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Abstract: Understanding neck pain is an important societal issue. Kinematic data from sensors may
help to gain insight into the pathophysiological mechanisms associated with neck pain through a
quantitative sensorimotor assessment of one patient. The objective of this study was to evaluate
the potential usefulness of artificial intelligence with several machine learning (ML) algorithms
in assessing neck sensorimotor performance. Angular velocity and acceleration measured by an
inertial sensor placed on the forehead during the DidRen laser test in thirty-eight acute and subacute
non-specific neck pain (ANSP) patients were compared to forty-two healthy control participants
(HCP). Seven supervised ML algorithms were chosen for the predictions. The most informative
kinematic features were computed using Sequential Feature Selection methods. The best performing
algorithm is the Linear Support Vector Machine with an accuracy of 82% and Area Under Curve of
84%. The best discriminative kinematic feature between ANSP patients and HCP is the first quartile
of head pitch angular velocity. This study has shown that supervised ML algorithms could be used to
classify ANSP patients and identify discriminatory kinematic features potentially useful for clinicians
in the assessment and monitoring of the neck sensorimotor performance in ANSP patients.

Keywords: artificial intelligence; supervised machine learning; kinematics; head rotation test;
neck pain

1. Introduction

Understanding neck pain is an important societal issue [1,2]. The overall prevalence
of neck pain in the general population ranges from 0.4% to 86.8% and is higher in women
than in men [3]. It ranks fourth in terms of years lived with a disability [1,2]. The ma-
jority of patients with neck pain are now classified as experiencing a “non-specific” neck
disorder [4-6], meaning neck pain that occurs without trauma, signs or symptoms of
major structural pathology, neurologic signs or specific pathology [4]. Acute or subacute
non-specific neck pain (ANSP) means that the pain has been present for less than three
months [4,7]. The assessment of sensorimotor function, a generic term for tests that encom-
pass all afferent and efferent information flows and central integration mechanisms that
contribute to joint stability [8], has demonstrated its importance for a better understanding
of the pathophysiological mechanisms associated with chronic neck pain [9]. Indeed, the
assessment of sensorimotor function, especially through kinematics of the head rotations,
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seems promising for the identification of chronic neck pain [10] but also of acute-subacute
neck pain as shown by our previous results, which suggested that sensorimotor changes
may also occur rapidly after pain resolution [11]. Nevertheless, identification based on
sensorimotor evaluation requires the ability to know what would characterize neck pain
in terms of the kinematic features of movement. Sensorimotor assessment of neck motion
based not only on position degrees of freedom but also on velocity and acceleration features
(e.g., peak and average velocity) appears promising because it has high sensitivity and
specificity [10,12].

Identifying kinematic features from time series and comparing them between groups,
e.g., to evaluate treatments or classify neck pain motion across ageing, is a widely used
method [11-15]. Here, we focus on a peculiar test called DidRen laser test, designed to
assess sensorimotor control of the neck and about which the interested reader will find
detailed information in [11,15,16]. The DidRen laser test consists of a standardized task in
which yaw rotations of the head are performed from “target to target” in the same sequence.
These are fast, accurate, and small-amplitude rotations (+30°) of the head in response to
real visual targets to be hit by a laser beam placed on the subject’s head [17]. However,
such a methodology removes a substantial amount of information from the raw time series.
The DidRen laser test did not cause pain in the patients (probably because of the too low
amplitude of the rotation < 30°). Since the relationship between pain and sensorimotor
control is well-established [18-21], if the test had caused pain when performed, it could
have increased the kinematic difference between ANSP patients and healthy subjects.

