
����������
�������

Citation: Ali, A.; Bashir, M.B.;

Hassan, A.; Hamza, R.; Alqhtani,

S.M.; Tawfeeg, T.M.; Yousif, A.

Design-Time Reliability Prediction

Model for Component-Based

Software Systems. Sensors 2022, 22,

2812. https://doi.org/10.3390/

s22072812

Academic Editors: Juan M. Corchado

and Naveen Chilamkurti

Received: 4 December 2021

Accepted: 29 March 2022

Published: 6 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Design-Time Reliability Prediction Model for Component-Based
Software Systems

Awad Ali 1, Mohammed Bakri Bashir 2,3, Alzubair Hassan 4,5, Rafik Hamza 6, Samar M. Alqhtani 7,
Tawfeeg Mohmmed Tawfeeg 8 and Adil Yousif 1,*

1 Department of Computer Science, College of Science and Arts—Sharourah, Najran University,
Sharourah 68341, Saudi Arabia; aaomar@nu.edu.sa

2 Department of Math, Turubah University College, Taif University, Taif 26571, Saudi Arabia; safi@tu.edu.sa
3 Department of Computer Science, Faculty of Computer Science and Information Technology, Shendi

University, Shendi 41601, Sudan
4 Department of Computer Science, School of Computer Science and Informatics, University College Dublin,

Belfield, D04 V1W8 Dublin, Ireland; alzubair.mohamedtahir@ucd.ie
5 Lero-the Irish Software Research Centre, Tierney Building, University of Limerick, Sreelane,

V94 NYD3 Limerick, Ireland
6 Big Data Integration Research Center, National Institute of Information and Communications Technology,

Tokyo 184-8795, Japan; rafik.hamza@nict.go.jp
7 Department of Information Systems, College of Computer Science and Information Systems,

Najran University, Najran 61441, Saudi Arabia; smalqhtani@nu.edu.sa
8 Department of Computer Science, Faculty of Computer Science and Information Technology, University of

Science and Technology, Khartoum 14411, Sudan; tawfeeg.mohammed@ust.edu.sd
* Correspondence:ayalfaki@nu.edu.sa

Abstract: Software reliability is prioritised as the most critical quality attribute. Reliability prediction
models participate in the prevention of software failures which can cause vital events and disastrous
consequences in safety-critical applications or even in businesses. Predicting reliability during design
allows software developers to avoid potential design problems, which can otherwise result in recon-
structing an entire system when discovered at later stages of the software development life-cycle.
Several reliability models have been built to predict reliability during software development. How-
ever, several issues still exist in these models. Current models suffer from a scalability issue referred
to as the modeling of large systems. The scalability solutions usually come at a high computational
cost, requiring solutions. Secondly, consideration of the nature of concurrent applications in reliability
prediction is another issue. We propose a reliability prediction model that enhances scalability by
introducing a system-level scenario synthesis mechanism that mitigates complexity. Additionally,
the proposed model supports modeling of the nature of concurrent applications through adaption
of formal statistical distribution toward scenario combination. The proposed model was evaluated
using sensors-based case studies. The experimental results show the effectiveness of the proposed
model from the view of computational cost reduction compared to similar models. This reduction is
the main parameter for scalability enhancement. In addition, the presented work can enable system
developers to know up to which load their system will be reliable via observation of the reliability
value in several running scenarios.

Keywords: software design; architecture-based prediction; component-based; reliability; software
quality; sensors

1. Introduction

As reliance on software applications is growing, software reliability analysis is un-
avoidable. Software reliability is defined as the probability that reveals the capability of a
system to perform a required service or function correctly (failure-free) in a certain environ-
ment, over a particular time [1,2]. A failure is an incorrect result or unexpected behavior
impacting the requirements of the software. Reliability prediction models participate in the

Sensors 2022, 22, 2812. https://doi.org/10.3390/s22072812 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22072812
https://doi.org/10.3390/s22072812
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7584-5775
https://doi.org/10.3390/s22072812
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22072812?type=check_update&version=2

Sensors 2022, 22, 2812 2 of 21

prevention of software failures which can cause critical events and disastrous consequences
in safety-critical applications or even in businesses.

Depending on the reliability measurement lifecycle, the measures can be taken early
in development, or later in the testing or post-deployment [3–5]. The data used in the
development are appraisal data, whereas testing data and real-world data are used for
the later measurements. The early measurements are performed to discover weak design
spots. On the other hand, the later measurements are used for component certifications and
system release decisions. The reliability models used for later measurements (testing and
post-deployment) are similar because there is no big difference between input data and the
objectives. For instance, the early reliability models focus on tackling the problems related
to the shortage of operational data before the coding and the way of modeling system
behavior precisely. The later models mainly focus on the accuracy of the prediction model
without much consideration of the approaches of data elicitation and modeling of system
behavior [6,7]. This research is oriented toward early reliability measurement because it is
the most cost-effective regarding time and budget, by avoiding reconstructing the entire
system or repeating testing.

The main goal of design-time reliability models is to predict the reliability of software
based on information related to the software architecture made out of components. Key
potential benefits that may be obtained from using architectural design artifacts as input
for the reliability model can enable comparing of different architecture options or design
alternatives. In addition, studying the sensitivity of complete application reliability to the
reliabilities of components and identifying critical components and scenarios. Furthermore,
this kind of model assists with a better understanding of the reliability requirements and
how they relate to the architectural design.

Software behavior models that are derived from requirement specifications [8–12] are
basic building blocks for design-time reliability predictions. Many studies have been carried
out based on these behavior models to predict the reliability at early design stages [7,13–18].
However, the current models need to pay more attention to scenario combination mechanism
and model scalability for larger systems [8–10,19]. The scalability problem of the model is related
to system behavior modeling. The behavior modeling is concerned with moving from scenario
specifications to state machine specifications. Unlike most reliability models, our proposed
model moves from system specification explicitly using a scenarios description language.
Developing a scalable behavior modeling approach is a key for enhancing the scalability of the
reliability model. The behavior approach can provide suitable scenario modeling that considers
the size of each scenario and the number of scenarios. The solution starts by describing the
system’s scenarios in a compact and concise manner, which leads to fewer scenarios. At the
same time, the reliability model needs to provide solutions that can mitigate computational
complexity which is another factor that hinders the scalability, by introducing a suitable reliability
calculation strategy. The main factors that can lead to complexity mitigation are (1) the reduction
in number of state machines obtained from the system behavior model and (2) the reduction in
the states within the state machine itself. In the current models these two factors are tackled
partially. Some of the models reduce the internal states of the individual state machines and
neglect the number of state machines, and the other models reduce the state machines without
consideration of the number of the internal states of the state machine itself.

Most reliability models that lack scalability rely directly on Markov notation (state
machine specifications) as their primary modeling notation and give no details on how
the states are derived. Moving to Markov provides a mathematical formula to calculate
reliability. However, this can lead to a state-space explosion problem [20]. In the proposed
model, the calculation of reliability is conducted partially. Given the scenarios represented
in the form of states, the calculation implemented via mathematical formula partially deals
with the state space. This way of partial calculation enables the computations to be carried
out with limited state space, which can mitigate the computational complexity [19,20].

