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Table 6. The ranges of pressure q and capacitance C and the expressions for the fitting functions in
Figure 17.

Functions Pressure q/KPa Capacitance C/pF Functional Expressions

Function 1 0.03~9.4 3.004~25.933 q = −3.9805 + 1.3871C−5.6008 × 10−2C2

+ 1.0509 × 10−3C3 −7.3096 × 10−6C4

Function 2 0.03~8.8 3.004~21.526 q = −3.7904 + 1.3020C−4.4844 × 10−2C2

+ 5.2974 × 10−4C3

Function 3 0.03~5.7 3.004~10.661 q = −3.1774 + 1.0531C−1.9734 × 10−2C2

Function 4 0.03~4.5 3.004~8.583 q = −2.6689 + 0.8414C
Function 5 0.03~9.4 1.951~4.583 q = −8.1551 + 3.8048C

Note: Average sums of fitting error squares for Functions 1−5 are 0.0120, 0.0127, 0.0107, 0.0071, and
0.0669, respectively.

Now, the effect of varying the Young’s modulus of elasticity E and thickness h of
membrane on the input–output relationships can be summarized as follows.

When the thickness h of the membrane remains constant and the Young’s modulus of
elasticity E is changed, it can be seen from Tables 2–4 that, with a decrease in the Young’s
modulus of elasticity E, the range of the output pressure increases, while the range of the
input capacitance decreases. This means that large operational pressure ranges require
the use of thin films with a low Young’s modulus of elasticity E, while large operational
capacitance ranges require the use of thin films with a high Young’s modulus of elasticity E.
In addition, the increase in the output pressure range is a maximum in the case of Function
1 (that is, in the case of nonlinear fitting with a quartic function) and the reduction in the
input capacitance range is a maximum in the case of Function 4 (that is, in the case of linear
fitting), which can be seen more clearly in Figures 18–21.

When Young’s modulus of elasticity E remains constant and the thickness h of the
membrane is changed, it can be seen from Tables 2, 5 and 6 that, with the decrease in
the thickness h, the range of the output pressure decreases, while the range of the input
capacitance basically remains constant. This means that large operational pressure ranges
require the use of thin films with a large thickness, while operational capacitance ranges are
largely unaffected by the thickness of the thin films. In addition, the reduction in the output
pressure range is a maximum in the case of Function 1 (that is, in the case of nonlinear
fitting with a quartic function), which can be seen more clearly in Figures 22–25.
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5. Concluding Remarks

In this study, the capacitive pressure sensor based on thin film elastic deflection and a
parallel plate capacitor, which was proposed in our earlier work [24], was revisited and
theoretically improved. The following conclusions can be drawn from this study.

The deflection curves of the annular membrane with outer radius a and inner radius
b, which are calculated using the closed-form solution given in Section 2, can gradually
approach the deflection curve of the circular membrane with radius a, as the inner radius
b gradually approaches zero, showing that the closed-form solution given in Section 2 is
correctly derived and basically reliable.

The numerical comparison of the closed-form solution given in this paper with the
one given in [24] shows that the closed-form solution given in this paper is computationally
more accurate than the previous one given in [24], especially when the rotation angle θ of
the annular membrane is relatively large or as the pressure q increases. This provides a
reliable theory for designing the proposed capacitive pressure sensors based on thin film
elastic deflection and a parallel plate capacitor.

When designing capacitive pressure sensors based on thin film elastic deflection and
a parallel plate capacitor, the desired relationship between input capacitance and output
pressure can be satisfied by changing the thickness h of the selected thin film or by selecting
another thin film with a different Young’s modulus of elasticity E. A decrease in the Young’s
modulus of elasticity E can increase the range of the output pressure and decrease the range
of the input capacitance, while a decrease in the thickness h can decrease the range of the
output pressure but has little effect on the range of the input capacitance.
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Appendix A

c2 = − 6Q2β2c1−Q2β−24c0
2c1

4β(Q2β2−4c0
2)

,

c3 = −14Q2β3c2 + 9Q2β2c1 − 16β2c0c1c2 − 40βc0
2c2 − 24βc0c1

2 −Q2β− 12c0
2c1

6β2(Q2β2 − 4c02)
,

c4 = − 1
24β2(Q2β2−4c0

2)
(66Q2β3c3 + 60Q2β2c2 − 96β2c0c1c3 − 32β2c0c2

2

−16β2c1
2c2 + 18Q2βc1 − 168βc0

2c3 − 208βc0c1c2 − 24βc1
3 − 64c0

2c2
−48c0c1

2 −Q2)

,

c5 = − 1
20β2(Q2β2−4c0

2)
(60Q2β3c4 + 63Q2β2c3 − 96β2c0c1c4 − 64β2c0c2c3

−24β2c1
2c3 − 16β2c1c2

2 + 26Q2βc2 − 144βc0
2c4 − 192βc0c1c3 − 80βc0c2

2

−64βc1
2c2 + 3Q2c1 − 60c0

2c3 − 88c0c1c2 − 12c1
3)

,

c6 = − 1
30β2(Q2β2−4c0

2)
(95Q2β3c5 + 108Q2β2c4 − 160β2c0c1c5 − 112β2c0c2c4

−48β2c0c3
2 − 48β2c1

2c4 − 64β2c1c2c3 − 8β2c2
3 + 51Q2βc3 − 220βc0

2c5
−312βc0c1c4 − 248βc0c2c3 − 108βc1

2c3 − 92βc1c2
2 + 8Q2c2 − 96c0

2c4 − 144c0c1c3
−64c0c2

2 − 56c1
2c2)

,

c7 = − 1
42β2(Q2β2−4c0

2)
(138Q2β3c6 + 165Q2β2c5 − 240β2c0c1c6 − 176β2c0c2c5

−144β2c0c3c4 − 80β2c1
2c5 − 112β2c1c2c4 − 48β2c1c3

2 − 40β2c2
2c3 + 84Q2βc4

−312βc0
2c6 − 464βc0c1c5 − 368βc0c2c4 − 168βc0c3

2 − 168βc1
2c4 − 272βc1c2c3

−40βc2
3 + 15Q2c3 − 140c0

2c5 − 216c0c1c4 − 184c0c2c3 − 84c1
2c3 − 76c1c2

2)

,

c8 = − 1
56β2(Q2β2 − 4c02)