Resorting to artificial intelligence (AI) techniques may lead to another type of analysis,
i.e., “the machine” should find the relevant specifications of time series. The present study is
devoted to the latter case. Alis defined as a field of science and engineering concerned with
the computational understanding of what is commonly referred to as intelligent behavior
and the creation of artefacts that exhibit such behavior [22]. Machine learning (ML) is
defined as a subfield of Al as follows: “Machine learning is a branch of artificial intelligence
that systematically applies algorithms to synthesize the underlying relationships among
data and information” [23]. ML provides an experiential “learning” that can be related to
human intelligence as ML can improve its analyses by using computer algorithms. There
are two main forms of ML: supervised and unsupervised [24]. In supervised ML (SML),
the algorithms are provided with training data that are analyzed for the features that are
important for classification and labelled. The model is then “trained” on these data before
being tested on unlabeled data. In our case, the data will be measured in head rotations.
In SML, data must first be labelled by a clinician (painful or not, for example) so that the
model can learn to interpret them through pattern recognition. Then, the model is tested
with unlabeled data to obtain an interpretation result [25,26]. Several algorithms can be
trained for pattern recognition, such as logistic regression, support vector machine, decision
tree, random forest, naive Bayes or K-nearest neighbor [24]. Patterns may be representative
of various features, among which pathology and pain, see e.g., [27].

The first aim of this work was to evaluate the discriminative ability of Al and SML
methods in sensorimotor assessment of yaw angular displacement of the head in patients
with ANSP compared with healthy control participants (HCP) with data from a previous
study [11] obtained during the DidRen laser test [15-17]. A second aim of this work was
to illustrate the potential of SML for clinicians in musculoskeletal physiotherapy [28]. In
ecological situations, neck kinematics should be quickly assessed by a therapist using
thresholds designed to identify relevant impairments in the history of patients with neck
pain. We test whether SML can provide such kinematic values and therefore has predictive
value for ANSP.
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2. Materials and Methods
2.1. Patients and Participants

This study included 80 subjects (38 ANSP patients and 42 HCP) from a previous
study [11]. Data were collected from February to December 2019. ANSP patients diagnosed
by general practitioners were recruited from a consecutive sample in a private manual ther-
apy center in Brussels, Belgium. Inclusion criteria for ANSP patients were acute-subacute
(<3 months) non-specific neck pain with a Neck Disability Index (NDI) > 8% [29] and a
Numeric Pain Rating Scale (NPRS) > 3 [30-34]. HCP were recruited by one of the authors
(RH) from a sample of convenience from colleagues at the university hospital and from
acquaintances. They were included if they reported no neck symptoms: NDI < 8% [29],
NPRS = 0 [30], and no pain on active head rotation and/or manual spinal assessment [35].
Characteristics of the ANSP patients and HCP are listed in Table 1. All subjects signed an
informed consent form. The study was approved by the Academic Bioethics Committee
(https:/ /www.a-e-c.eu, (accessed on 30 January 2019) Brussels, B200-2018-103) and con-
ducted in accordance with the Declaration of Helsinki. The authors confirm that all ongoing
and related trials for this drug/intervention are registered (ClinicalTrials.gov: 04407637).

Table 1. Characteristics of the acute and subacute non-specific neck pain (ANSP) patients and healthy
control participants (HCP). p-values resulted from t-test for age and BMI, Mann-Whitney U-test for
NDI and NPRS, and Chi-2 for gender.

ANSP Patients (n = 38) HCP (n = 42) p-Values
Age (years), mean & SD 46.2 £16.3 243+ 6.8 <0.001
Gender n (men/women), (%) 21 (55%) /17 (45%) 27 (64%) /15 (36%) 0.55
BMI (kg m~2), mean + SD 235+ 3.2 21.5+42 0.014
NDI (100), median [Q1-Q3] 22 [16-31.5] 0 [0-0] <0.001
NPRS, median [Q1-Q3] 6 [4-7] 0 [0-0] <0.001

BMI: body mass index, NDI: neck disability index, NPRS: numeric pain rating scale.