The first part of this paper shows a strategy for scalable scenario modeling and
reliability calculations. It adapts our previous scenario description language named scalable
triggered scenario (s-TS), which was introduced in [12]. The s-TSs helps in describing

Sensors 2022, 22, 2812 3 of 21

scenarios of a system compactly and concisely, leading to fewer scenarios. The s-TS in
our previous work [12] was used to obtain individual components’ behavior models,
whereas in this paper, it is utilized for analysis of the complete behavior of the scenarios
to predict the reliability of the scenarios and then the whole system. The first part of this
paper also includes an approach toward improving scenarios’ traceability by avoiding
computational complexity. System scenario in the approach is translated to finite state
machines (FSMs): each FSM illustrates the behavior of a component instance inside the
scenario. The failure probability of each component that appeared in the scenario is
separately calculated depending on the FSM. Finally, a modified mathematical formula
is used to calculate the whole scenario’s reliability based on the components’ behavior
models and their related failure information.

In the second part of this paper, the scenarios’ reliabilities obtained from the first part
are used as inputs to calculate system reliability. Firstly, the system reliability is calculated
for sequential software applications. The ATM case study illustrates the calculation as an
example of sequential applications. Secondly, the method for predicting the concurrent
software applications’ reliability is introduced. A multinomial statistical distribution [21] is
used in this method as the main part of a scenario combination process. Furthermore, a
binomial distribution as another probability distribution is used to generate the probabilities
of scenarios’ failure. Finally, the automated railcar system case study [22–24] as a concurrent
software application is used to illustrate the prediction method. The automated railcar
is a sensor-based application consisting of four components—namely, a car, a cruiser, a
carHandler, and a proxSensor. More details related to the views and scenarios selected for
the case study are provided in Section 3 and Appendix B.

In the final phase of the study, the performance of the proposed model is evaluated by
comparing its performance with current models. The evaluation explores the computational
cost reduction regarding the space needed to deal with the system’s scenarios. Compared
to the existing works, the proposed model demonstrated more efficient performance.

2. Related Work

In the context of design-time reliability prediction, various models [7,13,19,25–33]
have been developed for the early design stages. These models can be classified into
gray-box [30–33] and white-box [7,13,19,25–28]. In the gray-box models, system reliability
is predicted based on the components’ reliability without knowledge of the components’
internal behavior. The components’ reliability is estimated using one of the existing black-
box techniques. In contrast, the white-box models build their techniques for estimating
individual components’ reliability based on their architectural design, which describes their
internal behavior. Our proposed model contributes and supports architecture-based white-
box modes. Furthermore, rather than relying on components reliabilities, the proposed
model goes into more depth on components’ internal behavior. The individual components’
operations that participate in the interactions within the scenario are taken into account
to obtain the reliability of the scenario. The term scalability refers to modeling large and
complex software systems. The software system’s size and its complexity depend on the
number of system operations [9,34,35] and scenarios rather than the number of compo-
nents [8,9]. The system’s complexity is measured by counting the number of operations
within the individual scenarios [8]. Computational cost incrementation is always the result
of these two factors. To compute the reliability of a complex scenario, there is a need for
enough space to fit the operations and the transitions among these operations. The number
of scenarios affects the computational cost because there is also a need for large space to
solve the final model built through scenario combination.

The scalability problem is one of the main issues that have been neglected by the
current reliability models [20], except for the study presented by Cheung et al. [36]. The
increase in the computational cost is a problem associated with scalability. Solving the
scalability problem often leads to large state space, resulting in increased computational
cost. In the approach presented in [36], scalability and computational cost reduction were
considered. It tackles scalability by truncating the scenario to sub-scenarios based on a

Sensors 2022, 22, 2812 4 of 21

hierarchical organization. Meanwhile, the separate computation of reliability of each sub-
scenario results in a reduction in computational cost. The study presented in [33] introduced
a solution for computational cost reduction that depends on state-space compression.
However, the method in [33], unlike [36,37] and our proposed method, does not depend on
the requirement specifications as the main sources for the scenario synthesizing.

Developing a scalable behavior modeling approach can play a central role in enhancing
the scalability of the reliability prediction by providing suitable scenario modeling that con-
siders the size of the scenario and the number of scenarios. Exactly, the reliability approach
should solve the scalability problem by describing the system’s scenarios in compactly and
concisely manner, which leads to fewer scenarios. At the same time, it can create a balance
between scalability and computational cost by introducing a suitable reliability calculation
strategy. Software reliability models that are designed for traditional programming tech-
niques, such as procedural and object-oriented programming, are incapable of analyzing
the reliability of the modern software methodologies. The current software, such as CBS
and SOA, requires new reliability analysis approaches to differentiate between sequential
and concurrent applications. In the sequential application, the execution transitions move
from one scenario to another in a sequence, whereas in the concurrent application, the
execution transitions move to multiple scenarios running concurrently. Therefore, predict-
ing the reliability in sequential software is different compared to concurrent software [15].
In recent literature, most approaches have not paid much attention to the nature of the
concurrent applications and their required modeling [16,33].

Table 1 summarizes our findings regarding the features supported by our proposed
model compared to current design-time software reliability prediction models. These fea-
tures are (1) representation of the nature of the concurrency applications, (2) components’
behavior tackled at operations level and (3) scalability enhancement. A checkmark X indi-
cates supporting the feature fully, and the cross × indicates not supporting it. A checkmark
in parentheses (X) means that a model partially supports the feature. The models presented
in Table 1 can be classified into three groups. The first group includes the models in [7,25,28].
These models use behavior modeling tools built on architecture descriptions and UML
diagrams, such as use case diagrams (UCD), statechart and component diagrams (CDs).
The behavior modeling tools are named rich architecture definition language (RADL),
Palladio component model (PCM) and communicating automata with probabilistic transi-
tions (CAWPTs), respectively. These behavior modeling tools produce finite state machines
(FSM) or the notations of the Markov Model (MM) as outputs. The reliability is calculated
based on discrete-time Markov chains (DTMC) or continuous-time Markov chains (CTMC).
However, these tools are not available to download or as commercial products, unlike
others. Moreover, the sequence chart, which can control time-dependent behavior system
modeling, is not part of any of these models.

Sensors 2022, 22, 2812 5 of 21

Table 1. Comparison of design-time reliability prediction models.

