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Abstract: Human gait analysis is a standard method used for detecting and diagnosing diseases
associated with gait disorders. Wearable technologies, due to their low costs and high portability,
are increasingly being used in gait and other medical analyses. This paper evaluates the use of
low-cost homemade textile pressure sensors to recognize gait phases. Ten sensors were integrated
into stretch pants, achieving an inexpensive and pervasive solution. Nevertheless, such a simple
fabrication process leads to significant sensitivity variability among sensors, hindering their adoption
in precision-demanding medical applications. To tackle this issue, we evaluated the textile sensors for
the classification of gait phases over three machine learning algorithms for time-series signals, namely,
random forest (RF), time series forest (TSF), and multi-representation sequence learner (Mr-SEQL).
Training and testing signals were generated from participants wearing the sensing pants in a test run
under laboratory conditions and from an inertial sensor attached to the same pants for comparison
purposes. Moreover, a new annotation method to facilitate the creation of such datasets using an
ordinary webcam and a pose detection model is presented, which uses predefined rules for label
generation. The results show that textile sensors successfully detect the gait phases with an average
precision of 91.2% and 90.5% for RF and TSF, respectively, only 0.8% and 2.3% lower than the same
values obtained from the IMU. This situation changes for Mr-SEQL, which achieved a precision of
79% for the textile sensors and 36.8% for the IMU. The overall results show the feasibility of using
textile pressure sensors for human gait recognition.

Keywords: textile sensors; gait analysis; supervised machine learning; smart clothes; multivariate
time series classification; data annotation

1. Introduction

Gait analysis is a process in which measurements are recorded and interpreted to
characterize how a patient walks. Through this analysis, a health professional can make
decisions on the patient in treatment [1,2]. For example, gait analysis tools can help distin-
guish between different diseases [3], evaluate an injury’s severity or extension, monitor the
patient’s surgery recovery, or assess whether a kinesiology treatment has been effective for
the patient or not [4]. Additionally, gait analysis is important to detect early neurological or
musculoskeletal diseases [5]. Therefore, gait analysis has a wide field of application [6,7].

The human gait cycle is characterized by a step succession in time that involves many
body movements. This cycle is analyzed separately by each foot or leg, dividing it into two
main phases: the support phase, which corresponds to the time that the foot is in contact
with the ground, and the swing phase, which consists of the time in which the foot is in
the air. Both phases have several sub-phases, which are also usually integrated into the
gait analysis, together with the measurement of other spatiotemporal parameters, such
as the stride’s length or width, among others [8,9]. Different measurement systems can
obtain spatiotemporal parameters [10]. Nowadays, the most widely used system for this
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is based on motion captures using arrays of infrared cameras [11,12] since they provide
a three-dimensional analysis based on reliable and precise measurements of the human
movement [5,7]. However, these systems have drawbacks, such as high implementation
costs and the need for expert supervision, reaching fees greater than USD 30,000 [13] for
the patients. Moreover, several authors have pointed out that camera-based analyses
negatively impact the representativeness of the measurements compared to real-world
situations because the patient is aware of being observed [13–16].

Recent research has focused on obtaining these spatiotemporal parameters of interest
through wearable devices that, unlike infrared cameras, can be used both inside and
outside the medical facility [17,18]. In addition, they usually have lower prices [13] because
they are based on cheap MEMs inertial technology, such as accelerometers, gyroscopes,
magnetometers, or the combination of those [19–21]. However, inertial measurement units
(IMUs) and accelerometers have intrinsic drift errors that grow over time as a result of the
continuous integration of the signals when the limb positions or angles are calculated [22].
Some solutions that include multiple body sensor(s) (BSN) powered by IMUs can accurately
measure spatiotemporal parameters and leg flexion angles. However, the stiffness and size
of the holding printed circuits boards (PCBs) used by the IMUs limit the pervasiveness of
the solution, commonly limiting the free movement of the patient when walking. Moreover,
even though recent commercial products have made improvements in that regard, such as
the MEVA e-skin pants, from the manufacturer Xenoma [23], their acceptance among older
adults, the main target population for these devices, is debatable [24].