(
189Q2β3c7 + 234Q2β2c6 − 336β2c0c1c7 − 256β2c0c2c6

−208β2c0c3c5 − 96β2c0c4
2 − 120β2c1

2c6 − 176β2c1c2c5 − 144β2c1c3c4 − 64β2c2
2c4

−56β2c2c3
2 + 125Q2βc5 − 420βc0

2c7 − 648βc0c1c6 − 520βc0c2c5 − 456βc0c3c4

−244βc1
2c5 − 392βc1c2c4 − 180βc1c3

2 − 164βc2
2c3 + 24Q2c4 − 192c0

2c6

−304c0c1c5 − 256c0c2c4 − 120c0c3
2 − 120c1

2c4 − 208c1c2c3 − 32c2
3
)

,

c9 = − 1
72β2(Q2β2 − 4c02)

(
248Q2β3c8 + 315Q2β2c7 − 448β2c0c1c8

−352β2c0c2c7 − 288β2c0c3c6 − 256β2c0c4c5 − 168β2c1
2c7 − 256β2c1c2c6

−208β2c1c3c5 − 96β2c1c4
2 − 96β2c2

2c5 − 160β2c2c3c4 − 24β2c3
3

+174Q2βc6 − 544βc0
2c8 − 864βc0c1c7 − 704βc0c2c6 − 608βc0c3c5

−288βc0c4
2 − 336βc1

2c6 − 544βc1c2c5 − 480βc1c3c4 − 224βc2
2c4

−208βc2c3
2 + 35Q2c5 − 252c0

2c7 − 408c0c1c6 − 344c0c2c5 − 312c0c3c4

−164c1
2c5 − 280c1c2c4 − 132c1c3

2 − 124c2
2c3

)
,
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c10 = − 1
90β2(Q2β2 − 4c02)

(
315Q2β3c9 + 408Q2β2c8 − 576β2c0c1c9

−464β2c0c2c8 − 384β2c0c3c7 − 336β2c0c4c6 − 160β2c0c5
2 − 224β2c1

2c8

−352β2c1c2c7 − 288β2c1c3c6 − 256β2c1c4c5 − 136β2c2
2c6 − 224β2c2c3c5

−104β2c2c4
2 − 96β2c3

2c4 + 231Q2βc7 − 684βc0
2c9 − 1112βc0c1c8

−920βc0c2c7 − 792βc0c3c6 − 728βc0c4c5 − 444βc1
2c7 − 728βc1c2c6

−632βc1c3c5 − 300βc1c4
2 − 300βc2

2c5 − 536βc2c3c4 − 84βc3
3 + 48Q2c6

−320c0
2c8 − 528c0c1c7 − 448c0c2c6 − 400c0c3c5 − 192c0c4

2 − 216c1
2c6

−368c1c2c5 − 336c1c3c4 − 160c2
2c4 − 152c2c3

2
)

,

c11 = − 1
110β2(Q2β2 − 4c02)

(
390Q2β3c10 + 513Q2β2c9 − 720β2c0c1c10

−592β2c0c2c9 − 496β2c0c3c8 − 432β2c0c4c7 − 400β2c0c5c6 − 288β2c1
2c9

−464β2c1c2c8 − 384β2c1c3c7 − 336β2c1c4c6 − 160β2c1c5
2 − 184β2c2

2c7

−304β2c2c3c6 − 272β2c2c4c5 − 128β2c3
2c5 − 120β2c3c4

2 + 296Q2βc8

−840βc0
2c10 − 1392βc0c1c9 − 1168βc0c2c8 − 1008βc0c3c7 − 912βc0c4c6

−440βc0c5
2 − 568βc1

2c8 − 944βc1c2c7 − 816βc1c3c6 − 752βc1c4c5

−392βc2
2c6 − 688βc2c3c5 − 328βc2c4

2 − 312βc3
2c4 + 63Q2c7 − 396c0

2c9

−664c0c1c8 − 568c0c2c7 − 504c0c3c6 − 472c0c4c5 − 276c1
2c7 − 472c1c2c6

−424c1c3c5 − 204c1c4
2 − 204c2

2c5 − 376c2c3c4 − 60c3
3
)

,

c12 = − 1
132β2(Q2β2 − 4c02)

(
473Q2β3c11 + 630Q2β2c10 − 880β2c0c1c11

−736β2c0c2c10 − 624β2c0c3c9 − 544β2c0c4c8 − 496β2c0c5c7 − 240β2c0c6
2

−360β2c1
2c10 − 592β2c1c2c9 − 496β2c1c3c8 − 432β2c1c4c7 − 400β2c1c5c6

−240β2c2
2c8 − 400β2c2c3c7 − 352β2c2c4c6 − 168β2c2c5

2 − 168β2c3
2c6

−304β2c3c4c5 − 48β2c4
3 + 369Q2βc9 − 1012βc0

2c11 − 1704βc0c1c10

−1448βc0c2c9 − 1256βc0c3c8 − 1128βc0c4c7 − 1064βc0c5c6 − 708βc1
2c9

−1192βc1c2c8 − 1032βc1c3c7 − 936βc1c4c6 − 452βc1c5
2 − 500βc2

2c7

−872βc2c3c6 − 808βc2c4c5 − 388βc3
2c5 − 372βc3c4

2 + 80Q2c8

−480c0
2c10 − 816c0c1c9 − 704c0c2c8 − 624c0c3c7 − 576c0c4c6 − 280c0c5

2

−344c1
2c8 − 592c1c2c7 − 528c1c3c6 − 496c1c4c5 − 256c2

2c6 − 464c2c3c5

−224c2c4
2 − 216c3

2c4

)

,
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c13 = − 1
156β2(Q2β2 − 4c02)

(
564Q2β3c12 + 759Q2β2c11 − 1056β2c0c1c12

−896β2c0c2c11 − 768β2c0c3c10 − 672β2c0c4c9 − 608β2c0c5c8 − 576β2c0c6c7

−440β2c1
2c11 − 736β2c1c2c10 − 624β2c1c3c9 − 544β2c1c4c8 − 496β2c1c5c7

−240β2c1c6
2 − 304β2c2

2c9 − 512β2c2c3c8 − 448β2c2c4c7 − 416β2c2c5c6

−216β2c3
2c7 − 384β2c3c4c6 − 184β2c3c5

2 − 176β2c4
2c5 + 450Q2βc10

−1200βc0
2c12 − 2048βc0c1c11 − 1760βc0c2c10 − 1536βc0c3c9 − 1376βc0c4c8

−1280βc0c5c7 − 624βc0c6
2 − 864βc1

2c10 − 1472βc1c2c9 − 1280βc1c3c8

−1152βc1c4c7 − 1088βc1c5c6 − 624βc2
2c8 − 1088βc2c3c7 − 992βc2c4c6

−480βc2c5
2 − 480βc3

2c6 − 896βc3c4c5 − 144βc4
3 + 99Q2c9 − 572c0

2c11

−984c0c1c10 − 856c0c2c9 − 760c0c3c8 − 696c0c4c7 − 664c0c5c6 − 420c1
2c9

−728c1c2c8 − 648c1c3c7 − 600c1c4c6 − 292c1c5
2 − 316c2

2c7 − 568c2c3c6

−536c2c4c5 − 260c3
2c5 − 252c3c4

2
)

