ﬁ Sensors

Article

Zero-Day Malware Detection and Effective Malware Analysis
Using Shapley Ensemble Boosting and Bagging Approach

Rajesh Kumar *

check for
updates

Citation: Kumar, R.; Subbiah, G.
Zero-Day Malware Detection and
Effective Malware Analysis Using
Shapley Ensemble Boosting and
Bagging Approach. Sensors 2022, 22,
2798. https://doi.org/10.3390/
522072798

Academic Editors: Alexios Mylonas

and Nikolaos Pitropakis

Received: 15 February 2022
Accepted: 28 March 2022
Published: 6 April 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Geetha Subbiah

School of Computer Science and Engineering, Vellore Institute of Technology, Chennai Campus,
Chennai 600127, Tamil Nadu, India; geetha.s@vit.ac.in
* Correspondence: rajesh.kumar@vit.ac.in; Tel.: +91-909-295-2221

Abstract: Software products from all vendors have vulnerabilities that can cause a security concern.
Malware is used as a prime exploitation tool to exploit these vulnerabilities. Machine learning (ML)
methods are efficient in detecting malware and are state-of-art. The effectiveness of ML models can be
augmented by reducing false negatives and false positives. In this paper, the performance of bagging
and boosting machine learning models is enhanced by reducing misclassification. Shapley values
of features are a true representation of the amount of contribution of features and help detect top
features for any prediction by the ML model. Shapley values are transformed to probability scale
to correlate with a prediction value of ML model and to detect top features for any prediction by a
trained ML model. The trend of top features derived from false negative and false positive predictions
by a trained ML model can be used for making inductive rules. In this work, the best performing
ML model in bagging and boosting is determined by the accuracy and confusion matrix on three
malware datasets from three different periods. The best performing ML model is used to make
effective inductive rules using waterfall plots based on the probability scale of features. This work
helps improve cyber security scenarios by effective detection of false-negative zero-day malware.

Keywords: machine learning; computer security; artificial intelligence; boosting; bagging; cyber
security; zero-day vulnerability; zero-day malware detection; Shapley value

1. Introduction

Malware are meant to exploit the vulnerability and exposure of various software
product such as applications, Operating Systems (OS), drivers, etc. The popularity of OS
and applications make them a hot target for malware attacks. The ten top vendors from
the top 50 software vendors that have vulnerabilities in their various software products
are listed in Table 1, and the ten top products from fifty top software products are listed in
Table 2 from a common vulnerability and exposure website. The speed of the generation of
malware is very high these days. AlienVault—Open Threat Exchange is a crowd-sourced
computer-security platform. It shares more than 19 million potential threats daily among
more than 80,000 participants from 140 countries. Malware authors have polymorphic
and metamorphic engines for generating new malware at high speed. These malware
are exploited to convert these threats into attacks. The polymorphic and metamorphic
engines generate dissimilar malware variants for zero-day attacks. The polymorphic and
metamorphic engines modify some parts of the source code of existing malware to produce
a new malware variant. For instance, reassignment of the registers such as replacing [PUSH
eax] with [PUSH ebx] and related changes for POP instructions replace code between
registers by exchanging register names. The program behavior is the same as before. These
methods change the hash values and signatures for the malware and it is not detectable by
anti-virus software, which depends on signatures or hash values.

Sensors 2022, 22, 2798. https:/ /doi.org/10.3390/5s22072798

https:/ /www.mdpi.com/journal /sensors


https://doi.org/10.3390/s22072798
https://doi.org/10.3390/s22072798
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1306-464X
https://doi.org/10.3390/s22072798
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22072798?type=check_update&version=2

Sensors 2022, 22,2798 2 of 23
Table 1. Top ten software producers with vulnerabilities.
Sl. No. Vendor Name Count of Products  Count of Vulnerabilities #Vulnerabilities/
#Products
1 Cisco 5623 4159 1
2 IBM 1335 5378 4
3 Oracle 971 8270 9
4 Microsoft 665 8391 13
5 Redhat 430 4058 9
6 Apple 140 5467 39
7 Google 128 6916 54
8 Debian 109 6022 55
9 Canonical 49 3180 65
10 Fedora Project 21 2885 137
Table 2. Top Operating systems with Vulnerabilities.
Sl1. No. Product Name Vendor Name Count of Vulnerabilities
1 Debian Linux Debian 5572
2 Android Google 3875
3 Ubuntu Linux Canonical 3036
4 Mac Os X Apple 2911
5 Linux Kernel Linux 2722
6 Fedora Fedoraproject 2538
7 iphone OS Apple 2522
8 Windows 10 Microsoft 2459
9 Windows Server 2016 Microsoft 2233
10 Windows 7 Microsoft 1954

Pohl [1] stated that less than zero-day vulnerability means it is known to a restricted
set of people such as hackers or dedicated security researchers and the vulnerability
is not communicated to any software vendors or developers of the software. Egelman
et al. [2] stated that zero-day vulnerability means that it is known to the software vendor or
developer of software but the fix for the vulnerability has not been released. The hardware
or software vendors cannot repair the vulnerability with a new patch before getting to know
or discovering the zero-day vulnerability. The vendors and developers get zero-day to fix
the vulnerability. In the meantime, the hackers who know how to exploit the vulnerabilities
could attack using unknown malware.

Organizations dealing with security solutions find it difficult to give mitigation solu-
tions for zero-day vulnerabilities. Hence, the attacks exploiting zero-day vulnerabilities
are the toughest among various threats to defend against. The attackers can have the best
breakthrough with a zero-day attack in an organization that has good security solutions in
a place that is difficult to compromise. It is difficult to predict the type, location, and way
of exploitation of zero-day attacks as zero-day exploitation is more complex and diverse.
However, many times these vulnerabilities are exploited with variants of existing malware
or with new malware. To make the systems secure, one has to have a good system to detect
future malware. If a ML model is general enough to learn from currently known malware
and detect future malware then the ML model is good for identifying zero-day attacks
with malware as an exploit. One of the goals of this paper is to show the effectiveness and
robustness of the machine learning model to predict future malware after being trained by
previously known malware.