2.2. Protocol

The protocol was described in a previous study [11]. It essentially involved assessment
of fast neck yaw rotations with the DidRen laser test [15,16] for ANSP patients and HCP,
completed by manual examination of the painful spinal region for segmental tenderness.
For ANSP patients, the manual examination served to confirm familiar pain and guide the
treatment. For HCDP, thanks to its high sensitivity (92%), the manual examination was used
to exclude HCP if they had pain at one or more levels of the cervical spine and confirm that
they are not healthy in the neck [35]. The DidRen laser test was used to standardize the
rotational yaw movements of the participant’s head. Briefly, participants wore a helmet
to which a laser was attached. They pointed the laser as fast as possible at three targets
equipped with photosensitive sensors (Figure 1A,B). The angular separation of targets is
30°, and the sequence was fixed: center-left-center-right-center. Participants were asked to
perform the sequence as fast as possible.

During the DidRen laser test, head angular displacement kinematics were recorded in
3D (yaw, pitch, and roll) using the DYSKIMOT inertial sensor [36]. The detailed description
of the sensor can be found in the study by Hage et al. [36]. The sensor consists of a 3-axis
accelerometer, a gyroscope and magnetometer, and a temperature sensor. These internal
components respectively measure acceleration (in g, £16 g), angular velocity (in °/s,
£2000°/s), and magnetic field (in gauss, 16 gauss). The sensor recorded the motion at a
sampling frequency of 100 Hz. The DYSKIMOT sensor was placed in front of the helmet
(Figure 1C), with the yaw-axis (or X) in the vertical direction. The pitch-axis (or Y) was
aligned with subject’s medio-lateral axis at the start of the test and the roll-axis (or Z) was
aligned with the antero-posterior axis. The head rotation demanded in the DidRen laser
test is oriented along the yaw-axis. Note that the subjects were not instructed to realize
pitch or roll rotations of the head during the test.
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Figure 1. Description of the DidRen laser test. (A) Rear view of head position in front of the targets.
(B) Schematic top view of the experimental setup with the three photosensitive sensors. The reference
frame of the sensor is displayed when the head is in rest position. Coordinate system used in the
study is also shown with the yaw (X-axis), pitch (Y-axis), and roll (Z-axis) rotations of the head during
the test. (C) Helmet worn by an HCP (here RH) with laser on the top of the head and DYSKIMOT
inertial sensor on the forehead.

2.3. Data Analysis
2.3.1. Dataset and Pre-Processing

In our previous papers [11,15], we analyzed the same dataset by resorting to “standard”
statistical tests: we calculated several kinematical features of the angular position, speed,
and acceleration time series (e.g., peak speed, time to reach peak, etc.). Then we showed
that some parameters were significantly different between ANSP and HCP [11], and that
age also had a significant impact on the parameters [15]. In the present study, we re-analyse
the same dataset by using the raw sensor data to train various ML algorithms with the
goal of finding an algorithm able to separate ANSP and HCP. To our knowledge, it is the
first time that such ML techniques are used in the field of neck pain. The dataset consists
of 7 time series for each participant: time, angular velocity (three components labelled
GyrX, GyrY, GyrZ), and acceleration (AccX, AccY, AccZ). Then, a pre-processing procedure
was applied to convert each time series into a summary format for all participants. Each
time series is summarized with 7 statistical descriptors: 1st, 2nd, and 3rd quartiles, mean,
minimum, maximum, and standard deviation. The result is a dataset with 186 inputs and
42 features (6 time series x 7 descriptors). Each set of statistical descriptors is labeled as
ANSP (value 1) or HCP (value 0).

2.3.2. ML Algorithms and Determination of the Best Performer

It is generally difficult to determine a priori which ML algorithm performs best on a
given dataset [37]. Therefore, several algorithms were tested to determine the most appro-
priate for classifying ANSP patients and HCP: K-Nearest Neighbor (KNN), Linear Support
Vector Machine (Linear SVM), Non-linear Support Vector Machine Radial Basis Function
(SVM RBF), Decision Tree (DT), Random Forest (RF), Adaptive Boosting (AdaBoost), and
Gaussian Naive Bayes (GaussianNB).