,

c14 = − 1
182β2(Q2β2 − 4c02)

(
663Q2β3c13 + 900Q2β2c12 − 1248β2c0c1c13

−1072β2c0c2c12 − 928β2c0c3c11 − 816β2c0c4c10 − 736β2c0c5c9 − 688β2c0c6c8

−336β2c0c7
2 − 528β2c1

2c12 − 896β2c1c2c11 − 768β2c1c3c10 − 672β2c1c4c9

−608β2c1c5c8 − 576β2c1c6c7 − 376β2c2
2c10 − 640β2c2c3c9 − 560β2c2c4c8

−512β2c2c5c7 − 248β2c2c6
2 − 272β2c3

2c8 − 480β2c3c4c7 − 448β2c3c5c6

−216β2c4
2c6 − 208β2c4c5

2 + 539Q2βc11 − 1404βc0
2c13 − 2424βc0c1c12

−2104βc0c2c11 − 1848βc0c3c10 − 1656βc0c4c9 − 1528βc0c5c8 − 1464βc0c6c7

−1036βc1
2c11 − 1784βc1c2c10 − 1560βc1c3c9 − 1400βc1c4c8 − 1304βc1c5c7

−636βc1c6
2 − 764βc2

2c9 − 1336βc2c3c8 − 1208βc2c4c7 − 1144βc2c5c6

−588βc3
2c7 − 1080βc3c4c6 − 524βc3c5

2 − 508βc4
2c5 + 120Q2c10 − 672c0

2c12

−1168c0c1c11 − 1024c0c2c10 − 912c0c3c9 − 832c0c4c8 − 784c0c5c7 − 384c0c6
2

−504c1
2c10 − 880c1c2c9 − 784c1c3c8 − 720c1c4c7 − 688c1c5c6 − 384c2

2c8

−688c2c3c7 − 640c2c4c6 − 312c2c5
2 − 312c3

2c6 − 592c3c4c5 − 96c4
3
)

,

c15 = − 1
210β2(Q2β2 − 4c02)

(
770Q2β3c14 + 1053Q2β2c13 − 1456β2c0c1c14

−1264β2c0c2c13 − 1104β2c0c3c12 − 976β2c0c4c11 − 880β2c0c5c10

−816β2c0c6c9 − 784β2c0c7c8 − 624β2c1
2c13 − 1072β2c1c2c12

−928β2c1c3c11 − 816β2c1c4c10 − 736β2c1c5c9 − 688β2c1c6c8

−336β2c1c7
2 − 456β2c2

2c11 − 784β2c2c3c10 − 688β2c2c4c9

−624β2c2c5c8 − 592β2c2c6c7 − 336β2c3
2c9 − 592β2c3c4c8

−544β2c3c5c7 − 264β2c3c6
2 − 264β2c4

2c7 − 496β2c4c5c6 − 80β2c5
3

+636Q2βc12 − 1624βc0
2c14 − 2832βc0c1c13 − 2480βc0c2c12

−696c3c4c6 − 340c3c5
2 − 332c4

2c5

)

.
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−2192βc0c3c11 − 1968βc0c4c10 − 1808βc0c5c9 − 1712βc0c6c8

−840βc0c7
2 − 1224βc1

2c12 − 2128βc1c2c11 − 1872βc1c3c10

−1680βc1c4c9 − 1552βc1c5c8 − 1488βc1c6c7 − 920βc2
2c10

−1616βc2c3c9 − 1456βc2c4c8 − 1360βc2c5c7 − 664βc2c6
2

−712βc3
2c8 − 1296βc3c4c7 − 1232βc3c5c6 − 600βc4

2c6

−584βc4c5
2 + 143Q2c11 − 780c0

2c13 − 1368c0c1c12 − 1208c0c2c11

−1080c0c3c10 − 984c0c4c9 − 920c0c5c8 − 888c0c6c7 − 596c1
2c11

−1048c1c2c10 − 936c1c3c9 − 856c1c4c8 − 808c1c5c7 − 396c1c6
2

−460c2
2c9 − 824c2c3c8 − 760c2c4c7 − 728c2c5c6 − 372c3

2c7

−696c3c4c6 − 340c3c5
2 − 332c4

2c5

)

.

Appendix B

d1 = − βQ√
−Q2β2 + 4c02

,

d2 = −Q2βd1
2 − 4c0c1d1

2 + Q2β

2d1(Q2β2 − 4c02)
,

d3 = − 1
6d1(Q2β2−4c0

2)
(4Q2β2d2

2 + 8Q2βd1d2 + Q2d1
2 − 16c0

2d2
2 − 32c0c1d1d2

−8c0c2d1
2 − 4c1

2d1
2 + Q2)

,

d4 = − 1
2d1(Q2β2−4c0

2)
(3Q2β2d2d3 + 3Q2βd1d3 + 2Q2βd2

2 + Q2d1d2

−12c0
2d2d3 − 12c0c1d1d3 − 8c0c1d2

2 − 8c0c2d1d2 − 2c0c3d1
2 − 4c1

2d1d2 − 2c1c2d1
2)

,

d5 = − 1
10d1(Q2β2−4c0

2)
(16Q2β2d2d4 + 9Q2β2d3

2 + 16Q2βd1d4 + 24Q2βd2d3

+6Q2d1d3 + 4Q2d2
2 − 64c0

2d2d4 − 36c0
2d3

2 − 64c0c1d1d4 − 96c0c1d2d3 − 48c0c2d1d3
−32c0c2d2

2 − 32c0c3d1d2 − 8c0c4d1
2 − 24c1

2d1d3 − 16c1
2d2

2 − 32c1c2d1d2 − 8c1c3d1
2

−4c2
2d1

2)

,

d6 = − 1
6d1(Q2β2 − 4c02)