Many ML models to detect malware are based on static, dynamic, and hybrid analysis
with various performances. But the ML models have no way of knowing top features,
input by top features and other features to the prediction of malware, and effectively
compare features for misclassification. We studied zero-day malware detection using ML
models to determine top features, and input by top features to the prediction of zero-day
malware. By knowing input by features, the reasons for misclassification by the ML model



Sensors 2022, 22,2798

30f23

can be determined. These reasons can be used to overcome misclassification. This leads to
improving the efficiency of the ML model. The amount of contributions of features for true
positive and true negative can be found to find trends of top features and their input. The
trends can be used to confirm the classification, making the ML model robust. The trend
can also be used to differentiate misclassification from correct classification for unknown
future malware (zero-day malware).

The prime motivation in this proposal is for various novel visualizations of top features
for zero-day malware detection and input by each top feature in shap value and on a
scale based on predicted probability value by the ML model. It takes four steps further
in the realm of visualization of zero-day malware detection. The visualizations show:
(1) Identification of top features; (2) Input by each top feature in shap value; (3) Input by
each top feature on a predicted probability scale; (4) Trends in the top five to nine features
and input by top features for zero-day samples that are predicted as False Positive, False
Negative, True positive, and True Negative. This work uses two bagging ML models
such as Random Forest and Extratree forest and two gradients boosting decision tree
(GBDT) boosting ML models such as XGBoost and LightGBM for experiments, results,
and comparison.

The advantages of visualization are its capabilities to present a huge amount of data
interactively and intuitively. Visualization by bar plots and waterfall plots in shap value and
probability scale display top features and their contribution. Visualization techniques used
in this work can immensely aid the security analysts in a thorough analysis of the suspicious
software and help them effectively deal with a large number of malware. Various agencies,
such as anti-virus industries, threat detection agencies, and both open and invited malware
data websites, maintain a large database of malware. Some of these are available and many
may not be available to researchers. The contribution in this work may help in effective
analysis to meet the complexity and scale of malware generation on a per-day basis.

This study has the following novelties:

e  Use of two GBDT boosting and two bagging algorithm ML models for predicting the
zero-day malware and benign software. The results are compared to determine the
best performing ML model.

e Identification of change in top features for False Positive (FP), False Negative (FN),
True Positive (TP), and True Negative (TN) categories.

e  Determination of the contribution by each feature on a probability scale that has a
direct correlation to the predicted probability by machine learning models. The top
nine features are determined by the highest contribution on the probability scale.

e  Determination of the contribution by each feature in Shapley value and identify the
top nine features by the highest contribution.

e  Compare the top features and contributions of features on a probability scale for each
predicted category such as FP, FN, TP, and TN samples by the trained ML model.
Identify the trends in top features and their input for FN and FP samples. The trends
are made into inductive rules to improve the efficiency of ML models. The efficiency
of the ML model is improved by inductive rules and not by feature selection or
hyperparameter tuning.

e  Use these trends for confirmation of TP and TN samples, making the ML model robust.

The ML model may detect malware but needs further improvement as false-negative
misclassification can leave out detection of malware. The motivation here is to detect them
with trends in top features based on Shapley value. The false-positive misclassification
causes inconvenience to the user and is also planned to be reduced. This improves the
efficiency of the ML model. The trends in top features can be used to confirm the correct
classification, making the ML model robust.

This paper has a literature survey in Section 2, and methodology of zero-day malware
detection and visualization in Section 3. The experimental setup, datasets, and results are
described in Section 4 and the Conclusions in Section 5.



Sensors 2022, 22,2798

4 0f 23

2. Literature Survey

Venkatraman et al. [3] used data visualization for zero-day malware, with an unbal-
anced dataset of 75,000 samples with 2/3 as malware and 1/3 as benign. They adopted
two methods to visualize the zero-day malware. In the first one, the images of files were
passed through a trained CNN model for feature extraction. The features were plotted as
two-dimensional t-Distributed Stochastic Neighbor embedding for six families by K-means
clustering. In the second method, they visualized eight different distance measures such
as Cosine, Bray-Curtis, Canberra, Chebyshev, Manhattan, Euclidean, Hamming distance,
and Correlation for n-gram of API calls from disassembled code of an unpacked sample.
Their n value in the n-gram range was from 1 to 5. They used six categories of API call
sequence, which are used by malware to access system services, to get input for the DLLs
used, and to create or modify files. The eight different distance measures were used to
draw a similarity matrix with Support Vector Method (SVM) and four different kernels,
including RBE. Many malware authors use proprietary packing techniques that cannot be
unpacked. This technique will not be able to unpack such malware and process them.

Yousefi-Azar et al. [4] generalized their model for zero-day, unseen malware by Ma-
lytics and Extreme Learning Machine (ETM). Malytics is inspired by natural language
processing and the term frequency of malware and clean ware. The static features of a
sample are extracted and classified by a deep learning model. To reduce the computational
complexity of large feature space during backpropagation, they multiplied the random
projection matrix with the term frequency of the sample. This is a linear process termed
tf-simhasing. Malytics and ETM were used on the Drebin and Dexshare android dataset,
which includes balanced malware and clean ware. These were also used with a windows
executables dataset. They used windows malware from 2016 to build the model and win-
dows malware from 2017 as zero-day malware to test against the model. They achieve an
accuracy of 95.5%. We used the zero-day malware from the next month and got a much
higher accuracy of 98.5%.

Kardan et al. [5] explained fitted learning concepts for ML models to make them aware
of the limits of ML models. The authors visualized simple data to demonstrate the normal
machine classification that is not able to distinguish outliers that should not be part of
another class where a boundary is drawn for one class. A classic example of fooling in
machine learning is the following example. To classify an apple with weight (0.2, 0.25)
kilograms and watermelon with weight (5.2, 6.0) kilograms using SVM will have a boundary
of 2.5 kg. It will classify anything of 1.5, 2.0 kg as apple and even 20 kg as watermelon. The
authors used a competitive overcomplete output layer (COOL) to overcome the fooling
in ML classification. Malware and benign classification using ML models may also suffer
from such an anomaly where an outlier is put into the wrong category.