Model Year
Behavior

Model
Notations

Reliability Calculation
Model Concurrency Operation-

Level Scalability

Singh et al. [36] 2001 UCD+SDs scenarios failure formula
+ bayesian × (X) (X)

Reussner et al. [25] 2003 RADL DTMC × X ×
Yacoub et al. [30] 2004 MSCs PDG + algorithm × × ×
Rodrigues et al. [35] 2005 MSCs DTMC × (X) (X)
Roshandel et al. [27] 2007 MM DTMC+ bayesian × (X) ×

Hsu and Huang [31] 2011 MM path failure formulas+
semi truncation strategy (X) (X) (X)

Brosch et al. [7] 2011 PCM DTMC + algorithms +
simulation (X) X ×

Benes et al. [28] 2012 CAWPT DTMC+PLT- logic based
model × X ×

Tyagi and
Sharma [32] 2012 Text-based fuzzy-logic-based model (X) × ×

Cheung et al. [16] 2012 SDs + MM CTMC + Truncation
strategy (X) (X) (X)

El Kharboutly and
Gokhale [33] 2014 MM CTMC+ scenarios

compressing × (X) (X)

Hou et al. [19] 2018 UCD + MM PDG + algorithm × × ×
Tarinejad et al. [13] 2021 MM DTMC × × ×

Our proposed model 2022 s-TS + FSMS
modified scenarios
failure formula +
multinomial distribution

X X X

The models presented in [16,30,35,36] represent the second group, which uses sequence
diagrams (SDs) or message sequence charts (MSCs), which are pretty similar. SDs and
MSCs use a link to facilitate the conversion from system specifications to MM. SDs and
MSCs are powerful scenario description tools. However, the s-TS scenario language
presented in our proposed model is similar to SDs and MSCs. Furthermore, it provides
more solutions toward scalability enhancement by describing the scenarios compactly
and concisely. The third group is represented by the models in [13,19,27,31,33]. In these
models, MM notation is used directly to generate probabilistic dependency graphs (PDG)
to model the interactions among components and to calculate reliability algorithmically
based on PDG. PDG and MM can be mapped to CTMC or DTMC for reliability calculations.
Most of the models presented in the table lack support for the three features checked in
the columns in Table 1, though there are exceptions [16,31,33] that support the features
partially. Solutions for scalability enhancement must be provided in behavior modeling
and reliability calculations.

Behavior modeling needs tools that can facilitate the move from system specifica-
tions to MM. Furthermore, we need scalability and time-dependent behavior modeling
capabilities. Modeling tools are preferred to provide UML-like notation familiar to the
system developers. For example, solutions that relate to the facilitation of the conversion
from system specifications to MM are presented in [7,16]. Such a solution is required
for a realistic interpretation of the model by the system’s architect. In addition, more
strategies for scenario division and compression, presented in [16,31,33], are required to
support scalability.

3. The Proposed Model

The proposed model has several activities, as detailed in Figure 1. These activities are
divided into two main phases. The first phase illustrates the activities required for behavior
modeling and scenarios’ reliability calculation. The second phase describes the scenarios’
combination mechanism and the determination of system reliability.

Sensors 2022, 22, 2812 6 of 21

Figure 1. The proposed model’s phases and activities.

As shown in Figure 1, model activities start by describing system scenarios using
s-TS [12]. The activities of phase one are illustrated using a run-time example in Section 3.1.
Briefly, several behavior modeling steps described in our previous work [12] are applied
in phase 1. As described in Section 3.1, state machines will construct for all components
instances within a scenario. Then, in Section 3.2, the failure probability associated with each
component instance is calculated by treating its FSM separately. Hence, the calculation of
scenario reliability is conducted in limited state space to reduce the computational cost.
The component’s failure probability reveals the criticality of the component regarding the
scenario. Then, scenario’s reliability in Section 3.2 is computed using operational profile
information. At the end of phase 1, the failure probability of the whole scenario is calcu-
lated based on the failure probabilities of the components. The importance of tackling
components’ behavior independently helps construct the global system behavior model
without the need for components’ internal states (components interactions), which in large
software systems leads to the state-space explosion problem. In phase 2 of Figure 1, which is
detailed in Section 3.3 of this paper, for sequential applications, the system reliability is cal-
culated based on the table of scenarios’ occurrence probabilities. In concurrent applications
(Section 3.3.2), multinominal distribution is used to generate combination probabilities of
scenarios toward calculating combination reliabilities. The final results of these activities
are system reliability under the assumption of concurrent execution.

3.1. Behavior Modeling

Describing system scenarios using s-TS as a scenario description language annotated
with system constraints can force system architects to know the requirements and the
system behavior implied by these scenarios. This is due to s-TS language identifying
clear causality relations among dissimilar behavior directions via conditional, triggered
and preemptive behavioral representations. The most important characteristic of s-TS is
the enhancement of the scalability by describing software scenarios in a concisely and
compactly way, which leads to fewer scenarios. However, the scenario’s compaction can

Sensors 2022, 22, 2812 7 of 21

increase the number of states within the scenario, thereby increasing the computational
cost. However, this can be avoided by truncating each scenario into small units in the
reliability calculation based on the component instances.

3.1.1. Running Examples

The password verification scenario of an ATM (shown in Figure 2) was selected as an
ongoing example to illustrate the proposed model. As shown below in Figure 2, the chosen
scenario consists of three components named UI, ATM and Bank. In addition, the scenario
shown in Figure 3 of the automated railcar system [22–24] is also used in this section
as a complementary ongoing example to illustrate the behavior modeling. However, in
Section 3.2, the reset scenarios of the ATM will depict the calculations of scenario reliability.
Furthermore, in Section 3.3, which illustrates the measure of system reliability, the ATM
system is used to represent sequential software applications, and the railcar system is
used for concurrent applications. For more clarification, Appendices A and B. contain the
scenarios’ specifications and the related documents of the two case studies.

Figure 2. The password verification scenario of the ATM system.

Sensors 2022, 22, 2812 8 of 21

Figure 3. A portion of a railcar system case study is described in two sequence charts, combined
by s-TS into one chart. (a) Simple sequence chart describing scenario of car approaching terminal
with stopping at terminal. (b) Another simple sequence chart describing scenario of car approaching
terminal with passing that terminal. (c) One s-TS combining the two scenarios described in (a,b).

3.1.2. Scenario Preparation

The scenario preparation starts by modeling the scenario using s-TS [12]. s-TS is
similar to most existing triggered scenario description languages [8–10,38]. It was derived
from the basic syntax of sequence charts named labeled partial orders (LPO). s-TS uses
additional constructs to make scenarios more compact and concise. Therefore, descriptions
of system scenarios in any sequence chart syntax can be considered input for s-TS scenarios.
s-TS is a tool that can describe or combine scenarios compactly and concisely. Figure 3c
shows a s-TS scenario which is a result of combining scenarios shown in Figure 3a,b that
were described in sequence charts. A scenario in s-TS is a triple (T, M, b−msg), where T is
a trigger chart; M is a main chart; and b−msg is called the branching message, which can
be located in T or M. The trigger chart holds the events that trigger the scenario, and is
represented by LPO with ∑ (event alphabet). The M chart holds the events that occur in
response to the trigger events, and is represented by a set of LPO with ∑. Moreover, the
main chart has an alt operator and implies triggers as other held elements.

The scenario was prepared similarly to that described in our previous work [12],
though all the components within the scenario were annotated and propagated simultane-
ously and not only one component instance, as in [12]. Herein, the targeted behavior model
represents the behavior of the whole scenario, whereas in [12] the constructed behavior
model represented the behavior of one component. Figure 4b shows the scenario of pass-
word verification that has been shown in Figure 4 after the annotation and propagation.
Each component instance is annotated independently based on its state variables, as shown
in Figure 4a.

Sensors 2022, 22, 2812 9 of 21

Figure 4. The scenario of password verification after the annotation and propagation. (a) State
variables of the components participate in the scenario which is the main input for annotation.
(b) The scenario of password verification that annotated and propagated using the state variables
shown in figure (a).