The comparison between selected algorithms was based on metrics such as accuracy
and the Area Under Curve (AUC) score, computed from the Receiver Operating Charac-
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teristic (ROC) curve. These metrics are only meaningful if the predictions are based on
data that the ML algorithms have never learned. Therefore, the dataset was randomly split
into two parts. The first part is the “training set”, which consists of 80% of the dataset
used to train the ML algorithms. The second part (remaining 20%) is the “test set” used to
make the predictions with the trained ML algorithms. The validation of the ML algorithms
is performed by n-fold cross-validation [38]. To minimize the biases associated with the
training dataset, 100 different cross-validations were performed on mixed data for each
selected ML algorithm. The hyperparameters of the ML algorithms were optimized using
the Grid Search method [39] that finds the best combination of fixed hyperparameters
based on n-fold cross-validation.

For KNN, the optimized parameters were the following: the number of neighbors
(n_neighbors: 3, 5, 8, 10), the weighting function (weights: uniform, distance) and the
algorithms used to compute the nearest neighbors (algorithms: Brute-Force (BF KNN or BF
KNN), kd_tree, auto, ball_tree). For Linear SVM, different values for the regularization
parameter or C-parameter (0.1, 1, 10, 100, 1000) were used in the evaluation to test the
dependence of the approach on the C-parameter. For SVM RBF, the C-parameter (0.001,
0.01,0.1, 1, 10, 100) and the kernel coefficient Gamma (0.001, 0.01, 0.1, 1, 10, 100) parameter
were optimized. For DT, the optimized parameters were the maximum depth of the tree
(max_depth: 1, 5, 10, 100), the function to measure the quality of the splits (criterion: gini,
entropy), and the strategy to select the split nodes (splitter: best, random). For RF, the
optimized parameters were the maximum depth of the tree (max_depth: 1, 5, 10, 100),
the number of trees in the forest (n_estimators: 1, 5, 10, 100), and the number of features
considered in the search for the best split (max_features: 1, 5, 10, 100). For Adaboost, the
optimized parameters were the maximum number of estimators at which boosting stops
(n_estimators: 1, 5, 10, 50, 100, 500) and the weight applied to each classifier at each boosting
iteration (learning_rate: 0.000001, 0.001, 0.1, 1, 5, 10, 100). For GaussianNB, the optimized
parameter was the ratio of the largest variance of all features added to the variances for
computational stability (var_smoothing: 0.0000001, 0.01, 1, 10, 100).

All the computations related to the determination of the best performer were made in
Python 3.8 and SciKit-Learn 1.0.2 software.

2.3.3. Determination of Most Informative Kinematic Features and Logistic Regressions

The most informative kinematic features, i.e., the features that trigger the most pre-
dictions, were computed by using the Sequential Feature Selector (SFS) forward and
backward [40]. The backward SFS removes the poorest features one by one, while the
forward SFS identifies the best combination of features. In both cases, the result is a list
of kinematic features that performed best according to the AUC score. Each SFS was run
700 times (7 ML algorithms x 100 random data repartitions). Once the most informative
kinematic feature was identified, a logistic regression was performed by using it, and the
accuracy of this logistic regression was computed. Another logistic regression on total
DidRen laser test duration was also performed to compare the present results to the unique
outcome of the original DidRen laser test [17].

All the computations related to the determination of the most informative features
and ML algorithms were made in Python 3.8 and SciKit Learn 1.0.2 software.

3. Results
3.1. Optimal Hyperparameters and Performance Metrics of ML Algorithms

Optimal hyperparameters are presented in Table 2. Performance metrics of the selected
ML algorithms are given in Table 3. The least performing ML algorithm is the KNN, and
the best performing one is the linear SVM with an accuracy of 82% and AUC of 84%. We
show in Figure 2 the ROC curve of the Linear SVM, which is the best ML algorithm we
found to classify ANSP patients and HCP.
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Table 2. Optimal hyperparameter values: Number of neighbors (n_neighbors), Regularization
parameter (C-parameter), Kernel coefficient (gamma), maximum depth of the tree (max_depth),
number of trees in the forest (n_estimators), and number of features to consider when looking for the
best split (max_features).