Harang and Ducau [6] used the concept of COOL that avoids fooling the ML classifi-
cation to measure and visualize the concept drift of malware features with time. Concept
drift is a change in input data to the ML model due to new malware samples over time
and exclusion of old samples. The change in input results in retraining the ML model
and consequently changing the parameters of the ML model. The authors focused their
effort on 20,372 WannaCry samples and 138,429 HWorld samples of ransomware. They
concluded that the individual malware families are stable with lower change from month
to month for their feature representation. In addition, they suggested that the machine
learning model evading is not used widely by malware authors.

Ceschin et al. [7] studied DDM and EDDM drift detection methods to detect changes
in the malware over time. The drift detection methods help to determine whether a
warning indication implies degraded machine learning models and confirmation by either
DDM or EDDM method implies the need to immediately update the ML model. Jordaney
et al. [8] proposed a Transcend framework for identifying aging in a ML classification
models. The framework’s goal is to detect the performance degradation of the model much
before deployment. They used concept drift, a statistical comparison of samples during
deployment with those samples with which the model is trained. Their framework can



Sensors 2022, 22,2798

50f23

raise flags when the model starts to make consistently poor decisions. Gove et al. [9] shared
“SEEM”, a visualization solution, for the analysis of malware to compare the behavior of a
large set of malware samples about the imported DLLs and API used as callback domain.
Wagner et al. [10] used a knowledge-assisted visualization solution for malware analysis by
Malheur tool to cluster system and API calls to find a pattern for malware. They used the
help of domain experts to find the pattern and externalize the rules. These rules are used to
find the malware in hope that similar patterns will be executed. This solution depends on
old rules that may fall short of new rules embedded in future zero-day malware that are
difficult to detect.

Pohl [1] described the vulnerabilities in the application, firewalls, operating system,
anti-virus products, and hardware that can be discovered systematically with required
tools or accidentally by users. These vulnerabilities must be tested with attack software or
exploits. The life cycle of vulnerabilities can be described in three phases. In the first phase,
the product does not have any vulnerability. In the second phase, a vulnerability may be
found in software products. In the third phase, the vulnerability must be fixed and a patch
for software has to be issued. It further distinguishes between zero-day vulnerability and
less than zero-day vulnerability.

Ye et al. [11] used zero-day vulnerabilities to identify four security metrics for attack
complexity and impact of a zero-day vulnerability. The four metrics are K-zero day safety,
minimum zero-day vulnerability attack path length, the exploitability of zero-day attack
path, and risk of zero-day attack path. K-zero day safety metric is the minimum number of
zero-day vulnerabilities required to exploit the target and other metrics are associated with
the difficulty of identifying the attack path length and the probability that a hacker may
follow the path. The attacker may follow an unsecured path or a zero-day attack path. The
fourth metric determines the risk of following a path.

Malware can be detected by one of the three methods such as static analysis, dynamic
analysis, and hybrid analysis. In static analysis, the features of malware may be extracted
from the PE header [12] or the Application Program Interface (API) calls from the loaded
dynamic link library (DLL) [13]. Features for static analysis can also be extracted from
software files, such as histogram of bytes in the sample, the entropy of parts of the sample
file, and printable strings with more than five characters embedded in the sample file [14].
Raff et al. [15] used n-grams from byte code for static analysis. Further, n-grams can also be
derived from assembly code, API calls, etc. The authors in [16] used the image of the file to
perform machine learning and/or deep learning to identify the patterns in an executable
to detect malware. The malware is not executed in static analysis. Static analysis has its
shortcoming in malware detection if the malware is obfuscated by non-standard packing
and encryption methods.

The execution of malware has to be in a virtual machine or by specific tools that
use a protected environment. In the absence of a protected environment, the malware
can infect the system and make the computing resource unusable. Tang et al. [17] ob-
served that dynamic analysis can overcome the shortcomings of static malware analysis.
Jindal et al. [18] executed the malware in a virtual environment and noted the actions per-
formed by malware such as changes in the registry, files, processes, system configuration,
and communication in the network. The dynamic analysis also has its shortcoming as
malware authors try to uncover the virtual environment and put an end to the actions
of the malware. This behavior leads the security analyst to believe the sample is benign
software. In [19], the authors used hybrid analysis, which combines the technique of static
analysis and dynamic analysis, to defeat their shortcoming. As the technique is combined,
it has the same issues as dynamic analysis of being expensive from a resource perspective
and static analysis from packing and encryption.

Higher prediction accuracies by our ML model give us motivation to further improve
the malware detection by finding and proposing novel ways to visualize the top significant
features of malware and the amount of contribution they have on a probability scale for
classification and misclassification by the ML model. We go a step further to visualize why



Sensors 2022, 22,2798

6 of 23

the prediction by an efficient ML model has minor deficiencies that lead to misclassification
such as FP and FN and how the top nine features change along with the amount of
contribution on a probability scale.

3. Methodology
3.1. Zero-Day Malware Model

We used the static malware analysis method for malware detection in this work. In
static analysis, the features of the sample are taken. The features can be categorized into two
major parts. Part one features consist of a Portable Executable (PE) header [20,21] and part
two features consist of features derived from the file [12]. The PE header shown in Figure 1
has a DOS header, DOS Stub, and PE header. The PE header has many parts such as the
General File header, Header file information, optional header, section headers, and many
directories. The directories include but are not limited to the Import directory, Resource
directory, Export directory, Exception directory, etc. The malware authors use custom
tools to build an executable that results in inconsistent values in the PE header. These
inconsistent fields can help distinguish malware and benign software. Hence, the fields
from the PE header are included as features. These features can also be visualized using
CFFexplorer. The import directory has a list of Dynamic Link Libraries (DLL) and API used
by the software. Some executables export functions for sharing a function call with other
programs. The resource directory has a list of icons, bitmap images, menus, strings, dialogs,
configuration files, version information, etc. Malware uses specific functions in DLL to
achieve its objectives. The imports and export function can help distinguish malware
and benign software. Hence, these are included as features. The malware authors like
to use specific icons, bitmap images, and strings to identify their groups. Those strings
and icons can be found in the resource directories. The exception directory has a list for
handling exceptions.