Translation of the prepared s-TS scenario to FSMs. Once the system scenario of s-TS
is annotated and propagated, it will be ready to translate to FSMs. These FSMs represent
the behavior of the scenario. This procedure translates each component instance depicted
in the scenario to FSM. For example, given an s-TS, let Fi

s -TS = {S, S0, Sb, T} be an FSM
obtained from instance i in s-TS. The idea is to translate each state vector value to a state
in the FSM. Therefore, the normal states corresponding to the state vector values within
the component instance are represented by s. At the same time, S0 represents the first state
vector value. If Sb represents a branching state vector value, send messages and replay
messages of the component instance are represented by T as a transition relation. Figure 5
shows FSMs of the scenario of password verification translated from the scenario shown in
Figure 4b.

Figure 5. The FSMs obtained from the password verification scenario. (a) FSM UI component.
(b) FSM of ATM component. (c) FSM of Bank component.

Sensors 2022, 22, 2812 10 of 21

3.2. Calculating a Scenario’s Reliability

In calculating the scenario’s reliability, each FSM obtained is tackled separately to
avoid computational complexity. Therefore, the formulas and discussion of the results
obtained via these formulas are presented in the sub-sections below.

The formulas: Assume k components (comp1, comp2, . . . , compk) belong to scenario j
(Scj). Let the failure probability of compi be fi, which can be a known value. Let the invocation
number of compi within (Scj) be ni. Based on the work presented by Singh et al. [39], the
value of fij, which represents the probability that compi fails in (Scj), can be calculated by
Equation (1).

fij = 1− (1− fi)
ni (1)

Based on Equation (1), if we assume that the failure probabilities of the components
within each scenario are independent, the failure probability of Scj(fScj) can be calculated
using Equation (2):

fScj = 1−
K

∏
i=1

(1− fi)
ni (2)

The scenarios described by s-TS can participate in discovering inconsistencies related
to component interactions. These inconsistencies cause errors such as a signature mismatch
of interfaces and pre- and post-conditions. The definition and categorization of the errors
caused by these inconsistencies are beyond this paper. More details of such errors can
be found in [38]. In the component-based model, the interactions of the components are
managed through components’ required and provided services, which are implemented
by the components’ operations. Therefore, all types of these errors can be abstracted and
encapsulated in the failure probabilities of operations. In our previous work [38] and the
work presented by Singh et al. [39], the components’ failure probabilities were combined
into one metric. In this paper, a failure of the operation as an instance of component
failure is used as input for Equation (2); therefore, our calculation should be expected to be
more accurate.

From the scenario specifications depicted by s-TS, the operation invoked for each
specific component’s interaction can be determined exactly. Therefore, going back to
Equation (1), a modification can be made via replacing it by representing the failure
probabilities of the invoked operations within the scenario. Thus, Equation (1), after this
modification, can be described as follows:

fij = 1−
ln

∏
l=li

(1− f l
i) (3)

Based on Equation (3), the information required to calculate fij, which represents the
probability that the component i will fail in scenario j, is the operational failure probabili-
ties. Table 2 below shows information describing operations of the password verification
example and their related failure probabilities. As we mentioned in the previous para-
graph, these failure probabilities are the values of f l

i . The number of techniques presented
in [40,41] can be used to estimate f l

i . The techniques use the analysis of dynamic complexity,
connector couplings and the severity levels of failures of the components and the related
operations. In the case of FSM used in our behavior model, the numbers of nodes and
transitions can be used as parameters for complexity analysis. The reliability models that
use behavior models consist of the state chart diagrams and timed sequence diagrams.
Information describing the length of a component’s busy period is utilized as a parameter
to estimate an operation’s failure probability [39].

Sensors 2022, 22, 2812 11 of 21

Table 2. Operations’ failure information for the password verification scenario.

Operation Failure Probability

insertCard 0.002
enterPass 0.01

check 0.004
CheckResult 0.003
DIS_option 0.003

PassIncorrect 0.003

By recalling Equations (2) and (3), we can assume that the components’ failure proba-
bilities are independent. The failure probability of the scenario Scj that is already defined
in Equation (2) can be redefined in Equation (4) below based on the fij of Equation (3).

fij = 1−
K

∏
i=1

ln

∏
l=li

(1− f l
i) (4)

Basic assumptions related to Equations (3) and (4) are that the operations’ failures
are independent and the scenario flow is sequential. However, one of the essential char-
acteristics of s-TS is producing branching scenarios. Therefore, branching scenarios are
expected (e.g., see the three FSMs in Figure 5). To be more accurate, in the application of
Equations (2) and (4), each branch is tackled as a sequential structure. Then, the average of
the branches must be calculated before the subtraction with Equation (1).

The reliability of the scenario j is depicted as the probability of there not being a failure;
thus, the reliability of scenario j can be calculated as follows:

RScj = 1− fScj (5)

Results of scenarios’ reliability calculations. Based on the FSMs obtained from the
s-TS scenario specification, where each component instance participates in the scenario
represented by an FSM, it is time to calculate the scenario’s reliability. Firstly, the compo-
nent’s failure probabilities are calculated using the expected failure values of the operations
invoked by the components as inputs to Equation (3). Therefore, applying that to the
scenario of password verification, the failure probabilities of the components UI, ATM
and Bank were: 0.0054900, 0.0203560 and 0.0069880, respectively. These values reveal
critical components concerning the scenario and so the system. Without consideration
of the components’ branching structure, by applying Equation (4), the failure probability
of the password verification scenario is 0.03544306. Using this value of scenario failure
probability as input to Equation (5), the reliability of the scenario is 0.9645569. When taking
into account the components’ (cruiser and car) branching structure, the failure probability
of the scenario is 0.0325424, and therefore, the reliability of the scenario is 0.9674576. The
reliability value obtained by considering the branching structure differs from the other
value obtained without this consideration by 0.0038140. This difference may appear to
be relatively small. The difference is small due to the depth of the branches being great;
however, in the case of long branches, the mean is necessary because the difference will be
too big, and thus affect the prediction accuracy.

The other scenarios’ reliabilities in the ATM case study were calculated using the same
strategy. The reliabilities of scenarios 2 and 3 are 0.9635422 and 0.9468746,, respectively.
Moreover, the strategy was applied to a railcar system case study. The case study consisted
of three scenarios: a passenger in a terminal (scenario 1), a car departing from a terminal
(scenario 2) and a car approaching a terminal (scenario 3). The reliabilities of these sce-
narios were 0.9411, 0.9284 and 0.952996, respectively. These values obtained from these
two case studies are important to illustrate the idea of calculating system reliability based
on scenarios’ reliabilities, which is focused on in the rest of this paper. The ATM case study
will be used as an example for the sequential software applications and the railcar for the
concurrent applications.

Sensors 2022, 22, 2812 12 of 21

3.3. System Reliability

The approaches for predicting and analyzing a software system’s overall reliability
based on its sub-scenarios depend on the nature of the software application. The software
applications can be classified as sequential and concurrent. In sequential applications,
the execution transitions move from one scenario to another in a sequence, whereas in
concurrent applications, the execution transitions move to multiple scenarios running
concurrently. Therefore, predicting the reliability in sequential software cases is different
compared to concurrent cases [15].

3.3.1. The Reliability of Component-Based Sequential Applications

As sequential systems allow one scenario to be active, the system’s reliability (Rsys) is
calculated as a weighted mean of scenarios’ reliabilities. The weight (wj) in Equation (6)
below denotes the occurrence probability of scenario j. For example, suppose the occurrence
probabilities of scenarios 1, 2 and 3 of the ATM example are 1, 0.10 and 0.90, respectively.
The reliabilities of these scenarios, as calculated previously, were 0.9645569, 0.9635422, and
0.9468746, respectively. Based on these values and the application of Equation (6), the
reliability of the ATM system as a sequential system is 0.9565492.