ML Algorithm Hyperparameters
BF KNN n_neighbors = 5, weights = “distance”
Linear SVM kernel = “linear”, C = 10
SVM RBF gamma = 0.001, C =100
DT max_depth = 1, criterion = “entropy”, splitter = “best”
RF max_depth = 10, n_estimators = 100, max_features = 10

BF KNN: Brute-Force K-Nearest Neighbors, SVM: Support Vector Machine, RBF: radial basis function, DT:
Decision Tree, RF: Random Forest.

Table 3. Performance metrics of the selected ML algorithms.

ML Algorithm Accuracy AUC Score
BF KNN 0.66 & 0.03 0.51 +0.07
Linear SVM 0.82 +0.03 0.84 + 0.04
SVM RBF 0.65 £ 0.05 0.57 £ 0.09
DT 0.74 +£0.03 0.70 = 0.04
RF 0.76 £ 0.03 0.76 + 0.04
AdaBoost 0.75 £ 0.04 0.76 £ 0.05
GaussianNB 0.77 £0.03 0.82 £0.03

BF KNN: Brute-Force K-Nearest Neighbors, SVM: Support Vector Machine, RBF: radial basis function, DT:
Decision Tree, RF: Random Forest, AdaBoost: Adaptive Boosting, GaussianNB: Gaussian Naive Bayes, AUC: area
under curve.
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Figure 2. Receiver Operating Characteristic (ROC) curve of Linear SVM (in blue). The dotted red line
represents the worst possible scenario, a random classifier.

The ROC curve plots the False Positive Rate (FPE%) and the True Positive Rate
(TPT%N) at all thresholds of Linear SVM classification.

3.2. Most Discriminative Features and Logistic Regressions

The most discriminative feature, regardless of the ML algorithm and SFS, was the
first quartile of head pitch angular velocity (or GyrY), which ranked first 813 times in 1400.
The second most discriminative feature was the median of head pitch angular velocity
(ranked first 444 times in 1400). Thus, the pitch angular velocity appears to be the best
discriminating feature to differentiate ANSP patients and HCP assessed with the DidRen
laser test.
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A logistic regression based on the median of head pitch angular velocity led to an
accuracy of 77%. A logistic regression based on total duration of the DidRen test led to an
accuracy of 63%.

4. Discussion

Our findings showed the effectiveness of the kernel linear SVM classifier in distin-
guishing ANSP patients from HCP. The accuracy of the linear SVM was 82% and the
AUC score was 84%. The interpretation of the AUC score should be evaluated in terms
of the importance given to its accuracy. We can assume that the medical community in
the field of oncology prefers an AUC score close to 100%. Considering, on the one hand,
the musculoskeletal field and, on the other hand, in relation to the non-specific pathology,
the comparison between ANSP patients and HCP, which shows a great variability of the
results [41], an AUC score higher than 80% can be considered satisfactory. As mentioned in
the Introduction, the DidRen laser test did not cause pain in ANSP patients. This feature
may help ANSP patients to show kinematic features such as HCP, which may increase the
number of false negatives. Therefore, a larger rotation amplitude than 30° may decrease
the false-negative rate.

Seven time series (time and kinematic data) related to yaw, pitch, and roll angular
displacement and velocity of the head, which can be easily acquired with a single inertial
sensor, were used to train the selected ML algorithms. However, regardless of the ML
algorithm and SFS, not all axes of head motion have good discriminative information, as
the two best discriminating kinematic features were related to head pitch. The accuracy
was best with the linear SVM and lowest with all other selected ML algorithms, such as
the non-linear SVM (RBF). The same finding regarding the superiority of linear SVM over
RBF has already been observed in a study with limited sample size (17 young and 17 old
subjects) aimed at detecting age-related changes in running kinematics [42]. For use in
future clinical trials with kinematic variables with limited sample size, linear SVM may
thus be a suitable option.