Part two of the features derived from the program are a histogram of bytes in the
executable, strings in the file, and the entropy of the executable. The histogram of bytes in
the sample is the count of byte values that range from 0-255. It helps to get the amount
of availability of various bytes in the sample and good information for various known
packing methods used by benign executable authors and both known and private packing
methods used by malware authors to hide the malware code. These techniques increase
the difficulties of malware analysts to get more insight into the malware. The packing
and encryption methods raise the entropy of bytes in the executable. The second largest
features are derived from the entropy of the file in a block size of 2048 bytes. This entropy
is computed for the 2048 byte block size of a file with a step size of 1024. The values are in
16 x 16 bins representing the entropy and byte values as the method outlined in [15] by
Saxe et al. The third largest features are derived from strings embedded in the executable
file. Strings make very important information in the malware and lead to finding the
command and control URLs, IP addresses for communication with malware authors, the
signature of malware authors, and groups. In addition, these strings also represent the
path of files, registries that are created, deleted, and modified. Strings of the size of five
printable characters or more are hashed into 104 bins. A particular string after a hash will
land in a particular bin only.

Hence, a specific URL, an IP address, a file name, and a signature will be mapped to a
specific bin among 104 string features. These bins represent features. The part one and part
two features are 2351 features for each sample.

We filtered, processed, and extracted three datasets, D1, D2, and D3, from a dataset
shared by [12] as shown in Figure 2. The extracted datasets represent samples from different
periods. Dataset D1 has malware and benign samples from January 2017. Dataset D2 has
samples from February 2017. Dataset D3 has samples from March 2017.



Sensors 2022, 22, 2798 7 of 23

< - 32bits —

DOS header 0x5A4D

DOS Stub

Section name—8 bytes
Section Virtual Size— 64 bits

Section Headers . . .
Section Raw Size —64 bits

Section Characteristics— 64 bits

Figure 1. File header of a sample with details of components in the PE header.



Sensors 2022, 22,2798

8 of 23

— Filter &
= ¢ Process

b

Malware, Benign,
Unlabelled Dataset

s D1
B
s
B i D2
c:
- D3

Figure 2. Derivation of D1, D2, D3 datasets from the Malware dataset scale.

We used a bagging and boosting machine learning algorithm model in the sklearn
library as shown in the system block diagram in Figure 3. For bagging, Random forest
and Extratree forest model and for boosting, gradient boost decision tree based LightGBM
and XGboost models were used in this work. Machine learning models using each of the
methods such as Random forest, Extratree, LightGBM, and XGBoost were made using
dataset D1, which has samples from January 2017. These trained models were used
to predict the future zero-day malware and benign samples from February 2017 and
March 2017 represented by the D2 dataset and D3 dataset, respectively. All of the samples
in D1, D2, and D3 have different SHA256 values and the D2 and D3 samples are not
exposed to training ML models. A few top features in a range of 6-25 features among the
2351 features that help identify the malware and benign samples were visualized using
various diagrams such as bar plot and waterfall plot. In addition, these diagrams show
the amount of contribution by each top feature in shap value and scale of probability. Any
machine learning model learns from a set of given samples, termed as training samples,
and can be used for predicting the unseen samples. In this work, the unseen samples were
malware and benign samples from the future period such as February 2017 and March 2017,
represented by D2 and D3 datasets. Zero-day samples in this work were from the future
period, had different SHA256 values, were not exposed, and were unknown to training of
ML models. The prediction results are discussed in Section 4 and are very promising.

D3

‘ Malware
Dataset D1

Dataset » Baggi'ng Future Top oo
D1 Boosting » Zero-day important important
Mode) MaIIDv;are fleatuies Features
for FP, FN,
TP, and
Future N Comp
Zero-day Top arison
Malware important
Top
D3 Features
Featu
Top res
important
Dataset Bagging Future Shap Top Features
D2 Boosting Zero-day Diagrams important for FP, FN,
Model Malware Features TP, and TN

Top
important
Features

Figure 3. Block diagram for the method.



Sensors 2022, 22,2798

9o0f23

The machine learning model has a minor deficiency in detecting the malware and
can misclassify malware as benign, a false negative, or benign software as malware, a
false positive. For good performance of the ML model, both the false positive and false
negative should be minimized. A false positive creates lots of inconvenience to the users
and brings down the efficiency and productivity of an organization. A false negative is
more dangerous as the user is unaware of the ill effects of malware, thinking it to be benign
software. One such false negative can create a lot of damage to the organization. Hence, it
is important to identify FP and FN predictions and change them to the correct category. Bar
plots and waterfall plots give the top features based on Shapley value of features. The plots
can indicate the Shapley value for each feature. Detection of change in a few top features
can correlate with misclassified FP and FN predicted categories. Misclassification can also
be confirmed by a change in the contribution by top feature. Both changes in the top feature
and change in the contribution are used to make inductive rules that can be used to put the
correct classification on misclassified samples

A new ML model was trained using dataset D2 and used to predict the future zero-day
malware, benign software from March 2017, represented by dataset D3. These models
were also used to predict the malware dataset D1 from January 2017. Figure 3 shows these
experiments in the lower part of the block diagram with dataset D2.

3.2. Feature Importance Visualization in Shap Value

An ML model should be both accurate and interpretable. Decision tree-based machine
learning models can be interpreted based on decision path, information gain, and heuristic
value to features. This work uses Shapley value as a heuristic value for each feature
in the ML model to make it interpretable. A local explanation for a feature means to
assign a numerical value or credit to each feature used in the ML model based on the
tree. The credit for features used in the decision tree-based ML models in this work is
Shapley value. This local explanation to a feature should also support global explanation
for the tree. A global explanation is an overall prediction for a sample by the ML model.
Shapley values are also used as the important feature for the tree-based ML model in
this work. This requires that the feature importance should use a measure that has local
accuracy, consistency, and missingness [22]. Shapely values from game theory satisfy all
three properties simultaneously and can be used as a numerical value to a feature in the
tree-based ML model.

Optimal local explanation based on Shapely value was implemented as TreeExplainer
by Lundberg et al. [22]. A global structure can be made from the addition of local explana-
tion. Hence, the overall prediction of the ML model can retain local faithfulness. The exact
calculation of local explanation is NP-hard. However, the TreeExplainer by Lundberg et al.
applies approximation to do the computation in polynomial time. TreeExplainer provides
feature interaction of the tree-based ML model and can be captured by extended property
of local explanation. Hence, the TreeExplainer provides valuable insight into the behavior
of the ML model.