(
10Q2β2d2d5 + 12Q2β2d3d4 + 10Q2βd1d5 + 16Q2βd2d4

+9Q2βd3
2 + 4Q2d1d4 + 6Q2d2d3 − 40c0

2d2d5 − 48c0
2d3d4 − 40c0c1d1d5

−64c0c1d2d4 − 36c0c1d3
2 − 32c0c2d1d4 − 48c0c2d2d3 − 24c0c3d1d3 − 16c0c3d2

2

−16c0c4d1d2 − 4c0c5d1
2 − 16c1

2d1d4 − 24c1
2d2d3 − 24c1c2d1d3 − 16c1c2d2

2

−16c1c3d1d2 − 4c1c4d1
2 − 8c2

2d1d2 − 4c2c3d1
2
)

,
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d7 = − 1
14d1(Q2β2 − 4c02)

(
24Q2β2d2d6 + 30Q2β2d3d5 + 16Q2β2d4

2 + 24Q2βd1d6

+40Q2βd2d5 + 48Q2βd3d4 + 10Q2d1d5 + 16Q2d2d4 + 9Q2d3
2 − 96c0

2d2d6

−120c0
2d3d5 − 64c0

2d4
2 − 96c0c1d1d6 − 160c0c1d2d5 − 192c0c1d3d4 − 80c0c2d1d5

−128c0c2d2d4 − 72c0c2d3
2 − 64c0c3d1d4 − 96c0c3d2d3 − 48c0c4d1d3 − 32c0c4d2

2

−32c0c5d1d2 − 8c0c6d1
2 − 40c1

2d1d5 − 64c1
2d2d4 − 36c1

2d3
2 − 64c1c2d1d4

−96c1c2d2d3 − 48c1c3d1d3 − 32c1c3d2
2 − 32c1c4d1d2 − 8c1c5d1

2 − 24c2
2d1d3

−16c2
2d2

2 − 32c2c3d1d2 − 8c2c4d1
2 − 4c3

2d1
2
)

,

d8 = − 1
4d1(Q2β2 − 4c02)

(
7Q2β2d2d7 + 9Q2β2d3d6 + 10Q2β2d4d5 + 7Q2βd1d7

+12Q2βd2d6 + 15Q2βd3d5 + 8Q2βd4
2 + 3Q2d1d6 + 5Q2d2d5 + 6Q2d3d4

−28c0
2d2d7 − 36c0

2d3d6 − 40c0
2d4d5 − 28c0c1d1d7 − 48c0c1d2d6 − 60c0c1d3d5

−32c0c1d4
2 − 24c0c2d1d6 − 40c0c2d2d5 − 48c0c2d3d4 − 20c0c3d1d5 − 32c0c3d2d4

−18c0c3d3
2 − 16c0c4d1d4 − 24c0c4d2d3 − 12c0c5d1d3 − 8c0c5d2

2 − 8c0c6d1d2

−2c0c7d1
2 − 12c1

2d1d6 − 20c1
2d2d5 − 24c1

2d3d4 − 20c1c2d1d5 − 32c1c2d2d4

−18c1c2d3
2 − 16c1c3d1d4 − 24c1c3d2d3 − 12c1c4d1d3 − 8c1c4d2

2 − 8c1c5d1d2

−2c1c6d1
2 − 8c2

2d1d4 − 12c2
2d2d3 − 12c2c3d1d3 − 8c2c3d2

2 − 8c2c4d1d2 − 2c2c5d1
2

−4c3
2d1d2 − 2c3c4d1

2
)

,

d9 = − 1
18d1(Q2β2 − 4c02)

(
32Q2β2d2d8 + 42Q2β2d3d7 + 48Q2β2d4d6

+25Q2β2d5
2 + 32Q2βd1d8 + 56Q2βd2d7 + 72Q2βd3d6 + 80Q2βd4d5

+14Q2d1d7 + 24Q2d2d6 + 30Q2d3d5 + 16Q2d4
2 − 128c0

2d2d8 − 168c0
2d3d7

−192c0
2d4d6 − 100c0

2d5
2 − 128c0c1d1d8 − 224c0c1d2d7 − 288c0c1d3d6

−320c0c1d4d5 − 112c0c2d1d7 − 192c0c2d2d6 − 240c0c2d3d5 − 128c0c2d4
2

−96c0c3d1d6 − 160c0c3d2d5 − 192c0c3d3d4 − 80c0c4d1d5 − 128c0c4d2d4

−72c0c4d3
2 − 64c0c5d1d4 − 96c0c5d2d3 − 48c0c6d1d3 − 32c0c6d2

2

−32c0c7d1d2 − 8c0c8d1
2 − 56c1

2d1d7 − 96c1
2d2d6 − 120c1

2d3d5 − 64c1
2d4

2

−96c1c2d1d6 − 160c1c2d2d5 − 192c1c2d3d4 − 80c1c3d1d5 − 128c1c3d2d4

−72c1c3d3
2 − 64c1c4d1d4 − 96c1c4d2d3 − 48c1c5d1d3 − 32c1c5d2

2 − 32c1c6d1d2

−8c1c7d1
2 − 40c2

2d1d5 − 64c2
2d2d4 − 36c2

2d3
2 − 64c2c3d1d4 − 96c2c3d2d3

−48c2c4d1d3 − 32c2c4d2
2 − 32c2c5d1d2 − 8c2c6d1

2 − 24c3
2d1d3 − 16c3

2d2
2

−32c3c4d1d2 − 8c3c5d1
2 − 4c4

2d1
2
)

,
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d10 = − 1
10d1(Q2β2 − 4c02)