The research on sensing wearables, such as insoles to measure foot pressure [25],
or smart clothes [26,27], has increased in the last years with great results. This type of
approach has the advantage of being more pervasive and appropriate for applications
where it is necessary to measure continuously or outside the laboratory. Kim et al. [28]
developed a full-body motion-sensing suit based on stretch sensors, which can be suitable
for gait analysis applications. Nie et al. [29] developed a smart insole with an array of textile
pressure sensors to map plantar stress distribution, which can be used for human gait
analysis. Aqueveque et al. [30] studied the use of two templates with capacitive pressure
sensors, successfully segmenting phases and sub-phases of the gait cycle in test participants.
Furthermore, Lou et al. [31] manufactured a new graphene-based pressure sensor to
measure plantar pressure in gait analysis. On the other hand, flexible pressure sensors have
been used to attach to the legs to measure muscle activity and motion detection [32,33], but
not yet for gait analyses.

This work aims to evaluate the use of low-cost and easy-to-build textile pressure
sensors in human gait analysis applications, focusing on recognizing each leg’s swing
and stance phases. This goal was achieved by assembling and fixing the flexible pressure
sensors to auxiliary expandable fabric pants, distributing them equally on the muscles
of the legs and knees. This pant provides a pervasive solution that can be used indoors
and outdoors.

Aside from gait analysis, textile sensors have benefits over IMU sensors in other
applications, such as preventing ulcers of bedridden patients by measuring the exact spot
where excessive or permanent force is applied. IMUs are not appropriate for this application
since they measure acceleration and not pressure. Other similar uses of textile sensors
might include lifestyle applications to let users know if they have been seated too long,
during office work, or driving.

Low-cost sensors are more suitable for continuous analysis during long periods (weeks,
months) using pants since users require many changes of clothes for hygiene reasons. In
addition, users are more prone to frequently use low-cost wearable devices without wear
and tear concerns than expensive ones. Low-cost sensors also enable multiple sensing
points in the pants, increasing the ability of the system to detect specific gait phases.
In contrast, other solutions might not require multiple sensing points, e.g., sensors that are
located under the soles of the feet, such as insoles, shoes, or socks. These sensors have great
results in gait analysis due to the direct measure of the physical phenomenon associated
with walking; however, they might have trouble detecting other gait phases or parameters,
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such as flexion angles. Accordingly, we aim at using multiple textile sensors to estimate
flexion angles of each leg simultaneously without the need for IMUs. Nevertheless, this
will be part of future work since this task requires more sophisticated machine learning
techniques than those used in this work, given the nonlinear behavior of sensors, as
explained below. At this moment, our proposed method is meant to complement the
traditional solutions mentioned above, aiming to advance in fully wearable applications, to
help patients with mobility impairments, e.g., elderly people, in a pervasive way.

Nevertheless, inexpensive textile sensors are prone to manufacturing tolerances, lead-
ing to sensitivity variations among sensors of the same characteristics. This drawback
would exclude such sensing devices from precision-demanding applications, as those in
the medical domain. However, commercial wearable applications, such as StretchSense
products [34], demonstrate that textile sensors combined with machine learning (ML) meth-
ods can be helpful, even though this particular manufacturer focuses on high precision
motion capture of hands. Therefore, their technology is more sophisticated and expensive
than the proposed method.

ML methods can learn characteristics from various physical systems. Accordingly,
we evaluated different ML algorithms for multivariate temporal signals—namely, random
forest, time series forest, and Mr-SEQL—on the signals generated by our textile sensors
to conduct a primitive gait analysis process. The analysis consisted of classifying three
different gait cycle phases.

In addition, we evaluated the performance of the textile sensors and the ML algorithms
by conducting a trial on three test subjects. The subjects also used IMU sensors on the tests,
whose signals were processed with the same ML algorithms for comparison purposes. The
experimental results showed that the estimations of the gait phases ere classified similarly
for both types of sensors, so the first contribution of this work is the evaluation that shows
that the use of low-cost textile technology is feasible for mobility monitoring of people in a
pervasive fashion.