The Shapley values can help find the top features but cannot be correlated to predicted
value by a ML model. Hence, this project converts the Shapley value to probability scale
using Algorithm 1.

3.3. Conversion from Shap Value to Probability

Algorithm 1 gives the algorithm to convert the Shapley value for a sample to the
probability scale. A shap explanation object is computed for each sample based on the shap
library in python and the trained ML model. The shap explanation object is a data structure
that has a base value and array of contributions of each feature in SHAP value. In step1, the
base value of the shap_explanation object is extracted. The base value of the explanation
object is converted to the logit base value based on the logit function identified in step2 of
the algorithm. The logit base value is the base start point in waterfall plots. Subsequently,
we compute the difference between the predicted probability values by machine learned



Sensors 2022, 22,2798

10 of 23

model with logit base value. The computed difference is proportionately distributed over
the feature as per the shap value of each feature. The proportionate value is the contribution
of a feature on a scale of probability. The addition of this probability value will be equal
to the predicted probability value of the ML model for the sample. The Shapley value of
each feature is transformed to the probability scale using the algorithm in Algorithm 1. The
probability scale helps identify top features.

Algorithm 1 Shap value to probability value

Input: Shap Explanation structure, MLModel, e gict
Output: Probability value for each feature (probability¢,,iure)

1 Shap value = SBV = Shap_explanation.basevalue;

2 Logit_base_value = logity,, = Heﬁ ;

3 Distance between logit base value and = MLModelpredict—logitbV ;
model predicted value = Diffyyy,

4 Coefficient = coffyr. = %};ilue ;

5 For each shap value in shap explanation structure;

6 Transform value =Tyalue = Shf(ﬂ;’;iue ;

7 end

8 probabilityc,,iure = Tyalues

For good performance of the ML model, both the false positive and false negative
should be minimized. The false positive creates lots of inconvenience to the users and
brings down the efficiency and productivity of an organization. The false negative is far
more dangerous as a user is unaware of the ill effects of malware. They think of the software
as benign and use it. One such false negative can create all the damage to the organization.
FP, EN, TN, and TP samples from the best performing ML model were used to further
improve the performance of the ML model. We studied the trends in the top features for all
predicted categories. This trend helps to form inductive rules. The inductive rules may be
applied to a zero-day malware for effective and robust prediction. The prediction results
are discussed in Section 4.

4. Experimental Results and Analysis
4.1. Datasets

Dataset D1, D2, and D3 were extracted from [12] by filtering and processing as per
Figure 2. Samples were selected for a dataset based on a specific period. The samples in the
D1 dataset are from January 2017. The counts of unlabeled, malware, and benign samples
are described in Table 3. The samples in the D2 dataset are from February 2017 and the
samples in D3 are from March 2017. All the samples in D2 and D3 have different SHA256
values compared to samples in the D1 dataset, future period, and are not exposed to training
the ML models. The counts of samples in unlabeled, malware and benign are in Table 3.
The unlabeled samples were excluded from experiments in this work. Without labels, the
unlabeled samples cannot be ingested for training or testing considering the supervised ML
algorithms planned for this work. Each sample in the dataset has 2351 features as described
in Section 3.1. Table 4 lists the names of 2351 features, counts of features, and parts of the
sample file from where the features are derived. It has 256 features from the histogram
property of the file and the names of features are H1-H256. It has 256 features, named
BEn1-BEn256, from the entropy property of samples. These features show the entropy of
the file. High entropy indicates the use of packing and encryption methods by the malware
authors. Str1-Str104 are 104 hashed strings features from a sample. It contains all the strings
that have five or more printable characters.



Sensors 2022, 22,2798

11 0f 23

Table 3. Details of D1, D2, D3 datasets.

Sl1. No. Short Name Counts label Period
1 28,606 Unidentified January 2017
2 D1 17,180 Benign January 2017
3 32,761 Malware January 2017
4 31,394 Unidentified February 2017
5 D2 32,820 Benign February 2017
6 27,239 Malware February 2017
7 15,656 Unidentified March 2017
8 D3 25,261 Benign March 2017
9 12,692 Malware March 2017
Table 4. Features names in the dataset used.
Description Count Feature Name
Histogram 256 H1-H256
Byteentropy 256 BEn1-BEn256
String Extractor 104 Strl-str104
size
vsize
has_debug
exports
General file Info 10 En ports
as_relocations
has_resources
has_signature
has_tls
symbols
Feature names Num of features Description
timestamp 1 Timestamp
Machinel-Machinel0 10 H/W type hashed
C_char1-C_char10 10 Characteristics Hashed
subsystem1-subsystem10 10 Subsystems Hashed
dll_c1-dll_c10 10 DLL Characteristics hashed
magicl-magicl0 10 Magic
Header file Info 62 major_i_verminor_i_ver 1 Image version
. . . . 1 Linker version
major_linker_verminor_linker_ver 1
major_os_ver 1 OS versions
minor_os_ver 1
major_ss_ver 1 Subsystem version
minor_ss_ver 1
sizeof_code 1 Code size
Feature names Num of features Description
num_of_sec, 1 Number of Sections
num_of_sec_morethan0, 1 Number of sections >0
num_sec_no name, 1 Count of sections without name
Count of sections with read and
L. RX_sec_num, 1 R
Section info 255 execute permission
Number of sections with write
W_sec_num 1 ..
permission
sect_size_l-sect_size_50 50 Section size hashed
sect_entropy_l-sect_entropy_50 50 Section Entropy hashed
sect_vsizel-sect_vsize50 50 Section vsize hashed
entry_namel-entry_name50 50 Section name hashed
sect_charl-sect_char50 50 Section characteristics hashed
Imports 1280 Imp1-Imp1280
Exports Info 128 expl-exp128




Sensors 2022, 22,2798

12 0f 23

It has 10 features from the general file information part, 62 features from the header
file information part, and 255 features from the section information part of the PE header of
the sample file. These parts are shown in the PE header in Figure 1. The imports of API
from DLL are 1280 features with the names Imp1 to Imp1280. It has 128 features, expl to
exp128, from exports of API from samples. Figure 1 shows part of the sample file from
where they were extracted.