Like other studies using ML algorithms to detect kinematic changes in healthy or
pathological subjects [42—45], our study is based on a rather small dataset in terms of typical
Al calculations, but the results are consistent with the conclusions of [46]. While conduct-
ing observational sensorimotor assessment studies with large datasets holds promise for
improving the understanding and management of various pathologies, here, the patho-
physiological mechanisms associated with neck pain, the use of small datasets may also
allow for a reduction in selection bias [46]. In addition, it is worth noting that an SVM has
already been used in the musculoskeletal field to compare temporomandibular patients
with control subjects [47]. With a smaller sample (10 patients and 10 control subjects), they
achieved an average predictive accuracy of 60% (p = 0.10) [47]. The linear SVM algorithm is
affordable with today’s standard devices: a tablet computer could efficiently post-process
the data from any wearable inertial sensor. Note also that a logistic regression based on
head pitch angular velocity could be easily implemented on any smartphone, but with a
lower accuracy of 77%.

The main discriminatory information used by the linear SVM algorithm to distinguish
ANSP patients from HCP are the first quartile and the median of head pitch angular velocity.
The two best kinematic discriminating features differed from those obtained by inferential
statistical analysis, suggesting that ML approaches are complementary and clinically useful
to detect kinematic changes in patients with ANSP.

HCP have larger medians and quartiles for head pitch angular velocity (computed
from GyrY time series) than ANSP patients, making the Y-axis a highly discriminatory
direction that should be prioritized for future clinical trials with the DidRen laser test.
Our results may seem counterintuitive at first, because the DidRen laser test consists
of a sensorimotor assessment organized around the Z-axis, i.e., during the execution of
yaw rotations of the head. Thus, it would stand to reason that the GyrX time series
should contain most of the discriminative information. Nevertheless, it is interesting



Sensors 2022, 22, 2805

8of 12

to note that the sensorimotor disturbances in ANSP patients may be highlighted by the
stronger secondary coupled motion during yaw rotations. There seems to be a reason for
this, because biomechanically, coupled bending rotations in the cervical spine lead to a
compensatory roll rotation, which compensates for the yaw rotation of the head, and the
associated coupled movements observed during pitch head movements [48]. Indeed, in
HCP, we can observe that yaw head rotation (55.5 & 10.8°) is coupled with a larger pitch
motion (16.3 £ 11.4°) than roll motion (4.6 £ 6.2°) [48]. If we apply these considerations
to patient assessment, this information may be of clinical interest because 3D motion
analysis may be a useful tool for assessing postural changes in the cervical spine during
sitting, but also because altered kinematics are associated with decreased performance,
e.g., neck velocity and neck motion fluidity in functional movement tasks, in people with
neck pain [49].

The present discussion suggests that the ML algorithms can provide relevant func-
tional variables and thus optimize the prediction of ANSP status during the DidRen laser
test. To further illustrate this point, we mention that total test duration was the only pa-
rameter measured in the original version of the DidRen laser test [17]. Logistic regression
performed with duration yields lower accuracy than that obtained with the median of pitch
head rotation alone, the latter parameter being favored by linear SVM.

In experimental studies, control and experimental groups are usually formed in such
a way that no significant difference is observed in parameters such as age, ethnicity, gender,
and degeneration/maturation stage, except for the variable of interest. In our case, this
means that ANSP patients and HCP groups should differ only in terms of NDI and NPRS.
Age is also significantly different in our groups, but we do not believe this is problematic
for our purpose. Indeed, ML algorithms are designed to distinguish between HCP and
ANSP patients. To find out the characteristics of ANSP patients, it is logical to compare
them with the “healthiest” subjects, i.e., our HCP group. On the other hand, a control group
with too young subjects would also have led to bias, since we have shown in a previous
study that the kinematic behaviors recorded with the DidRen laser test have a U-shaped or
inverted U-shaped age profile, making the differences between young and old particularly
clear [16]. Because the prevalence of degenerative joint changes increases with age [4,50],
possibly leading to movement limitations (yaw rotation steadily decreases between the ages
of 30 and 60) [51], we selected HCP using a very sensitive manual examination [35]. After
this examination, positive control subjects (with potential neck disorders) were excluded,
and because their average age was higher (see [11]: the mean age of the excluded control
subjects was 43.3 years), the average age of our HCP group decreased compared with the
ANSP group. It is worth noting that a significant age difference between control and disease
subjects was already found in a study aimed at developing and determining the predictive
performance of ML models to distinguish between different subtypes of low-back pain and
healthy control subjects [52]. For this purpose, as we did, they did not include age as a
predictor when constructing the model [52].