The second contribution of this work consists of introducing a new method for real-
time labeling datasets generated from sensors related to body part movements, such as
accelerometers, pressure sensors, IMUs, gyroscopes, or barometers. Datasets are necessary
to train ML algorithms or models. In the case of supervised learning of temporal signals,
datasets are created from the signals the ML models will learn from but also require a set
of labels, which indicates the models in which characteristics correspond to the signals
in a particular moment. In our case, these datasets are used to train the learning models
to recognize a person’s movements. The problem is that creating the set of labels can be
tedious since this task must be done manually.

For this reason, the proposed automatic labeling method uses a camera that captures
the participant’s movements, whose images are fed into a pose estimation model called
BlazePose [35], based on deep learning. Fortunately, the pose model is already trained
and available and returns 3D coordinates of the different parts of the participant’s body.
BlazePose allows programmers to easily understand and make decisions from the subject’s
position by comparing the coordinates of particular body parts in the model, such as the
knees or the feet. In our case, this feature allowed us to establish decision rules for the
automatic labeling of the classes based on data, such as the velocity of the toes and heels.
As a result of the labeling process, the corresponding class is printed and time-stamped in a
text file whenever the coordinate set matches any rule. Later, this file is synchronized with
the sensors’ measurements, which in our case are obtained from a wireless communicating
acquisition board attached to the stretch pants at the waist.

Source code and schematics are available in a GitHub repository [36]. Datasets are
available upon request to the corresponding author due to privacy restrictions.
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2. Materials and Methods

This section describes the textile pressure sensors used in this work and the experi-
mental setup to acquire the sensor signals. We also show how the study participants were
selected and the protocol to obtain the data for the study. Finally, we present the workflow
for the data treatment and the machine learning model evaluation.

2.1. Textile Pressure Sensor

In this study, we used resistive textile pressure sensors based on the procedure and
design outlined in [37]. Ten sensors were manufactured using office supplies and from low-
cost materials, such as (a) anti-static black bags (made of a low-density polyethylene (LDPE)
sheet (ANT006BCB)), (b) conductive Shieldex NoraDell woven fabrics, (c) conductive
threads Shieldex 117/17 DTEX, and (d) a plastic sheet, to cover the sensor with a thermo-
laminate, as shown in Figure 1a. The manufacturing process for the sensors was quick,
requiring less than ten minutes each. Then, we evaluated each sensor based on its response
to a broad range of pressures due to the dependence of its electrical characteristics on the
manufacturing process [38]. They had an approximate recovery time of 17 s for pressures
below 10 kPa. They also presented reasonably linear resistance variations for pressures
between 1 and 70 kPa, making them good candidates for motion detection or contact
detection applications. In such applications, changing pressures are measured; therefore,
knowing the trend of the measured signal is more relevant rather than a precise value [37].

(a) (b)
Figure 1. (a) Sample of the textile pressure sensors manufactured in the laboratory; (b) Textile
pressure sensors attached to the expandable fabric pants.

2.2. Experimental Setup

For this study, we strategically distributed the textile pressure sensors over different
points of both legs and attached them to expandable fabric pants, as shown in Figure 2.
They were glued and sewn to it, resulting in the prototype shown in Figure 1b. The body
parts chosen were vast hamstrings, quadriceps, femoral biceps, gastrocnemius, and patellas,
because those are locations where the muscles can perform greater pressure on the sensors.
While this amount is arbitrary and may be excessive, it is expected that they will generate
enough spatial coverage in the pants to detect all types of leg movements. The purpose
is for sensors to respond adequately to individual movements of each part of the body.
Another reason is to associate the sensors’ pressures to the angles generated when the
patient flexes his legs. The expandable fabrics pants used in this study were composed of
61% polyamide, 30% polyester, and 9% elastane, and are known as “base layer”, a kind of
winter underwear.
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Figure 2. Location of the textile pressure sensors on the expandable fabric pants.