4.2. Design of Experiments

A Core(TM) i5-2701 MHz laptop with 8 GB Ram was used for the experiment setup.
ML algorithms such as LightGBM and XGBoost were selected for zero-day malware
detection. These ML algorithms were selected for the following advantages.

Insight into the feature importance of the model.
Continuity of features with future upcoming malware.
Change of features with future upcoming malware
Ease of computation

Better performance of models

4.3. Zero-Day Malware Detection with XGBoost

The XGBoost ML model was trained with the 70% samples from the D1 dataset and
tested with 30% samples from the D1 dataset. Table 5, Row1 has the results of the test. The
“D2-D1” row in the table gives performance data for the D2 dataset representing zero-day
malware from February 2017 using the XGboost model trained with the D1 dataset. The
“D3-D1” row in the table gives performance data for the D3 dataset representing zero-day
malware from March 2017 using the XGboost model trained with the D1 dataset. We
can see minor degradation in accuracy of future malware from February 2017 (98.50% vs.
97.87%). We see further degradation in accuracy to 97.50% with future zero-day malware
from March-2017. This experiment was repeated with training the XGBoost model with the
D2 dataset from February 2017 and predicting the zero-day malware from the D3 dataset
from March-2017. The performance results are in row “D3-D2”. We also predicted the old
malware from January 2017 in the D1 dataset with this model and performance results are
in row “D1-D2” row.

Table 5. Results of XGBoost ML model.

Accuracy TP FP FN TN Precision Recall F1-Score Support
D1-Test 98.501 5528 142 105 10,706 0.99 0.99 0.99 10,811
D2-D1 97.875 31,906 914 362 26,877 0.97 0.99 0.98 27,239
D3-D1 97.507 24,455 806 140 12,552 0.94 0.99 0.96 12,692
D2-Test 98.703 10,686 100 157 8877 0.99 0.98 0.99 9034
D1-D2 98.081 16,926 254 704 32,057 0.99 0.98 0.99 32,761
D3-D2 98.492 24,936 325 247 12,445 0.97 0.98 0.98 12,692

The number of false positives (FPs) increased from 142 in D1-test to 914 with the D2
dataset (an increase of 2.56% for the test dataset from D1 to 2.86% for the D2 dataset).
The FPs further increased to 806, representing an increase to 3.29%. The False negatives
increased from 105 to 362 for the D2 dataset, representing an increase from 0.97% for the
test dataset from D1 to 1.32% for the D2 dataset and a minor decrease to 140 with the D3
dataset, representing a decrease to 1.10%.

4.4. Zero-Day Malware Detection with LightGBM

The experiment as outlined in Section 4.3 for the XGBoost GBDT model was repeated
with the LightGBM ML algorithm. The results of the experiment are in Table 6. It has
results for Accuracy, confusion matrix parameters, Precision, Recall, and F1-score. The
accuracy performance of the D1-test and D2 dataset was compared and we noticed minor



Sensors 2022, 22,2798

13 of 23

degradation from 98.48% to 97.64%. The performance between the D1-test and D3-D1 row
shows further minor degradation in accuracy to 97.20% with the D3 dataset.

Table 6. Results of the LightGBM ML model.

Dataset Accuracy TP FP FN TN Precision Recall F1-Score Support
D1-Test 98.483 5520 150 100 10,711 0.99 0.99 0.99 10,811
D2-D1 97.640 31,831 989 428 26,811 0.96 0.98 0.97 27,239
D3-D1 97.201 24,341 920 142 12,550 0.93 0.99 0.96 12,692
D2-Test 98.526 10,658 128 164 8870 0.99 0.98 0.98 9034
D1-D2 97.865 16,876 304 762 31,999 0.99 0.98 0.98 32,761
D3-D2 98.224 24,847 414 260 12,432 0.97 0.98 0.97 12,692
The Fl-score degraded with the D2 dataset from February-2017 from 0.99 to 0.97 and
it further degraded to 0.96 with the D3 dataset containing future malware from March-2017.
The false positives increased from 150 to 989 with the D2 dataset (an increase of 2.71% to
3.10%). This further increased to 920, representing an increase to 3.77%. The False negatives
increased from 100 to 428 for the D2 dataset, representing an increase from 0.92% to 1.57%
and a minor increase to 142 with the D3 dataset representing an increase to 1.12%.
4.5. Zero-Day Malware Detection with Random Forest
The experiment as outlined in Sections 4.3 and 4.4 for boosting GBDT ML algorithm
was repeated for bagging ML algorithm Random Forest. The results are in Table 7. Minor
degradation in accuracy of future malware from D2 dataset (96.72% vs. 97.76%) was found.
We saw further degradation in accuracy to 96.13% with future malware of the D3 dataset.
This is slightly less than the XGboost model.
Table 7. Results of Random Forest ML model.
Dataset Accuracy TP FP FN TN Precision Recall F1-Score Support
D1-Test 97.761 5484 186 183 10,628 0.98 0.98 0.98 10,811
D2-D1 96.728 31,537 1283 682 26,557 0.95 0.97 0.96 27,239
D3-D1 96.134 24,033 1228 239 12,453 091 0.98 0.94 12,692
D2-Test 97.815 10,642 144 289 8745 0.98 0.97 0.98 9034
D1-D2 96.776 16,869 311 1299 31,462 0.99 0.96 0.98 32,761
D3-D2 97.660 24,778 483 405 12,287 0.96 0.97 0.97 12,692

The False positives (FPs) increased from 186 to 1283 with the D2 dataset (an increase of
3.39% for the test dataset from D1 to 4.06% for the D2 dataset). This was computed by the
ratio of FP to TP. The FPs further increased to 1228, representing an increase to 5.10%. The
False negatives increased from 183 to 682 for the D2 dataset, representing an increase from
0.97% for the test dataset from D1 to 1.69% for the D2 dataset and an increase to 239 with
the D3 dataset representing an increase to 1.88%. This was computed by FN to support,
which represents the total malware present in the dataset.