Rsys =
∑n

j=1 WjRScj

∑n
j=1 Wj

(6)

3.3.2. The Reliability of Component-Based Concurrent Applications

In a concurrent model representing the entire system’s behavior in n communicating
scenarios, at any point in time, the system’s state is represented by a set of active scenario
instances x1, x2, ..., xn, where n is the total number of the active scenario instances in the
system, and xj corresponds to the number of active scenario instances corresponding to
the jth scenario. The distribution of scenario combination probabilities can be identified
through a discrete multinomial probability distribution [21], which is designed to represent
the joint behavior of frequencies of each of j of the possible outcomes arising from n
independent trials. Note that in this paragraph and the next paragraph, the same variables
that describe the scenarios and their combinations’ probabilities are used purposely in the
definitions of the multinomial distribution to facilitate the mapping between them.

The multinomial distribution is the generalization of the binomial distribution that
models repeated choices between two categorical outcomes. A multinomial describes more
than two dichotomous categorical outcomes. More details about this distribution and its
properties can be found in [42,43]. The multinomial distribution was selected because with
each category having a given fixed success probability that highly matches the situation of
individual scenarios, the probability distribution function of the multinomial (Equation (7))
gives the probability of any particular combination of numbers of successes for the distinct
categories. The success probabilities can be mapped to the occurrence probabilities of the
individual scenarios. In the reliability that is built based on the scenario’s reliability, system
developers need to know to which load the system will be reliable. The load here refers
to the number of total active scenario instances in the system that is represented through
the variable n in multinomial distribution. Moreover, the multinomial distribution allows
further analysis, where the reliability can be predicted based on a different adjustment
relevant to the type of set scenario instances. The active instances set can be from the same
scenario or different scenarios. More details about this analysis are depicted through the
example of railcar system in the next paragraphs.

Therefore, the discrete probability function of multinomial distribution defined in
Equation (7) can be used to generate probabilities of various combinations of scenario
instances in the system.

p(x1, x2, ..., xj) =
n!

x1!, x2!, ..., xj!
px1

1 , px2
2 , ..., p

xj
j (7)

Sensors 2022, 22, 2812 13 of 21

As defined previously, n represents the total number of the active scenario instances
and xj the number of active scenario instances corresponding to the probability of each
scenario j.

The maximum number of active scenario instances in the software application depends
on the decisions related to design, limitations of system resources, requirements, the
behavior of components, and the system’s structure. Therefore, in the reliability prediction,
the total number of active scenario instances in the system may not be realistically assumed
to be unbounded [36]. Hence, assigning a specific value to n is required, and this will
control the maximum number of active instances possible for each scenario.

As a good example of the concurrent systems, suppose the reliability of the railcar
system is required under the assumption that the maximum number of allowed active
scenario instances at a time is three. Based on the concurrency nature of the system, these
scenarios can be run simultaneously. There are many cars and terminals in a railcar system.
The case study consists of three scenarios: a passenger in a terminal (scenario 1), a car
departing a terminal (scenario 2) and a car approaching a terminal (scenario 3). Assume the
occurrence probabilities of these three scenarios p1, p2 and p3 are 30, 50 and 20, respectively.
The occurrence probabilities can be determined based on information relevant to passenger
arrival rate and the service time. Based on the application of the multinomial distribution
function defined in Equation (7) and the utilization of the p values as input, Table 2 provides
various combination probabilities for the scenarios in the railcar system. The values in
Table 2 were generated under the assumption that the maximum number of allowed active
scenario instances in the system is three (n ≤ 3).

The values of Table 3 can be interpreted as follows. Let us to interpret the value p
(x1 = 1, x2 = 0, x3 = 2) = 0.036. This value means the probability of having three active
scenario instances (n = 3) in the system—where one instance belongs to scenario 1, no
instances belong to scenario 2 and two instances belong to scenario three—is 0.036. Due to
the restriction that the maximum number of the active scenario instances in the system is
three, for each xj variable whose values do not satisfy the condition x1 + x2 + x3 6 3, the
occurrence probability is zero. In addition, if it is necessary to determine the reliability of
running a specific number of instances, for instance, when the system has exactly three
scenario instances, only the cases that satisfy the condition x1 + x2 + x3 = 3 (shown in
Table 4) will be considered in the calculation. However, many tables similar to Table 3 can
be extracted from Table 3 by changing the n assumption.

Table 3. The combination probabilities p(x1, x2, x3) of the scenarios in the railcar system under the
assumption xn ≤ 3.

The Number of Active Scenarios x3

x1 x2 0 1 2 3

0 0 1.000 0.200 0.040 0.008
0 1 0.500 0.200 0.060 0
0 2 0.250 0.150 0 0
0 3 0.125 0 0 0
1 0 0.300 0.120 0.036 0
1 1 0.300 0.180 0 0
1 2 0.225 0 0 0
1 3 0 0 0 0
2 0 0.090 0.054 0 0
2 1 0.135 0 0 0
2 2 0 0 0 0
2 3 0 0 0 0
3 0 0.027 0 0 0
3 1 0 0 0 0
3 2 0 0 0 0
3 3 0 0 0 0

Sensors 2022, 22, 2812 14 of 21

Table 4. The combination probabilities of the scenarios in the railcar under the assumption that there
are precisely three scenario instances running at the same time (xn = 3).

The Number of Active Scenario Instances x3

x1 x2 0 1 2 3

0 0 0 0 0 0.008
0 1 0 0 0.060 0
0 2 0 0.150 0 0
0 3 0.125
1 0 0.036
1 1 0.180
1 2 0.225
2 0 0 0.054 0 0
2 1 0.135 0 0 0
3 0 0.027 0 0 0

3.3.3. The Reliability of the Scenario Combination

The reliability of the scenario combination can be calculated based on the definition of
the system failure [36]. The definition may differ from one system to another. For instance,
in a critical application such as a railcar system, any scenario instance fails directly and
leads one to consider that the whole system has failed. In other systems that have less
criticality, the system’s failure may be related to the failure of all the active instances of
the same scenario. Hence, any running instance of the scenario will be able to keep the
system reliable. Therefore, based on the failure definition of the railcar system, the system
is considered as unreliable when one or more instances of its scenario fail. If the number
of failure instances (NFI) of scenario j is represented as NFIj and its possible number of
active scenario instances as xj, one must calculate P(NFIj = 1) out of xj active scenario
instances. Based on the binomial distribution definition [44], NFIj is a random variable
that follows a binomial distribution. As the binomial distribution gives the probability
of the possible number of successes (the successes here will refer to failures) in N trials
(refers to the number of active instances of the scenario) for independent events. Each
has an occurrence probability p (mapped to the failure probability of scenarios). Using
the probability of failure of the scenario j (f Scj) that already has been calculated through
Equation (4) and the reliability of scenario j (RScj) calculated by Equation (5) as input to
the formula of the binomial distribution defined in Equation (8), the P(NFIj = 1) can easily
be calculated.