These sensors were connected to an Arduino-based acquisition board, which was
placed in the right buttocks area for more comfortable wear (see Figure 3b). Each sensor
was sewn via two conductive threads through the pant fabrics to connect them with the
circuit. This acquisition board, which is shown in Figure 3a, connects the textile part of the
prototype and receives the measurements from the textile pressure sensor arrangement
through a 74HC4067 16-channel multiplexer. At the same time, an MPU9250 IMU sensor
was included in the electronics for comparison reasons with the signals from the textile
sensors. As mentioned, using an IMU sensor is standard for the activity assessment
of patients, as it captures physical variables associated with the patient’s movements
and positions, such as the axial components of acceleration (expressed in m/s2), angular
velocity (in rad/s), and the magnetic orientation (in µT). The microcontroller selected for the
acquisition board was an STM32F103C8T6, allowing measurements with a sampling rate
of 100 Hz. It communicates via UART with an HC-06 Bluetooth module, which wirelessly
transmits the samples to a PC, storing them in a text file using a standard terminal program.

Figure 3. (a) Acquisition card in a 3d-printed case; (b) Location of the acquisition board on the
expandable fabrics pants.

Additionally, a webcam recorded 1080p videos at 60 FPS, which served a dual purpose.
On the one hand, it served to register the experiment, to associate the temporal signals
from the sensors to the test participants’ movements. On the other hand, it enabled the
automatic real-time labeling system, which is described later in Section 2.5.1.
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2.3. Participants

Three volunteers participated in the trials to evaluate the ML algorithms. Their weight,
height, age, and BMI are presented in Table 1. At the moment of the trials, these three
volunteers had an average age of 27, an average weight of 75 kg, an average height of
1.70 m, and an average BMI of 25.7. The criterion for selecting the volunteers was that they
had no mobility impairments.

Table 1. Physical characteristics of the participants in the study.

Participant 1 Participant 2 Participant 3 All Participants

Age 27 29 24 27
Height 1.61 m 1.76 m 1.74 m 1.70 m
Weight 66 kg 75 kg 83 kg 75 kg

BMI 25.3 24.3 27.4 25.7

2.4. Study Protocol

Each participant used the pants with a sensor distribution, as shown in Figure 2. At the
beginning of the trial, the participants positioned themselves within the webcam’s frame.
They walked around for 15 min in a straight 3.5 m path (see Figure 4d), moving without
interruptions and at their own pace. Moreover, before starting the trial, the participants
were asked to perform three short jumps, which served as synchronization points between
the webcam recordings and the measurements acquired from the sensors.

(a) RSWLST (b) RSTLST (c) RSTLSW

(d) Consideration range
Figure 4. (a) Example of the right leg swing and left leg stance class; (b) Example of both leg stance
classes; (c) Example of the right leg stance and left leg swing class; (d) Data consideration range in
the camera frame of the lab setting.

2.5. Workflow

Generated datasets were processed as in the workflow shown in Figure 5. The main
blocks are (a) labeling of the sensor data, (b) data pre-processing, (c) feature extraction
and selection, and (d) the machine learning algorithms. In the end, the algorithms were
benchmarked.
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Figure 5. Workflow used to test and train the classification models from the raw data and the
generated labels.

2.5.1. Data Labeling

Since one research goal was to evaluate the ability of flexible pressure sensors to
identify the phases of swing and support in each leg, each event was assigned one of the
three possible classes based on the combinations of the phases that could be found during
the walk:

1. RSWLST: right foot swing and left foot stand (see Figure 4a);
2. RSTLSW: right foot stand and left foot swing (see Figure 4c);
3. RSTLST: stand on both feet (see Figure 4b).

A fourth “not considered” class called “NC” was assigned to those instances where
measurements were recorded out of the 15% horizontal limits of the frame, as participants
used to reduce their speed in those regions to turn and walk in the opposite direction. This
dis-acceleration at the end of the runway did not correctly represent the body movements
of a regular walk.

The event labeling process was carried out by executing a real-time pose estimation
model, called BlazePose, on webcam recording of the walk, which located 33 different
points of the human body [35].

Human gait analysis is based on gait phase recognition, identifying the moments
when a transition occurs between stand and swing phases. Therefore, the heel and toe
contact with the floor takes relevance. For each foot, the velocity at the heel and toe was
estimated using a Python code, calculating the variation in position within the frame as a
function of time of the current sample, compared to the previous one. These speeds will be
adjusted based on an approximate walking pace of 0.7 m/s and a fixed distance between
the camera and the runway.