It has already been shown by authors of the present study that several kinematic
features of head rotation movements were significantly different in HCP and ANSP patients
in terms of statistical tests comparing means [11]. The novelty of our results can also be
outlined by comparing them with similar studies. The next logical step in the kinematical
analysis of head rotation movements is to investigate whether some kinematic parameters
can be used as predictors of neck pain or not. Bahat et al. performed simple logistic
regressions on all selected kinematical parameters and found that it was the case [10]. For
example, they found a sensitivity of 91% (right) and 94% (left) and a specificity of 95% (right
and left) for head peak yaw angular velocity, and the maximum AUC was obtained with
head peak pitch angular velocity [10]. Note that the discriminative power of head peak
yaw angular velocity was shown in [11,13], where a test in a virtual (VR) environment was
performed. The extent to which our current results hold in a VR environment is an open
problem that we leave for future work.
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We reach the same conclusion as [10] regarding pitch angular velocity by using a
more model-independent approach, i.e., by allowing machine learning algorithms to sort
out the most discriminant features from the raw data. We also go beyond simple logistic
regressions by including all relevant features in a single ML algorithm. Indeed, converting
time series into scalar variables may remove a substantial amount of information contained
in the original time series that could lead to extra false negative results or inaccurate
predictions [53]. Roijezon et al. used linear discriminant analysis to identify neck-pain
patients, i.e., the same kind of methodology as ours, but obtained lower sensitivity and
specificity than in the present study: they found a sensitivity of 74.6% and a specificity
of 73.5% for classification based on head peak yaw angular velocity [12]. Thus, to our
knowledge, this is the first time that ML algorithms have been applied to the raw sensor
data recorded during head rotation to find a multi-feature classification algorithm for
identifying ANSP patients. A clear advantage of this type of algorithm, in addition to the
high accuracy currently achieved, is that it can be systematically improved by increasing
the size of the data set and allowing the algorithm to “learn” from the new data.

In summary, we have shown that Al can help identify patients suffering from neck
pain using the DidRen laser test augmented by an inertial sensor. In our approach, the
accuracy and AUC scores are computed from inertial sensor’s kinematic data. The obtained
ML algorithm can be implemented in any tablet or smartphone and lead to an “augmented
DidRen laser test”; hence, our results may be transferred to daily clinical practice. In our
opinion, the best way to merge the DidRen laser test and an inertial sensor is to develop
a VR version of the test: it will improve the standardization of the test through the stan-
dardization of the environment, and any VR device has at least one inertial sensor able
to collect the needed data. Such a work is in progress, see e.g., [54]. Using Al to interpret
sensor data can in principle be used in other movements than the rotation demanded in
the DidRen laser test, but then the Al training must be made for each different motion,
which outlines the necessity of defining standardized movements in clinical tests. Today,
there is still no clinical gold standard for diagnosing acute neck pain, but the use of the
DidRen laser test and Al appears to be a promising candidate to provide clinically useful
information that can improve patient management. The diagnostic ability of our framework
has been proven in the present study, but it is worth mentioning the possibility of data
storage offered by sensor technology. The more data that will be stored, the more the
ML accuracy will be refined, i.e., our diagnostic algorithm is systematically improvable
over time. Moreover, the same test can be performed at various points of one patient’s
treatment to assess his/her evolution. One last feature of our approach is that it identifies
key kinematic parameters (such as peak angular speed) on which therapists can focus to
follow one patient’s evolution.
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