(
18Q2β2d2d9 + 24Q2β2d3d8 + 28Q2β2d4d7

+30Q2β2d5d6 + 18Q2βd1d9 + 32Q2βd2d8 + 42Q2βd3d7 + 48Q2βd4d6

+25Q2βd5
2 + 8Q2d1d8 + 14Q2d2d7 + 18Q2d3d6 + 20Q2d4d5 − 72c0

2d2d9

−96c0
2d3d8 − 112c0

2d4d7 − 120c0
2d5d6 − 72c0c1d1d9 − 128c0c1d2d8

−168c0c1d3d7 − 192c0c1d4d6 − 100c0c1d5
2 − 64c0c2d1d8 − 112c0c2d2d7

−144c0c2d3d6 − 160c0c2d4d5 − 56c0c3d1d7 − 96c0c3d2d6 − 120c0c3d3d5

−64c0c3d4
2 − 48c0c4d1d6 − 80c0c4d2d5 − 96c0c4d3d4 − 40c0c5d1d5

−64c0c5d2d4 − 36c0c5d3
2 − 32c0c6d1d4 − 48c0c6d2d3 − 24c0c7d1d3

−16c0c7d2
2 − 16c0c8d1d2 − 4c0c9d1

2 − 32c1
2d1d8 − 56c1

2d2d7 − 72c1d3d6

−80c1
2d4d5 − 56c1c2d1d7 − 96c1c2d2d6 − 120c1c2d3d5 − 64c1c2d4

2 − 48c1c3d1d6

−80c1c3d2d5 − 96c1c3d3d4 − 40c1c4d1d5 − 64c1c4d2d4 − 36c1c4d3
2 − 32c1c5d1d4

−48c1c5d2d3 − 24c1c6d1d3 − 16c1c6d2
2 − 16c1c7d1d2 − 4c1c8d1

2 − 24c2
2d1d6

−40c2
2d2d5 − 48c2

2d3d4 − 40c2c3d1d5 − 64c2c3d2d4 − 36c2c3d3
2 − 32c2c4d1d4

−48c2c4d2d3 − 24c2c5d1d3 − 16c2c5d2
2 − 16c2c6d1d2 − 4c2c7d1

2 − 16c3
2d1d4

−24c3
2d2d3 − 24c3c4d1d3 − 16c3c4d2

2 − 16c3c5d1d2 − 4c3c6d1
2 − 8c4

2d1d2

−4c4c5d1
2
)

,

d11 = − 1
22d1(Q2β2 − 4c02)

(
40Q2β2d2d10 + 54Q2β2d3d9 + 64Q2β2d4d8

+70Q2β2d5d7 + 36Q2β2d6
2 + 40Q2βd1d10 + 72Q2βd2d9 + 96Q2βd3d8

+112Q2βd4d7 + 120Q2βd5d6 + 18Q2d1d9 + 32Q2d2d8 + 42Q2d3d7

+48Q2d4d6 + 25Q2d5
2 − 160c0

2d2d10 − 216c0
2d3d9 − 256c0

2d4d8 − 280c0
2d5d7

−144c0
2d6

2 − 160c0c1d1d10 − 288c0c1d2d9 − 384c0c1d3d8 − 448c0c1d4d7

−480c0c1d5d6 − 144c0c2d1d9 − 256c0c2d2d8 − 336c0c2d3d7 − 384c0c2d4d6

−200c0c2d5
2 − 128c0c3d1d8 − 224c0c3d2d7 − 288c0c3d3d6 − 320c0c3d4d5

−112c0c4d1d7 − 192c0c4d2d6 − 240c0c4d3d5 − 128c0c4d4
2 − 96c0c5d1d6

−160c0c5d2d5 − 192c0c5d3d4 − 80c0c6d1d5 − 128c0c6d2d4 − 72c0c6d3
2

−64c0c7d1d4 − 96c0c7d2d3 − 48c0c8d1d3 − 32c0c8d2
2 − 32c0c9d1d2

−8c0c10d1
2 − 72c1

2d1d9 − 128c1
2d2d8 − 168c1

2d3d7 − 192c1
2d4d6 − 100c1

2d5
2

−128c1c2d1d8 − 224c1c2d2d7 − 288c1c2d3d6 − 320c1c2d4d5 − 112c1c3d1d7

−192c1c3d2d6 − 240c1c3d3d5 − 128c1c3d4
2 − 96c1c4d1d6 − 160c1c4d2d5

−192c1c4d3d4 − 80c1c5d1d5 − 128c1c5d2d4 − 72c1c5d3
2 − 64c1c6d1d4

−96c1c6d2d3 − 48c1c7d1d3 − 32c1c7d2
2 − 32c1c8d1d2 − 8c1c9d1

2 − 56c2
2d1d7

−96c2
2d2d6 − 120c2

2d3d5 − 64c2
2d4

2 − 96c2c3d1d6 − 160c2c3d2d5 − 192c2c3d3d4

−80c2c4d1d5 − 128c2c4d2d4 − 72c2c4d3
2 − 64c2c5d1d4 − 96c2c5d2d3

−48c2c6d1d3 − 32c2c6d2
2 − 32c2c7d1d2 − 8c2c8d1

2 − 40c3
2d1d5 − 64c3

2d2d4

−36c3
2d3

2 − 64c3c4d1d4 − 96c3c4d2d3 − 48c3c5d1d3 − 32c3c5d2
2 − 32c3c6d1d2

−8c3c7d1
2 − 24c4

2d1d3 − 16c4
2d2

2 − 32c4c5d1d2 − 8c4c6d1
2 − 4c5

2d1
2
)

,
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d12 = − 1
6d1(Q2β2 − 4c02)