The system allows generating labels of the three classes at a sample rate of 10 Hz,
relating each of the labels with a timestamp measured in seconds of program execution.
Both data are stored in a text file at the end of the code execution. Because this labeling
system is not robust yet, the generated labels were reviewed by visual inspection of the
videos, and misclassifications were fixed. The performance of this system is evaluated in
Section 3.2.

It is worth mentioning that this labeling rate is ten times lower than the sampling rate
of the sensing data at the acquisition board. Therefore, once labels were generated and the
sensor measurements were acquired, both timestamps were synchronized using the jumps
performed by the participants as a reference point. Labels were interpolated after this was
done, associating each sensor measurement to a class.
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2.5.2. Data Pre-Processing

The next step in the workflow was performed in MATLAB. It consisted of pre-
processing the multiple raw data channels generated by the participants’ sensors during
the tests. This step was necessary to properly condition the signals before using them in
the next characteristic extraction stage. The pre-processing stage included five parts, as
described and listed below.

1. Every data instance labeled as “NC” was removed from the dataset since they did not
represent a regular walk in the participants’ gait cycles;

2. Any instance that had missing or incomplete data due to transmission failures during
the acquisition was deleted;

3. The outliers of each signal were identified using the isoutlier function of MATLAB.
This value was replaced with the average plus the standard deviation;

4. A fifth-order low-pass Butterworth filter with a cutoff frequency of 20 Hz was applied
to filter out the high-frequency noise in each signal;

5. The signals from each sensor were individually normalized using the MATLAB
function normalize, which centers the data vector at x̄ = 0 and a standard deviation
σ = 1.

Once all signals went through these steps, the signals from the IMU and the textile
pressure sensors were separated into two different files, generating two datasets with the
same time stamps and labels and storing them in a file in ARFF format.

2.5.3. Feature Extraction and Selection

For the selection of characteristics, we applied an automated extraction method using
the Python package, called tsfresh [39], which integrates 63 different time signal character-
ization methods and allows to calculate a maximum of 794 characteristics of time series.
This package is integrated into the Python library named Sktime [40], being used not
only for features extraction but also to select the features that will be more representative
for the type of data used by the function TSFreshRelevantFeatureExtractor. As a result,
270 features were obtained from the textile sensor set, including characteristics in the time
and frequency domains. In contrast, for the datasets created with the IMU signals, 269
features were selected.

2.5.4. Machine Learning Algorithms

In order to evaluate the performances of the sensors for the recognition of the swing
and stance phases of each leg, three standard machine learning algorithms used in the
multivariate time series were benchmarked [41].

1. Random forest: this algorithm is characterized by deciding which class an entry
corresponds to when evaluating a set of randomly generated and trained decision
trees [42];

2. Time series forest (TSF): this classification algorithm is a meta-estimator and variant
of the random forest algorithm for time series data. The data fit several decision
tree classifiers on various sub-samples of a transformed dataset. It uses averages
to improve predictive accuracy and control overfitting. For this algorithm, the sub-
sample size is always the same as the original input sample size, but samples are
drawn with replacements [43];

3. Mr-SEQL: this algorithm is used to classify the univariate time series to train clas-
sification models (logistic regression) with characteristics extracted from multiple
symbolic representations of time series (SAX), extracting features through the use of
SEQL [44]. This method can be used for multivariate, such as ours, using a column
assembly method.
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2.5.5. Performance Evaluation

The measurements obtained using the flexible pressure sensors and the IMU were
synchronized temporally with the labels generated with the BlazePose method, creating
eight datasets. These datasets were used later to train and test the classification models
trained with different machine learning algorithms, mentioned in Section 2.5.4. Four of
the eight datasets included only the flexible pressure sensor measurements and, for the
other four, the IMU measurements. From one of these four datasets, three matched to the
measurements of each test participant separately, and in the fourth, samples from the three
pooled test participants were evaluated in a single dataset.