4.6. Zero-Day Malware Detection with Extratree

The Extratree ML model was trained with the 70% samples from the D1 dataset and
tested with 30% samples from the D1 dataset. Table 8, Row1 has the results of the test.
We used the model trained on the D1 dataset to predict the malware and benign samples
from datasets D2 and D3. D2-D1 row in the table gives performance data for dataset D2
using the Extratree model made with the D1 dataset. The “D3-D1” row in the table gives
performance data for the D3 dataset representing March 2017 using the Extratree model
with the D1 dataset. We could see minor degradation in accuracy of future malware from
February 2017 (97.96% vs. 97.35%). We did not see any degradation in accuracy with future
malware of March 2017.



Sensors 2022, 22,2798

14 of 23

Table 8. Results of Extratree ML model.

Dataset

Accuracy

TP

FP

FN

TN

Precision

Recall

F1-Score

Support

D1-Test
D2-D1
D3-D1

D2-Test
D1-D2
D3-D2

97.967
97.352
96.732
98.219
97.138
98.232

5504
31,798
24,202
10,680
16,933
24,920

166
1022
1059

106

247

341

169

568

181

247
1182
330

10,642
26,671
12,511
8787
31,579
12,362

0.98
0.96
0.92
0.99
0.99
0.97

0.98
0.98
0.99
0.97
0.96
0.97

0.98
0.97
0.95
0.98
0.98
0.97

10,811
27,239
12,692
9034
32,761
12,692

The False positives (FPs) increased from 166 to 1022 with the D2 dataset (an increase
of 3.01% for the test dataset from D1 to 3.21% for the D2 dataset). The FP further increased
to 1059, representing an increase to 4.37%. The False negatives increased from 169 to 568 for
the D2 dataset, representing an increase from 1.56% for the test dataset from D1 to 2.08%
for the D2 dataset and a minor decrease to 181 with the D3 dataset, representing a decrease
to 1.42%.

4.7. Comparison of Model Performance

Table 9 compares the accuracy among the four machine learning models LightGBM,
XGBoost, Random Forest, and Extratree for being trained on D1 and zero-day malware
prediction of D2 and D3 datasets. We found the highest accuracy with XGBoost and the
lowest with Random forest for a model trained on dataset D1 and zero-day malware
prediction on D2 and D3 datasets. For models trained on the D2 dataset and zero-day
malware, prediction was done for the D3 dataset. The XGBoost model gave the consistently
highest result and the Random Forest model gave the lowest accuracy.

Table 9. Comparison of Accuracy for LightGBM, XGBoost, Random Forest, and Extratree.

Dataset LightGBM XGBoost RF Extratree

D1-test 98.483 98.501 97.761 97.967
D2-D1 97.640 97.875 96.728 97.352
D3-D1 97.201 97.507 96.134 96.732
D2-Test 98.526 98.703 97.815 98.219
D1-D2 97.865 98.081 96.776 97.138
D3-D2 98.224 98.492 97.660 98.232

Table 10 compares the false positives and false negatives for the LightGBM (identi-
fied as LG), XGBoost (identified as XG), Random Forest (Identified as RF), and Extratree
(identified as ET). The lowest false positives were detected by the XGBoost model and the
highest by Random Forest. A model should have minimal false positive and false positive
detection. Hence, the XGBoost model was selected for further improvement to the model.

Table 10. Comparison of False Positives and False Negatives for LightGBM, XGBoost, Random Forest
and Extratree.

Dataset

FP FN

LG

XG RF ET LG XG RF ET

D1-test
D2-D1
D3-D1
D2-Test
D1-D2
D3-D2

150
989
920
128
304
414

142 186 166 100 105 183 169
914 1283 1022 428 362 682 568
806 1228 1059 142 140 239 181
100 144 106 164 157 289 247
254 311 247 762 704 1299 1182
325 483 341 260 247 405 330




Sensors 2022, 22,2798

15 of 23

4.8. Improvement to XGBoost Model by Trend in Top Features

The complete dataset D2 is a combination of malware and benign samples as detailed
in Table 3. The D2 dataset was used for future zero-day malware prediction using the
XGBoost model trained from the D1 dataset. Based on the prediction of the ML model,
samples that are misclassified in FP and FN categories are identified. Samples that are
classified correctly in TN and TP are also identified. Figure 4 displays the top 25 features
with names in bar plots in each category of FP, FN, TN, and TP. Only the top twenty five
features were selected as the diagram is clear and their contribution was easier to observe.
Figure 4 displays the contribution of the top 25 features in shap value in bar plots in each
category of FP, FN, TN, and TP. Only the top twenty five features were selected as the
diagram is clear and their contribution was easier to observe. The figure shows bar plots of
a FP sample (first row left), a FN sample (first row right), a TP sample (second row left),
and a TN sample (second row right) in shap value. Figure 5 shows bar plots for FP, FN, TN,
and TP samples on a probability scale.

The XGBoost ML model predicts the probability for a new sample. If the probability
is more than 0.5, then the sample under test is termed malware, otherwise it is termed
benign. It also displays the contribution of the top 25 features on a probability scale. The
probability values are determined from the shap value as per the algorithm in Algorithm 1.
The feature names can be referred to in Table 2. The contributions of the remaining 2326
features are displayed in the last bar of the figure.

Figure 6 shows waterfall plots for a sample in each category of FP, FN, TN, and TP
as predicted by the trained XGBoost ML model. The waterfall plot identifies the top nine
features with name and their contribution in shap value. The feature name can be referred
to in Table 2. Figure 7 shows waterfall plots for a sample in each category of FP, FN, TN,
and TP on a probability scale. The probability scale value is computed using the algorithm
in Algorithm 1 from shap values of top features. The last bar in the waterfall plot shows
the contribution of the remaining 2346 features out of 2351 features. All of the feature’s
probability values can be summed to the predicted value by the ML model. The top left
waterfall plot in Figure 7 is for a FP sample. The sum of all features is 0.659 (more than 0.5)
and the label for the sample is benign. Hence, the prediction is FP. The top right waterfall
plot in Figure 7 is for a FN sample. The sum value is 0.205 (less than 0.5) and the label for
the sample is malware. Hence, the prediction is FN. Figure 7 lower row waterfall is for a
TN and TP prediction by the ML model with sum value 0.013 and 1.