P(NFIj) =
x!

j

NFIj!(xj − NFIj)!
f

NFIj
Scj

(RScj)
xj−NFIj (8)

In the railcar system example, based on Equation (8), the P(NFI1 = 1) for scenario
three is calculated as follows:

P(NFI3 = 1) =
3

1!(3− 1)!
(0.047004)1(0.952996)3−1 = 0.12806

Similarly, P(NFI1 = 1) = 0.156498, and P(NFI2 = 1) = 0.185142. Since any scenario
instance failure directly leads to the whole system failing, the reliability of a combination,
Rcomb(x1, x2, . . . , xS) can be defined as:

Rcomb(x1, x2, ..., xS) = 1− ∑
∀xS 6=0

P(NFIj) (9)

S denotes the total number of different scenarios in the system. To complete the
prediction of the railcar system, the results that have been calculated using Equation (8) are
combined according to Equation (9) and are shown as follows:

Rcomb(x1 = 1, x2 = 0, x3 = 2) = 1− (0.156498 + 0.128067) = 0.715435

Sensors 2022, 22, 2812 15 of 21

This combination above was selected here as an example, and already it has been
interpreted in the discussion of Table 3’s values. Thus, similarly, the Rcomb for all the
possible combinations depicted in Table 3 can be calculated.

3.3.4. Calculating the Reliability of the System

As a final step, the concurrent system’s reliability is calculated by combining the results
obtained from the previous steps. The reliability of the sequential system is calculated
as a weighted mean of scenario reliabilities, and the reliability of the concurrent system
is calculated as a weighted mean of the scenario combinations’ reliabilities. The weights
represent the occurrence probabilities of the combinations shown in Table 3. Therefore, if
the system consists of k possible combinations, that system’s reliability can be calculated
using Equation (10).

Rsys =
∑K

k=1 WkRcombj

∑K
k=1 Wk

(10)

Wk refers to the occurrence probability of combination k, and K is the total number of
the combinations.

In the case of the railcar system, according to Equation (10) and the data shown in
Table 4, the system’s reliability is 0.672685. Note that the maximum number of allowed
active scenario instances at a time is three. Therefore, this value was calculated for the worst-
case complexity when three active scenarios are running in the system simultaneously.
This reliability value can be considered a snapshot of the system reliability because the
reliability is calculated when the active scenarios are precisely equal to three (n = 3). In
order to complete the image of the system reliability, using a similar method to that used
for n = 3, the reliability can be calculated for distinct cases regarding ns value (by taking
n ≤ 3), not only in one case. Additionally, this can provide a range of system reliability
values that cover the points n = 0, n = 1, n = 2 and n = 3.

4. Evaluation

In this section, the proposed model is evaluated by comparing its performance with
current models. The evaluation explores the computational cost reduction regarding the
space needed to deal with the generated state model. The proposed model was compared
with a hierarchical [36] model and a composition model [37]. These two models [35,36]
were selected because they are similar to our proposed model by providing solutions
to the scalability problem and by considering the concurrency, as discussed previously
in Section 2. Moreover, the selected models use UML-like notation to convert system
specifications to MM. This can be considered an essential factor for a model to be promising.
As discussed in Section 2, a number of the models shown in Table 1 use special tools that
are not available to download or as commercial products to be obtained for comparison.
Therefore, they were neglected.

The hierarchical model was introduced by [36] and also used another way in [19]. In
the hierarchical model, the system’s reliability is calculated through the dividing of each
scenario into small parts depending on a hierarchical organization. The composition model
presented by [37] was used to generate and calculate the reliability by applying a parallel
composition to component models. Both models transform system specifications into state
machines to be input for calculating system reliability. In the hierarchical or composition
model, there are two factors affecting the state space, and therefore the corresponding
computational effort. These factors are the maximum number of states (Ss) within an
individual state machine and the number of state machines (SMs). In the hierarchical
model, Ss are small and SMs are big, and in the compositional model, the situation is
inverse. Therefore, our goal in the comparison was to demonstrate that our proposed
model can reduce (1) MSs compared to the hierarchical model and (2) Ss compared to
the compositional model. Ss and SMs are the main factors that can hinder the model’s
scalability. On the other hand, there is a reverse relation between the Ss and SMs (the
main elements of the state space explosion problem) and the model scalability. Therefore,

Sensors 2022, 22, 2812 16 of 21

decrements in Ss and SMs will enhance the scalability. In the evaluation, the proposed
model was applied to various case studies, with different settings regarding the numbers
of components and scenarios. Only representative results obtained from railcar system case
study are presented in this section.

The Results

The results are based on the counting of Ss and SMs after modeling the case study
using our proposed model and the comparison models. The proposed model and hierarchy
model produced significantly smaller Ss than the composition model. This happened due
to the division of the scenario into small units based on the component instances within
the individual scenarios, without any regard for the generated state machines. Figure 6
depicts the computational costs saved in practice from the perspective of Ss. The results
were obtained based on the scenarios of the railcar system. As shown in Figure 6, the
Ss generated by the proposed model and hierarchical model were much less and grew
significantly slower than those generated by the composition model. Exploring the SMs
generated by each model is necessary to judge the efficiency of computation cost saving.
Therefore, Figure 7 shows the SMs generated by each model.

In Figure 6, the hierarchical model demonstrates the best performance regarding Ss.
In contrast, in Figure 7, the hierarchical model shows the worst performed regarding SMs.
This result clearly confirms that the proposed model performs better than the selected
models. Both factors that increase the computational cost, Ss and SMs, have been taken into
account. One of the main reasons for reducing SMs is using s-TS, which makes compact
and concise scenarios. The hierarchical and composition models used the basic form of
SMs scenario language, which has no similar properties to s-TS. Table 5 summarizes the
results shown in Figures 6 and 7.

Table 5 is a tabular representation of Figures 6 and 7. It shows lows and highs based on
the Ss and SMs. As shown previously in Figure 6, the composition model produced around
70 Ss, the highest among the models, and it produced less than 5 SMs, the lowest number
in Figure 7. Thus, it is marked as high and low for those metrics, respectively, in the table.
Based on the performances shown in the figures, the hierarchical model moves from less
than 5 Ss to more than 30 SMs, and the proposed model produced between 10 and 15 of
the Ss and SMs. Therefore, the hierarchy is marked low and high for the aforementioned
metrics, and the proposed model is marked as medium and medium. The evaluation
results clearly shows the effectiveness of the proposed model in the decrementation of Ss
and SMs compared to similar models. Therefore, based on the reverse relation between Ss
and SMs with the scalability, decrementing their values will enhance scalability.

Figure 6. The Ss are generated by the proposed model and the comparison models.

Sensors 2022, 22, 2812 17 of 21

Figure 7. SMs generated by the proposed models and the others.

Table 5. The summary of the comparison results.

Factors Lead to High Computational Cost Ss SMs

Hierarchical model Low High
Composition model High Low

Proposed model Medium Medium

5. Conclusions

The proposed model introduced a new system-level scenario description language
named s-TS and a modified reliability calculation formula. The s-TS helps in describing
system scenarios in concisely and compactly manner to reduce the number of system
scenarios. In the reliability calculation, the scenario is truncated to be at the level of
components and operations rather than the system level for more precision and to avoid
state explosion problems. This way of modeling and calculation mitigates computational
complexity which is restricting the model’s scalability. The main factors that can lead to
controlling complexity are (1) a reduction of the number of state machines (SMs) and (2) a
reduction of the states (Ss) within the state machine itself. The proposed model achieved a
medium number of SMs and a medium number of the Ss compared to the current models.
One of the comparison models produced high SMs, and the other model produced a large
number of Ss.