The performance evaluation of the classification models was carried out based on
standard metrics used in machine learning, namely, the accuracy and confusion matrices.
This way, it is possible to validate the results obtained with the flexible pressure sensors by
contrasting them with those obtained with the IMU. In addition, it can be evaluated if the
use of the flexible sensors requires an individual calibration process for each participant
that uses the smart pants.

3. Results

In this section, we present the results of the proposed method. First, we describe the
procedure in which the data were collected. Then, we describe the results regarding the
auto-labeling method, and finally, we describe the results of the gait phases classification.

3.1. Measured Data

All three participants completed the study protocol successfully, generating seconds
more than 15 min of measurements collected at 100 Hz, equivalent to more than 90,000 sam-
ples per participant and 270,000 in total. As mentioned in the Section 2.5.2, all instances
labeled as “NC” were eliminated from the total data, and also any sample that had a failure
during transmission. This information is summarized in Table 2, where it is shown that after
preprocessing the samples, the dataset available for training and testing the classification
models was reduced on average to 50.81%, compared to the original data, in which more
than 99.64% of the deleted data corresponded to “NC” instances.

Table 2. Number of samples obtained in each stage of the process and percentage used.

Participant 1 Participant 2 Participant 3

Raw data 90,455 92,201 94,092
Data without NC 46,357 47,170 47,272

Pre-processed data 46,192 47,151 47,244
Percentage used 51.06% 51.16% 50.21%

Figure 6 shows a sample of the textile pressure sensor signals located on the knees
while walking three steps.
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Figure 6. Sample of collected textile pressure sensor raw data located over a participant’s patellas
during two strides.
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3.2. Labeling Method

The automatic label generation method explained in Section 2.5.1 was applied for the
three participants while recording the sensor signals in text files and their movements in
video recordings simultaneously. From these videos, it was possible to correct misassigned
classes manually. The difference between the automatic labeling system’s predictions and
those observed in the recordings was used to calculate the system’s precision for each class.
In other words, the number of true positives was divided by the sum of false positives and
true positives, resulting in the results shown in Table 3, where percentages for each class
and participant are shown. In addition, precision was calculated for each participant based
on the correctly predicted classes over the total. The results show 87.66% for participant 1,
90.9% for participant 2, and 92.81% for participant 3.

Table 3. Precision percentage of the labeling system for each class and participant.

Class Participant 1 Participant 2 Participant 3

RSTLST 99.53 99.79 99.39
RSTLSW 76.81 80.06 89.55
RSWLST 87.53 89.76 87.94

3.3. Classification of Gait Phases

The data from the textile pressure sensors and those from the IMU were separated
into two attribute-relation file format (ARFF) files for each participant, generating a total of
eight databases. Each database was used to train and evaluate three classification models,
whose results are presented next.

3.3.1. Precision

Precision was the key metric observed out of the 24 evaluations (three classification
models for eight databases). It measured the percentages of correctly predicted cases
over the addition of false positives and true positives cases. Algorithms were tested
over the datasets generated from each participant, individually, and also over a single
dataset, which included all participants’ signals. Table 4 shows the precision of the trained
classification models, in which the test set corresponded to 20% of the dataset’s total, and
80% corresponded to training. The comparison of the precision achieved by the models
trained with the textile pressure and the IMU sensors is as follows. In the case of the
individual datasets (participants 1–3), it can be noted that the precision of random forest
(RF) combined with the textile sensors was 2.28 ± 1.23% less than that of the IMU. For
time series forest (TSF), on the other hand, it was 1.97 ± 0.62% less than that of IMU.
Conversely, the model trained with the Mr-SEQL algorithm showed a precision for the
IMU 50% below that of the textile sensors. Nevertheless, the Mr-SEQL algorithm generally
presented lower precision values for the textile pressure sensors than the other classification
models, achieving an average precision of 81.44%. In contrast, for RF and TSF, the average
values were 90.82% and 90.43%, respectively.