(
11Q2β2d2d11 + 15Q2β2d3d10 + 18Q2β2d4d9

+20Q2β2d5d8 + 21Q2β2d6d7 + 11Q2βd1d11 + 20Q2βd2d10 + 27Q2βd3d9

+32Q2βd4d8 + 35Q2βd5d7 + 18Q2βd6
2 + 5Q2d1d10 + 9Q2d2d9

+12Q2d3d8 + 14Q2d4d7 + 15Q2d5d6 − 44c0
2d2d11 − 60c0

2d3d10

−72c0
2d4d9 − 80c0

2d5d8 − 84c0
2d6d7 − 44c0c1d1d11 − 80c0c1d2d10

−108c0c1d3d9 − 128c0c1d4d8 − 140c0c1d5d7 − 72c0c1d6
2 − 40c0c2d1d10

−72c0c2d2d9 − 96c0c2d3d8 − 112c0c2d4d7 − 120c0c2d5d6 − 36c0c3d1d9

−64c0c3d2d8 − 84c0c3d3d7 − 96c0c3d4d6 − 50c0c3d5
2 − 32c0c4d1d8

−56c0c4d2d7 − 72c0c4d3d6 − 80c0c4d4d5 − 28c0c5d1d7 − 48c0c5d2d6

−60c0c5d3d5 − 32c0c5d4
2 − 24c0c6d1d6 − 40c0c6d2d5 − 48c0c6d3d4

−20c0c7d1d5 − 32c0c7d2d4 − 18c0c7d3
2 − 16c0c8d1d4 − 24c0c8d2d3

−12c0c9d1d3 − 8c0c9d2
2 − 8c0c10d1d2 − 2c0c11d1

2 − 20c1
2d1d10

−36c1
2d2d9 − 48c1

2d3d8 − 56c1
2d4d7 − 60c1

2d5d6 − 36c1c2d1d9

−64c1c2d2d8 − 84c1c2d3d7 − 96c1c2d4d6 − 50c1c2d5
2 − 32c1c3d1d8

−56c1c3d2d7 − 72c1c3d3d6 − 80c1c3d4d5 − 28c1c4d1d7 − 48c1c4d2d6

−60c1c4d3d5 − 32c1c4d4
2 − 24c1c5d1d6 − 40c1c5d2d5 − 48c1c5d3d4

−20c1c6d1d5 − 32c1c6d2d4 − 18c1c6d3
2 − 16c1c7d1d4 − 24c1c7d2d3

−12c1c8d1d3 − 8c1c8d2
2 − 8c1c9d1d2 − 2c1c10d1

2 − 16c2
2d1d8

−28c2
2d2d7 − 36c2

2d3d6 − 40c2
2d4d5 − 28c2c3d1d7 − 48c2c3d2d6

−60c2c3d3d5 − 32c2c3d4
2 − 24c2c4d1d6 − 40c2c4d2d5 − 48c2c4d3d4

−20c2c5d1d5 − 32c2c5d2d4 − 18c2c5d3
2 − 16c2c6d1d4 − 24c2c6d2d3

−12c2c7d1d3 − 8c2c7d2
2 − 8c2c8d1d2 − 2c2c9d1

2 − 12c3
2d1d6

−20c3
2d2d5 − 24c3

2d3d4 − 20c3c4d1d5 − 32c3c4d2d4 − 18c3c4d3
2

−16c3c5d1d4 − 24c3c5d2d3 − 12c3c6d1d3 − 8c3c6d2
2 − 8c3c7d1d2

−2c3c8d1
2 − 8c4

2d1d4 − 12c4
2d2d3 − 12c4c5d1d3 − 8c4c5d2

2

−8c4c6d1d2 − 2c4c7d1
2 − 4c5

2d1d2 − 2c5c6d1
2
)

,

d13 = − 1
26d1(Q2β2 − 4c02)

(
48Q2β2d2d12 + 66Q2β2d3d11 + 80Q2β2d4d10

+90Q2β2d5d9 + 96Q2β2d6d8 + 49Q2β2d7
2 + 48Q2βd1d12 + 88Q2βd2d11

+120Q2βd3d10 + 144Q2βd4d9 + 160Q2βd5d8 + 168Q2βd6d7

+22Q2d1d11 + 40Q2d2d10 + 54Q2d3d9 + 64Q2d4d8 + 70Q2d5d7 + 36Q2d6
2

−192c0
2d2d12 − 264c0

2d3d11 − 320c0
2d4d10 − 360c0

2d5d9 − 384c0
2d6d8

−196c0
2d7

2 − 192c0c1d1d12 − 352c0c1d2d11 − 480c0c1d3d10 − 576c0c1d4d9

−24c5
2d1d3 − 16c5

2d2
2 − 32c5c6d1d2 − 8c5c7d1

2 − 4c6
2d1

2
)

−640c0c1d5d8 − 672c0c1d6d7 − 176c0c2d1d11 − 320c0c2d2d10 − 432c0c2d3d9

−512c0c2d4d8 − 560c0c2d5d7 − 288c0c2d6
2 − 160c0c3d1d10 − 288c0c3d2d9

,
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−384c0c3d3d8 − 448c0c3d4d7 − 480c0c3d5d6 − 144c0c4d1d9 − 256c0c4d2d8

−336c0c4d3d7 − 384c0c4d4d6 − 200c0c4d5
2 − 128c0c5d1d8 − 224c0c5d2d7

−288c0c5d3d6 − 320c0c5d4d5 − 112c0c6d1d7 − 192c0c6d2d6 − 240c0c6d3d5

−128c0c6d4
2 − 96c0c7d1d6 − 160c0c7d2d5 − 192c0c7d3d4 − 80c0c8d1d5

−128c0c8d2d4 − 72c0c8d3
2 − 64c0c9d1d4 − 96c0c9d2d3 − 48c0c10d1d3

−32c0c10d2
2 − 32c0c11d1d2 − 8c0c12d1

2 − 88c1
2d1d11 − 160c1

2d2d10 − 216c1
2d3d9

−256c1
2d4d8 − 280c1

2d5d7 − 144c1
2d6

2 − 160c1c2d1d10 − 288c1c2d2d9

−384c1c2d3d8 − 448c1c2d4d7 − 480c1c2d5d6 − 144c1c3d1d9 − 256c1c3d2d8

−336c1c3d3d7 − 384c1c3d4d6 − 200c1c3d5
2 − 128c1c4d1d8 − 224c1c4d2d7

−288c1c4d3d6 − 320c1c4d4d5 − 112c1c5d1d7 − 192c1c5d2d6 − 240c1c5d3d5

−128c1c5d4
2 − 96c1c6d1d6 − 160c1c6d2d5 − 192c1c6d3d4 − 80c1c7d1d5

−128c1c7d2d4 − 72c1c7d3
2 − 64c1c8d1d4 − 96c1c8d2d3 − 48c1c9d1d3 − 32c1c9d2

2

−32c1c10d1d2 − 8c1c11d1
2 − 72c2

2d1d9 − 128c2
2d2d8 − 168c2

2d3d7 − 192c2
2d4d6

−100c2
2d5

2 − 128c2c3d1d8 − 224c2c3d2d7 − 288c2c3d3d6 − 320c2c3d4d5

−112c2c4d1d7 − 192c2c4d2d6 − 240c2c4d3d5 − 128c2c4d4
2 − 96c2c5d1d6

−160c2c5d2d5 − 192c2c5d3d4 − 80c2c6d1d5 − 128c2c6d2d4 − 72c2c6d3
2

−64c2c7d1d4 − 96c2c7d2d3 − 48c2c8d1d3 − 32c2c8d2
2 − 32c2c9d1d2 − 192c2

2d4d6

−100c2
2d5

2 − 128c2c3d1d8 − 224c2c3d2d7 − 288c2c3d3d6 − 320c2c3d4d5

−112c2c4d1d7 − 192c2c4d2d6 − 240c2c4d3d5 − 128c2c4d4
2 − 96c2c5d1d6

−160c2c5d2d5 − 192c2c5d3d4 − 80c2c6d1d5 − 128c2c6d2d4 − 72c2c6d3
2 − 64c2c7d1d4

−96c2c7d2d3 − 48c2c8d1d3 − 32c2c8d2
2 − 32c2c9d1d2 − 8c2c10d1

2 − 56c3
2d1d7

−96c3
2d2d6 − 120c3

2d3d5 − 64c3
2d4

2 − 96c3c4d1d6 − 160c3c4d2d5 − 192c3c4d3d4

−80c3c5d1d5 − 128c3c5d2d4 − 72c3c5d3
2 − 64c3c6d1d4 − 96c3c6d2d3 − 48c3c7d1d3

−32c3c7d2
2 − 32c3c8d1d2 − 8c3c9d1

2 − 40c4
2d1d5 − 64c4

2d2d4 − 36c4
2d3

2

−64c4c5d1d4 − 96c4c5d2d3 − 48c4c6d1d3 − 32c4c6d2
2 − 32c4c7d1d2 − 8c4c8d1

2

−24c5
2d1d3 − 16c5

2d2
2 − 32c5c6d1d2 − 8c5c7d1

2 − 4c6
2d1

2
)