A multinomial statistical distribution was adopted in the proposed model for scenario
combinations to calculate system reliability. This adaptation allows us to represent the
nature of concurrent software applications wherein the number of scenarios running
simultaneously is unknown. Therefore, software architects can increase or decrease the
number of running scenarios in reliability calculations to know under what load the system
will be reliable. In our future work, we plan to perform user studies to evaluate the usability
and practical utility of the introduced scenario description language, s-TS, through the
development of open-source tools. s-TS can be used independently as a modeling tool.

Sensors 2022, 22, 2812 18 of 21

Furthermore, we plan to add the proposed reliability prediction model as part of the tool to
make the model available to public users and enrich the evaluation results.

Author Contributions: Conceptualization, A.A.; Investigation, A.A., M.B.B. and A.H.; Methodology,
A.Y.; Software, A.A.; Validation, A.H.; Writing—review & editing, S.M.A., R.H. and T.M.T. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was funded by the deputyship for research and innovation, Ministry of Edu-
cation in Saudi Arabia through the project number(NU/IFC/ENT/01/013) under the institutional
funding committee at Najran University, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors extend their appreciation to the deputyship for research and inno-
vation, Ministry of Education in Saudi Arabia for funding this research work through the project
number(NU/IFC/ENT/01/013) under the institutional funding committee at Najran University,
Kingdom of Saudi Arabia.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Appendix A contains the artifacts related to the ATM case study that were used as
inputs for the proposed model.

Figure A1. System specifications of ATM case study in form of s-TS. (a) Scenario of card inser-
tion (scenario 1). (b) Scenario of incorrect password (scenario 2). (c) Scenario of display options
(scenario 3).

Sensors 2022, 22, 2812 19 of 21

Figure A2. System constraints and state variables that were used for annotation of s-TS scenarios.
(a) System constraints table of ATM case study. (b) State variables of the components of ATM
case study.

Appendix B

Appendix B contains the artifacts related to the railcar case study used as inputs for
the proposed model.

Figure A3. System Specifications of Railcar Case Study in the Form of s-TS. (a) Scenario of passenger
in terminal (scenario 1). (b) Scenario of car approaching terminal (scenario 2). (c) Scenario of car
departing terminal (scenario 3).

Sensors 2022, 22, 2812 20 of 21

Figure A4. System Constraints Table and State Variables of the Components of the Railcar Scenario.
(a) System constraints table of of railcar. (b) State variables of the components of railcar.

References
1. Immonen, A.; Niemelä, E. Survey of reliability and availability prediction methods from the viewpoint of software architecture.

Softw. Syst. Model. 2008, 7, 49–65. [CrossRef]
2. Musa, J.D.; Iannino, A.; Okumoto, K. (Eds.) Software Reliability: Measurement, Prediction, Application; McGraw-Hill: Launches, UK,

1987; 621p.
3. Roy, B.; Graham, T.N. Methods for evaluating software architecture: A survey. Sch. Comput. TR 2008, 545, 82.
4. Wohlin, C.; Runeson, P. A method proposal for early software reliability estimation. In Proceedings of the 3rd International

Symposium on Software Reliability Engineering (ISSRE), Raleigh, NC, USA, 7–10 October 1992; pp. 156–163.
5. Cukic, B. The virtues of assessing software reliability early. IEEE Softw. 2005, 22, 50–53. [CrossRef]
6. Cheung, L.; Roshandel, R.; Medvidovic, N.; Golubchik, L. Early prediction of software component reliability. In Proceedings of

the 30th International Conference on Software Engineering, Leipzig, Germany, 10–18 May 2008; pp. 111–120.
7. Brosch, F.; Koziolek, H.; Buhnova, B.; Reussner, R. Architecture-based reliability prediction with the palladio component model.

IEEE Trans. Softw. Eng. 2011, 38, 1319–1339. [CrossRef]
8. Sibay, G.E.; Braberman, V.; Uchitel, S.; Kramer, J. Synthesizing modal transition systems from triggered scenarios. IEEE Trans.

Softw. Eng. 2012, 39, 975–1001. [CrossRef]
9. Krka, I.; Medvidovic, N. Component-aware triggered scenarios. In Proceedings of the 2014 IEEE/IFIP Conference on Software

Architecture, Sydney, NSW, Australia, 7–11 April 2014; pp. 129–138.
10. Whittle, J.; Jayaraman, P.K. Synthesizing hierarchical state machines from expressive scenario descriptions. ACM Trans. Softw.

Eng. Methodol. 2010, 19, 1–45. [CrossRef]
11. Torre, D.; Labiche, Y.; Genero, M.; Baldassarre, M.T.; Elaasar, M. UML diagram synthesis techniques: A systematic mapping study.

In Proceedings of the 10th International Workshop on Modelling in Software Engineering, Gothenburg, Sweden, 27–28 May 2018;
pp. 33–40.

12. Ali, A.; Jawawi, D.; Isa, M.A. Scalable scenario specifications to synthesize component-centric behaviour models. Int. J. Softw.
Eng. Appl. 2015, 9, 79–106. [CrossRef]

13. Tarinejad, A.; Izadkhah, H.; Ardakani, M.M.; Mirzaie, K. Metrics for assessing reliability of self-healing software systems. Comput.
Electr. Eng. 2021, 90, 106952. [CrossRef]

14. Wang, W.L.; Pan, D.; Chen, M.H. Architecture-based software reliability modeling. J. Syst. Softw. 2006, 79, 132–146. [CrossRef]
15. Chen, L.; Huang, L.; Li, C.; Wu, X. Incorporating architectural modelling with state-based reliability evaluation. Int. J. Hoc

Ubiquitous Comput. 2017, 26, 167–184. [CrossRef]
16. Cheung, L.; Krka, I.; Golubchik, L.; Medvidovic, N. Architecture-level reliability prediction of concurrent systems. In Proceedings

of the 3rd ACM/SPEC International Conference on Performance Engineering, Boston, MA, USA, 22–25 April 2012; pp. 121–132.
17. Cooray, D.; Kouroshfar, E.; Malek, S.; Roshandel, R. Proactive self-adaptation for improving the reliability of mission-critical,

embedded, and mobile software. IEEE Trans. Softw. Eng. 2013, 39, 1714–1735. [CrossRef]
18. Ali, A.; NA Jawawi, D.; Adham Isa, M.; Imran Babar, M. Technique for early reliability prediction of software components using

behaviour models. PLoS ONE 2016, 11, e0163346.
19. Hou, C.; Wang, J.; Chen, C. Using hierarchical scenarios to predict the reliability of component-based software. IEICE Trans. Inf.

Syst. 2018, 101, 405–414. [CrossRef]
20. Krka, I.; Edwards, G.; Cheung, L.; Golubchik, L.; Medvidovic, N. A comprehensive exploration of challenges in architecture-based

reliability estimation. In Architecting Dependable Systems VI; Springer: Berlin/Heidelberg, Germany, 2009; pp. 202–227.
21. Mosimann, J.E. On the compound multinomial distribution, the multivariate β-distribution, and correlations among proportions.