Regarding the results obtained over the databases that included mixed samples of
all participants, it can be observed that despite their different physical characteristics, the
models obtained prediction precisions very similar to those obtained individually aver
each test participant. In that case, the worst result was still for the Mr-SEQL model, having
a 78.97% precision. In contrast, for RF and TSF, the values were slightly better than those
averaged from their individual cases, with 91.22% and 90.53%, respectively.
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Table 4. Precision percentage achieved with each participant and type of sensors.

Participant 1 Participant 2 Participant 3 All Participants

Algorithm IMU Textile IMU Textile IMU Textiles IMU Textile

Rand Forest 92.77 89.91 93.29 92.72 93.24 89.84 92.00 91.22
Time Series F. 92.05 89.57 93.35 92.25 92.80 89.47 92.85 90.53

Mr-SEQL 36.62 84.34 38.05 81.87 40.70 78.11 36.80 78.97

3.3.2. Confusion Matrix

The confusion matrices were estimated for each of the 24 classification models trained
and tested in this research. Figure 7 shows the confusion matrices obtained with the three
classification models for the data from the textile pressure sensors measured with partici-
pant 1, where the rows correspond to the true labels, and the columns to the predictions
made for each of the models. A consistent result was presented in the three confusion
matrices regarding the class that generated most of the erroneous classifications. Here,
“RSTLST” was similarly confused by the model with the classes “RSWLST” and “RSTLSW”,
obtaining an average error among the three models for “RSWLST” of 8.79 ± 2.49, and
9.03 ± 1.61 for “RSTLSW”. On the other hand, the two phases in which at least one leg was
swinging were distinguished very well in all classification models, with an average error of
0.5 ± 0.48.

RSTLST 82.83% 8.84% 8.33%

RSTLSW 6.06% 93.69% 0.25%

RSWLST 7.20% 0.06% 92.73%

RSTLST RSTLSW RSWLST

(a)

RSTLST 82.09% 9.79% 8.12%

RSTLSW 5.33% 94.38% 0.28%

RSWLST 8.17% 0.13% 91.70%

RSTLST RSTLSW RSWLST

(b)

RSTLST 76.75% 12.72% 10.53%

RSTLSW 9.99% 88.64% 1.36%

RSWLST 11.85% 0.93% 87.22%

RSTLST RSTLSW RSWLST

(c)
Figure 7. Confusion matrix of models trained with textile pressure sensors data from participant 1.
(a) Random forest; (b) Time-series forest (TSF); (c) Mr-SEQL. Dark colors indicate proximity to 100%.

4. Discussion

This research aimed at detecting the gait phases of test participants by combining
homemade textile pressure sensors sewn to elastic pants with classification models. This
approach would permit the continued use of more comfortable gait analysis tools at home,
especially for elderly people. The results are discussed as follows.

4.1. Results

The classification results demonstrated the feasibility of using such sensors, which—
despite being low-cost, easy-to-manufacture and, therefore, variable in terms of sensitivity—
achieved a precision of around 90–92% when combined with random forest or time-series
forest classification algorithms. This result is slightly less than the 92–93% obtained from
an IMU sensor using the same algorithms, even though such sensors are significantly more
sophisticated devices, e.g., an IMU comprises precise internal MEMS instruments, such
as a three-axial accelerometer, a three-axial gyroscope, a three-axial magnetometer, and a
barometer, which can measure height changes of the test participants. We chose such a
device comparison since it is the gold standard in gait analysis with wearable devices. We
also evaluated a Mr-SEQL algorithm, which did not obtain satisfactory results for either
the textile sensors (<84%) or the IMU sensors (<38%).
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The evaluation also shows that, despite the physical differences among the three test
participants, precision for the classification models on the textile sensor data remained
similar for all participants, combined or individually. This result indicates that using the
proposed workflow, the solution can be scaled to more participants, and an individual
calibration process would not be required. Furthermore, one of the most significant benefits
of using machine learning techniques on gait analysis applications is that precise and
consistent sensors are unnecessary. For example, as shown at the beginning of the results
section, the electrical resistance of the textile sensors for the same activity, and having
the same test participant, might vary significantly from one step to another. However,
it was possible to adequately evaluate their behaviors and detect the participants’ gait
phases. In contrast, relying on individual parameters, such as signal thresholds, requires
individual calibration processes for each sensor whenever a test is conducted since the
pressure conditions change with the person’s position and physical characteristics.