,

d14 = − 1
14d1(Q2β2 − 4c02)

(
26Q2β2d2d13 + 36Q2β2d3d12 + 44Q2β2d4d11

+50Q2β2d5d10 + 54Q2β2d6d9 + 56Q2β2d7d8 + 26Q2βd1d13 + 48Q2βd2d12

+66Q2βd3d11 + 80Q2βd4d10 + 90Q2βd5d9 + 96Q2βd6d8 + 49Q2βd7
2

+12Q2d1d12 + 22Q2d2d11 + 30Q2d3d10 + 36Q2d4d9 + 40Q2d5d8 + 42Q2d6d7

−104c0
2d2d13 − 144c0

2d3d12 − 176c0
2d4d11 − 200c0

2d5d10 − 216c0
2d6d9

−224c0
2d7d8 − 104c0c1d1d13 − 192c0c1d2d12 − 264c0c1d3d11 − 320c0c1d4d10

−360c0c1d5d9 − 384c0c1d6d8 − 196c0c1d7
2 − 96c0c2d1d12 − 176c0c2d2d11

−240c0c2d3d10 − 288c0c2d4d9 − 320c0c2d5d8 − 336c0c2d6d7 − 88c0c3d1d11

−24c5
2d2d3 − 24c5c6d1d3 − 16c5c6d2

2 − 16c5c7d1d2 − 4c5c8d1
2 − 8c6

2d1d2 − 4c6c7d1
2
)

,
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−160c0c3d2d10 − 216c0c3d3d9 − 256c0c3d4d8 − 280c0c3d5d7 − 144c0c3d6
2

−80c0c4d1d10 − 144c0c4d2d9 − 192c0c4d3d8 − 224c0c4d4d7 − 240c0c4d5d6

−72c0c5d1d9 − 128c0c5d2d8 − 168c0c5d3d7 − 192c0c5d4d6 − 100c0c5d5
2

−64c0c6d1d8 − 112c0c6d2d7 − 144c0c6d3d6 − 160c0c6d4d5 − 56c0c7d1d7

−96c0c7d2d6 − 120c0c7d3d5 − 64c0c7d4
2 − 48c0c8d1d6 − 80c0c8d2d5

−96c0c8d3d4 − 40c0c9d1d5 − 64c0c9d2d4 − 36c0c9d3
2 − 32c0c10d1d4

−48c0c10d2d3 − 24c0c11d1d3 − 16c0c11d2
2 − 16c0c12d1d2 − 4c0c13d1

2

−48c1
2d1d12 − 88c1

2d2d11 − 120c1
2d3d10 − 144c1

2d4d9 − 160c1
2d5d8

−168c1
2d6d7 − 88c1c2d1d11 − 160c1c2d2d10 − 216c1c2d3d9 − 256c1c2d4d8

−280c1c2d5d7 − 144c1c2d6
2 − 80c1c3d1d10 − 144c1c3d2d9 − 192c1c3d3d8

−224c1c3d4d7 − 240c1c3d5d6 − 72c1c4d1d9 − 128c1c4d2d8 − 168c1c4d3d7

−192c1c4d4d6 − 100c1c4d5
2 − 64c1c5d1d8 − 112c1c5d2d7 − 144c1c5d3d6

−160c1c5d4d5 − 56c1c6d1d7 − 96c1c6d2d6 − 120c1c6d3d5 − 64c1c6d4
2

−48c1c7d1d6 − 80c1c7d2d5 − 96c1c7d3d4 − 40c1c8d1d5 − 64c1c8d2d4 − 36c1c8d3
2

−32c1c9d1d4 − 48c1c9d2d3 − 24c1c10d1d3 − 16c1c10d2
2 − 16c1c11d1d2 − 4c1c12d1

2

−40c2
2d1d10 − 72c2

2d2d9 − 96c2
2d3d8 − 112c2

2d4d7 − 120c2
2d5d6

−72c2c3d1d9 − 128c2c3d2d8 − 168c2c3d3d7 − 192c2c3d4d6 − 100c2c3d5
2

−64c2c4d1d8 − 112c2c4d2d7 − 144c2c4d3d6 − 160c2c4d4d5 − 56c2c5d1d7

−96c2c5d2d6 − 120c2c5d3d5 − 64c2c5d4
2 − 48c2c6d1d6 − 80c2c6d2d5 − 96c2c6d3d4

−40c2c7d1d5 − 64c2c7d2d4 − 36c2c7d3
2 − 32c2c8d1d4 − 48c2c8d2d3 − 24c2c9d1d3

−16c2c9d2
2 − 16c2c10d1d2 − 4c2c11d1

2 − 32c3
2d1d8 − 56c3

2d2d7 − 72c3
2d3d6

−80c3
2d4d5 − 56c3c4d1d7 − 96c3c4d2d6 − 120c3c4d3d5 − 64c3c4d4

2 − 48c3c5d1d6

−80c3c5d2d5 − 96c3c5d3d4 − 40c3c6d1d5 − 64c3c6d2d4 − 36c3c6d3
2 − 32c3c7d1d4

−48c3c7d2d3 − 24c3c8d1d3 − 16c3c8d2
2 − 16c3c9d1d2 − 4c3c10d1

2 − 24c4
2d1d6

−40c4
2d2d5 − 48c4

2d3d4 − 40c4c5d1d5 − 64c4c5d2d4 − 36c4c5d3
2 − 32c4c6d1d4

−48c4c6d2d3 − 24c4c7d1d3 − 16c4c7d2
2 − 16c4c8d1d2 − 4c4c9d1

2 − 16c5
2d1d4

−24c5
2d2d3 − 24c5c6d1d3 − 16c5c6d2

2 − 16c5c7d1d2 − 4c5c8d1
2 − 8c6

2d1d2 − 4c6c7d1
2
)

,

d15 = − 1
30d1(Q2β2 − 4c02)