Biometrika 1962, 49, 65–82.

http://doi.org/10.1007/s10270-006-0040-x
http://dx.doi.org/10.1109/MS.2005.79
http://dx.doi.org/10.1109/TSE.2011.94
http://dx.doi.org/10.1109/TSE.2012.62
http://dx.doi.org/10.1145/1656250.1656252
http://dx.doi.org/10.14257/ijseia.2015.9.9.08
http://dx.doi.org/10.1016/j.compeleceng.2020.106952
http://dx.doi.org/10.1016/j.jss.2005.09.004
http://dx.doi.org/10.1504/IJAHUC.2017.087021
http://dx.doi.org/10.1109/TSE.2013.36
http://dx.doi.org/10.1587/transinf.2017EDP7127

Sensors 2022, 22, 2812 21 of 21

22. Harel, D.; Gery, E. Executable object modeling with statecharts. In Proceedings of the IEEE 18th International Conference on
Software Engineering, Berlin, Germany, 25–30 March 1996; pp. 246–257.

23. Al-Fedaghi, S. Diagrammatic Formalism for Complex Systems: More than One Way to Eventize a Railcar System. arXiv 2021,
arXiv:2103.02820

24. Harel, D.; Marelly, R.; Marron, A.; Szekely, S. Integrating Inter-Object Scenarios with Intra-object Statecharts for Developing
Reactive Systems. IEEE Des. Test 2020, 38, 35–47. [CrossRef]

25. Reussner, R.H.; Schmidt, H.W.; Poernomo, I.H. Reliability prediction for component-based software architectures. J. Syst. Softw.
2003, 66, 241–252. [CrossRef]

26. Goševa-Popstojanova, K.; Trivedi, K.S. Architecture-based approach to reliability assessment of software systems. Perform. Eval.
2001, 45, 179–204. [CrossRef]

27. Roshandel, R.; Medvidovic, N.; Golubchik, L. A Bayesian model for predicting reliability of software systems at the architectural
level. In Proceedings of theInternational Conference on the Quality of Software Architectures, Karlsruhe, Germany, 14–17 October
2007; pp. 108–126.

28. Benes, N.; Buhnova, B.; Cerna, I.; Oslejsek, R. Reliability analysis in component-based development via probabilistic model
checking. In Proceedings of the 15th ACM SIGSOFT symposium on Component Based Software Engineering, Bertinoro, Italy,
25–28 June 2012; pp. 83–92.

29. ChauPattnaik, S.; Ray, M.; Nayak, M.M. Component based reliability prediction. Int. J. Syst. Assur. Eng. Manag. 2021, 12, 391–406.
[CrossRef]

30. Yacoub, S.; Cukic, B.; Ammar, H.H. A scenario-based reliability analysis approach for component-based software. IEEE Trans.
Reliab. 2004, 53, 465–480. [CrossRef]

31. Hsu, C.J.; Huang, C.Y. An adaptive reliability analysis using path testing for complex component-based software systems. IEEE
Trans. Reliab. 2011, 60, 158–170. [CrossRef]

32. Tyagi, K.; Sharma, A. A rule-based approach for estimating the reliability of component-based systems. Adv. Eng. Softw. 2012,
54, 24–29. [CrossRef]

33. El Kharboutly, R.; Gokhale, S.S. Efficient reliability analysis of concurrent software applications considering software architecture.
Int. J. Softw. Eng. Knowl. Eng. 2014, 24, 43–60. [CrossRef]

34. Babeker, A.A.M.E. Quality Measurement Model for Composite Service-oriented Design. Ph.D. Thesis, Universiti Teknologi
Malaysia, Johor Bahru, Malaysia, 2015.

35. Aziz, M.W.; Radziah, M.; Jawawi, D. Service-oriented Analysis and Design Approach for Distributed Embedded Real-time
Systems. Ph.D. Thesis, Universiti Teknologi Malaysia, Johor Bahru, Malaysia, 2013.

36. Cheung, L.; Golubchik, L.; Medvidovic, N. SHARP: A scalable approach to architecture-level reliability prediction of concurrent
systems. In Proceedings of the 2010 ICSE Workshop on Quantitative Stochastic Models in the Verification and Design of Software
Systems, Cape Town, South Africa, 3 May 2010; pp. 1–8.

37. Rodrigues, G.; Rosenblum, D.; Uchitel, S. Using scenarios to predict the reliability of concurrent component-based software
systems. In International Conference on Fundamental Approaches to Software Engineering; Springer: Berlin/Heidelberg, Germany,
2005; pp. 111–126.

38. Roshandel, R.; Schmerl, B.; Medvidovic, N.; Garlan, D.; Zhang, D. Understanding tradeoffs among different architectural
modeling approaches. In Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA 2004),
Oslo, Norway, 15 June 2004; pp. 47–56.

39. Singh, H.; Cortellessa, V.; Cukic, B.; Gunel, E.; Bharadwaj, V. A bayesian approach to reliability prediction and assessment of
component based systems. In Proceedings of the 12th International Symposium on Software Reliability Engineering, Hong Kong,
China, 27–30 November 2001; pp. 12–21.

40. Goseva-Popstojanova, K.; Hassan, A.; Guedem, A.; Abdelmoez, W.; Nassar, D.E.M.; Ammar, H.; Mili, A. Architectural-level risk
analysis using UML. IEEE Trans. Softw. Eng. 2003, 29, 946–960. [CrossRef]

41. Sadi, M.S.; Myers, D.; Sanchez, C.O.; Jurjens, J. Component criticality analysis to minimizing soft errors risk. Comput. Syst. Sci.
Eng. 2010, 26, 377–391.

42. Johnson, N.L. Discrete Multivariate Distributions; Wiley: New York, NY, USA, 1997.
43. Zelterman, D. Multinomial Distribution: Overview. In Wiley StatsRef: Statistics Reference Online; Wiley: New York, NY, USA,

2014.
44. Lane, D. Hyperstat Online: An Introductory Statistics Textbook and Online Tutorial for Help in Statistic; Available online:

https://davidmlane.com/hyperstat/ (accessed on 21 March 2019).

http://dx.doi.org/10.1109/MDAT.2020.3006805
http://dx.doi.org/10.1016/S0164-1212(02)00080-8
http://dx.doi.org/10.1016/S0166-5316(01)00034-7
http://dx.doi.org/10.1007/s13198-021-01079-x
http://dx.doi.org/10.1109/TR.2004.838034
http://dx.doi.org/10.1109/TR.2011.2104490
http://dx.doi.org/10.1016/j.advengsoft.2012.08.001
http://dx.doi.org/10.1142/S0218194014500028
http://dx.doi.org/10.1109/TSE.2003.1237174
https://davidmlane.com/hyperstat/

	Introduction
	Related Work
	The Proposed Model
	Behavior Modeling
	Running Examples
	Scenario Preparation

	Calculating a Scenario's Reliability
	System Reliability
	The Reliability of Component-Based Sequential Applications
	The Reliability of Component-Based Concurrent Applications
	The Reliability of the Scenario Combination
	Calculating the Reliability of the System

	Evaluation
	Conclusions
	Appendix A
	Appendix B
	References