Our results show that a single IMU sensor performs similarly to ten textile sensors.
It can be argued that the former is less expensive and more comfortable than the textile
alternative. Nevertheless, some advantages of textile sensors are that they can be better
integrated into clothing when used at multiple points than multiple IMU sensors, which
require rigid printed circuits. Additionally, they are easy and fast to manufacture. For some
applications where the subject’s presence needs to be detected, textile sensors are preferable
to IMUs, since they measure pressure instead of acceleration.

In this study, we used an arbitrarily large number of sensors to generate a sufficiently
dense sensing spatial coverage on the pants. However, further analysis of the contribution
of each body part should be performed to reduce the number of sensors and define their
optimal location for future applications. Moreover, textile sensors have some aspects
to take care of. For example, to properly distinguish the pressures produced by body
movements, textile sensors must be integrated into stretch clothing that adjusts well to
the body, which might be inconvenient in hot latitudes. Moreover, designers must match
the conductive threads’ elasticity with that of the expandable fabric pants, as significant
differences will tend to produce thread breaks whenever the participants bend their legs
beyond a certain angle.

On the other hand, the data labeling system used in this research takes advantage of
the BlazePose keypoint detection and pose estimation model fed from webcam images. The
model tracks the toe and heel key points to estimate the feet velocities, among others. These
data are relevant for the gait phase detection, obtaining a precision of 90.46 ± 2.13% in the
label classification, which is remarkable for a classification system that bases its operation
only on thresholds. Furthermore, for all of the test participants, the class in which both legs
were in the stance phase showed a reliable classification, achieving an average precision
of 99.57 ± 0.17%. On the contrary, the performance was less effective for classes having
one of the legs in the swing phase, achieving an average precision of 82.14 ± 5.41% for
the “RSTLSW” class, and 88.41 ± 0.97% for the “RSWLST” class. The results show that
the proposed method can be used for labeling in real-time in supervised machine learning
applications where creating datasets of body sensors is required. For example, body MEMs
sensors, body stretch/force/pressure sensors, external microwave sensors, LiDAR sensors,
or any model that requires matching a given pose with a time-series signal for its training.
Nevertheless, the method still has space for improvements, and visual inspections of the
tests are necessary to correct classification errors. In the setup used in this studio, the errors
mainly occurred whenever the leg facing the camera occluded the other leg. In addition,
given that the participants required specific and regular walking speeds, errors occurred in
the labeling process whenever participants mismatched that speed.

4.2. Study Limitations

The study protocol used in this research was limited to a laboratory having a ceramic
floor and a regular walk, so the results did not include other types of contexts where the
participants may have presented different behaviors. Moreover, the available space and the
experimental setup in which the camera was fixed relative to the path that the participants
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followed contributed toward generating an important number of NC instances, which were
not considered in the training and testing process of the ML models. In addition, all the
participants walked at a self-selected speed, which was problematic since this variability
directly impacted the reliable measurements, contributing to the error in the whole phase
detection process. This sensor response differences could be easily evaluated using the
same workflow proposed in this article but performing the walk trials using a treadmill.

Finally, our study’s participants were approximately 27-year-old healthy men. A more
varied population should be considered, with a broader range of physical characteristics to
train and test the classification models, to obtain a more concrete answer to the question on
whether a calibration process is required or not.

4.3. Future Work

Although the predictions achieved with the proposed workflow show promising
results, real gait analysis applications require estimating more spatiotemporal parameters,
e.g., the different sub-phases of the swing and stance phases. In future work, we will extend
the number of phases. Moreover, we will exploit the potential of the pants to estimate
the flexion of the knees, being able to extract more helpful information for the diagnosis
and evaluation of gait disorders. Moreover, as the experiments were performed under
limited conditions, more measurements will be conducted, evaluating different environ-
ment conditions and optimizing the helpful information extracted from them. Finally,
another challenge in future work will be to implement this type of gait phase detection
algorithm locally and in real-time on an embedded device, thus avoiding connection with
cloud services.
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