(
56Q2β2d2d14 + 78Q2β2d3d13 + 96Q2β2d4d12

+110Q2β2d5d11 + 120Q2β2d6d10 + 126Q2β2d7d9 + 64Q2β2d8
2 + 56Q2βd1d14

+104Q2βd2d13 + 144Q2βd3d12 + 176Q2βd4d11 + 224Q2βd7d8 + 26Q2d1d13

+48Q2d2d12 + 66Q2d3d11 + 80Q2d4d10 + 90Q2d5d9 + 96Q2d6d8 − 384c0
2d4d12

−440c0
2d5d11 − 224c0c1d1d14 − 480c0

2d6d10 − 504c0
2d7d9 − 128c0c8d4

2

−72c0c10d3
2 − 32c0c12d2

2 − 8c0c14d1
2 − 200c1c5d5

2 − 128c1c7d4
2 − 32c1c11d2

2

−8c1c13d1
2 − 200c2c4d5

2 − 32c2c10d2
2 − 8c2c12d1

2 − 72c3
2d1d9 − 128c3

2d2d8

−168c3
2d3d7 − 192c3

2d4d6 − 32c3c9d2
2 − 8c3c11d1

2 − 120c4
2d3d5 − 32c4c8d2

2

−4c7
2d1

2
)

.
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−64c5
2d2d4 − 32c5c7d2

2 − 24c6
2d1d3 − 224c0

2d2d14 − 312c0
2d3d13 − 392c0c2d7

2

−288c0c4d6
2 − 200c0c6d5

2 − 104c1
2d1d13 − 192c1

2d2d12 − 264c1
2d3d11

−320c1
2d4d10 − 360c1

2d5d9 − 384c1
2d6d8 − 288c1c3d6

2 − 88c2
2d1d11 − 160c2

2d2d10

−216c2
2d3d9 − 256c2

2d4d8 − 280c2
2d5d7 − 128c2c6d4

2 − 128c3c5d4
2 − 56c4

2d1d7

−96c4
2d2d6 − 8c4c10d1

2 − 8c5c9d1
2 − 8c6c8d1

2 − 576c0c3d4d9 − 160c0c5d1d10

−288c0c5d2d9 − 384c0c6d4d6 − 64c0c11d1d4 − 160c1c8d2d5 − 72c1c9d3
2

−384c2c3d3d8 − 336c2c4d3d7 − 384c2c4d4d6 − 80c2c8d1d5 − 128c2c8d2d4

−72c2c8d3
2 − 64c2c9d1d4 − 96c2c9d2d3 − 72c3c7d3

2 − 72c4c6d3
2 − 40c5

2d1d5

−96c5c6d2d3 − 576c0c1d3d12 − 704c0c1d4d11 − 800c0c1d5d11 − 864c0c1d6d9

−208c0c2d1d13 − 528c0c2d3d11 − 640c0c2d4d10 − 720c0c2d5d9 − 768c0c2d6d8

−192c0c3d1d12 − 640c0c3d5d8 − 320c0c4d2d10 − 512c0c4d4d8 − 560c0c4d5d7

−448c0c5d4d7 − 480c0c5d5d6 − 144c0c6d1d9 − 256c0c6d2d8

−128c0c7d1d8 − 320c0c7d4d5 − 192c0c9d3d4 − 96c0c11d2d3 − 48c0c12d1d3

−32c0c13d1d2 − 672c1c2d6d7 − 320c1c3d2d10 − 432c1c3d3d9 − 512c1c3d4d8

−560c1c3d5d7 − 160c1c4d1d10 − 288c1c4d2d9 − 384c1c4d3d8 − 448c1c4d4d7

−480c1c4d5d6 − 144c1c5d1d9 − 256c1c5d2d8 − 336c1c5d3d7 − 48c1c11d1d3 − 32c1c12d1d2

−448c2c3d4d7 − 480c2c3d5d6 − 144c2c4d1d9 − 256c2c4d2d8 − 224c2c5d2d7 − 160c2c7d2d5

−192c2c7d3d4 − 48c2c10d1d3 − 32c2c11d1d2 − 96c3c6d1d6 − 160c3c6d2d5 − 48c3c9d1d3

−32c3c10d1d2 − 48c4c8d1d3 − 32c4c9d1d2 − 48c5c7d1d3 − 32c5c8d1d2

−416c0c1d2d13 − 704c0c1d4d11 − 384c0c2d2d12 − 720c0c2d5d9 − 352c0c3d2d11

−672c0c3d6d7 − 176c0c4d1d11 − 432c0c4d3d9 − 512c0c4d4d8 − 560c0c4d5d7

−384c0c5d3d8 − 288c0c7d3d6 − 112c0c8d1d7 − 192c0c8d2d6 − 240c0c8d3d5

−96c0c9d1d6 − 160c0c9d2d5 − 128c0c10d2d4 − 192c1c2d1d12 − 352c1c2d2d11

−480c1c2d3d10 − 576c1c2d4d9 − 640c1c2d5d8 − 176c1c3d1d11 − 480c1c4d5d6

−384c1c5d4d6 − 128c1c6d1d8 − 224c1c6d2d7 − 288c1c6d3d6 − 320c1c6d4d5

−112c1c7d1d7 − 192c1c7d2d6 − 240c1c7d3d5 − 192c1c8d3d4 − 64c1c10d1d4

−96c1c10d2d3 − 160c2c3d1d10 − 288c2c3d2d9 − 288c2c5d3d6 − 320c2c5d4d5

−112c2c6d1d7 − 192c2c6d2d6 − 240c2c6d3d5 − 96c2c7d1d6 − 128c3c4d1d8

−224c2c4d2d7 − 320c3c4d4d5 − 112c3c5d1d7 − 192c3c5d2d6 − 240c3c5d3d5

−96c3c6d1d6 − 160c3c6d2d5 − 192c3c6d3d4 − 80c3c7d1d5 − 128c3c7d2d4

−64c3c8d1d4 − 96c3c8d2d3 − 96c4c5d1d6 − 160c4c5d2d5 − 80c4c6d1d5

−128c4c6d2d4 − 64c4c7d1d4 − 32c6c7d1d2 + 200Q2βd5d10 + 216Q2βd6d9

+49Q2d7
2 − 256c0

2d8
2 − 896c1d7d8 − 480c0c3d3d10 − 336c0c6d3d7

−224c0c7d2d7 − 80c0c10d1d5 − 196c1
2d7

2 − 96c1c8d1d6 − 80c1c9d1d5

−128c1c9d2d4 − 144c2
2d6

2 − 128c2c5d1d8 − 100c3
2d5

2 − 288c3c4d3d6

−64c4
2d4

2 − 192c4c5d3d4 − 96c4c7d2d3 − 36c5
2d3

2 − 64c5d1d4 − 16c6
2d2

2

−4c7
2d1

2
)

.
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