The waterfall plots for a false positive sample in Figures 6 and 7 display the top features
that contribute in both negative and positive directions compared to the contribution of
2342 features. The observation is the same for the top features in the waterfall plot for a
FN predicted sample compared to the contribution of 2342 features for a false negative
sample. However, the waterfall plot for a TN predicted sample shows the top features that
contribute in negative directions as the contribution of 2342 features in a negative direction.
The observation is the same for the true positive sample. The top features contribute in a
positive direction and are in line with the contributions of 2342 features. These observations
lead us to conclude that the waterfall plots in Figures 6 and 7 for false negative and false
positive categories are very different from waterfall plots for TP and TN categories. The
following two important conclusions are noted:

e  The top features contribute to different directions than 2342 features for FP and FN
samples.

e The top features contribute to the same direction as 2342 features for TP and TN
samples.

This observation and conclusion can be used for the correct classification of misclas-
sified samples. The FP and FN prediction can be identified using waterfall plots. The
waterfall plot for the FP and FN categories will show that the top features for the sample
will contribute in both positive and negative directions compared to 2342 features. The TP
and TN samples can be identified using their waterfall plots. The waterfall plots for TP



Sensors 2022, 22,2798 16 of 23

and TN categories will display the top features that will contribute in the same direction as
2342 features.

Whip321750:08 RX_sec_num +1.24
C_charl +0.78 Cochard
ros o9 imports
strd3 strl
str104 sizeof_code
Ha44 size
str67 has_debug
has_debug Imp312
RX_sec_num str104
Imp374 H129
timestamp H112
stra sec_entropy_33
H254 exports
sec_size_44 sec_size_44
str20 BEn151
H126 str40
str40 strl6
C_chara H254
H39 sec_vsize44
Ha8 dil_c2
H106 stra3
subsystem9 Imp1064
H227 sec_entropy_16
sec_entropy_44 str77
BENS0 Imp604
Sum of 2326 other features +0.73 Sum of 2326 other features —0.87
-100 -0.75 -0.50 _OIZSSHAP?I.;‘IJUE 0.25 050 075 =y o5 10

subsystem9 —2.46

C_char1 +0.61 Sesart
H33
C_char4 +0.54

Imp604

BEn253
str104

str78
sec_size_44

stra7
C_chard

strl04
timestamp
timestamp strls
RX_sec_num H222
H33 dil_c2
H222 has_debug
BEN255 H75
strd3 strd3
sec_vsize44 H254
has_debug str78
BENn232 H129
H106 H121
dil_c2 strs
strs9 BEn151
H83 H67
strlé

H223
strd

W_sec_num
stro2

H131
H36

subsystem8
strl8

H48

Sum of 2326 other features

(a)

Figure 4. Bar plot of a FP sample (a), a FN sample (b), a TP sample (c), and a TN sample (d) from the

-1.0
SHAP value

0.0

05

D2 dataset in shap value.

Sum of 2326 other features

0.0 05
SHAP value

00 05

(d)

1.0 15
SHAP value



Sensors 2022, 22, 2798 17 of 23

1 = Imp321 ~0.18 RX_sec_num +0.28
0 = C_charl +0.16 0 = C_charl
( H33 +0.15 »69 = imports
)03 = strd3 34 = strl
1 = strl04 1988608 — sizeof_code
)01 = Ha44 6221188 = size
)43 = stre7 has_debug
) = has_debug 1 = Imp312
1~ RX_sec_num 11~ str104
~1 -~ Imp374 07 = H129
1428635008 = timestamp 18 = H112
)29 = str4 —5.88¢ sec_entropy_33
0 = H254 1 = exports
1096 = sec_size_44 201216 = sec_size_44
)02 = str20 027 = BEn151
).00€ H126 104 = str40
)04 = str40 )51 = strlé
0 = C_char4 01 = H254
001 = H39 200756 = sec_vsize44
01 — H48 dil_c2
).002 = H106 0.002 = stra3
1 = subsystem9 1 =~ Imp1064
).004 = H227 6.398 = sec_entropy_16
.13 sec_entropy_44 )39 = str77
BEN50 Imp604
Sum of 2326 other features +0.15 Sum of 2326 other features ~0.19
-0.20 -0.15 =-0.10 -0.05 0.00 0.05 0.10 0.15 -0.2 -0.1 0.0 0.1 0.2 0.3
SHAP value SHAP value
subsystem9 —~0.33 C C_charl
0 = C_charl +0.08 001 = H33
0 = C_chard +0.07 1 = Imp604 —0.02
0 = BEn253 206 = str104
0 = str78 1097728 = sec_size_44 ~ —0.02
0.001 -~ str47 C C_char4
1 = strl04 1332796032 = timestamp
965350656 = timestamp 0.011 = strl5
= RX_sec_num = H222 —0.01
002 =H33 0 = dll_c2
0 - H222 ) - has_debug
0 = BEN255 0.01¢€ H75
0.002 = str43 )19 = strd43
sec_vsized4 H254
0 = has_debug .01 str78
26 = BEn232 H129
0.005 = H106 ) 014 = H121
dil_c2 0= strS
0.001 = str59 [ = BEn151
05 — H83 )22 = H67
0 = H223 strl6
W_sec_num 0 = str4
C H131 015 = str92
1 = subsystem8 H36
0~ H48 strl8
Sum of 2326 other features Sum of 2326 other features +0.11
-0.3 -0.2 -0.1 0.0 0.1 -0.02  0.00 0.02 0.04 0.06 0.08 0.10 0.12

SHAP value SHAP value

(0) (d)

Figure 5. Bar plot of a FP sample (a), a FN sample (b), a TP sample (c), and a TN sample (d) from the
D2 dataset on probability scale.



Sensors 2022, 22,2798

18 of 23

Imp321
C_charl
003 = H33
0 stra3
str104
( Ha4
13 = str67
has_debug
RX_sec_num

2342 other features

subsystem9
) = C_charl

) - C_chara

BEN253

0= str78

0.001 = stra7

1 = strl04

965350656 = timestamp
RX_sec_num

2342 other features

1 = Imp321

0 = C_charl
03 = H33
stra3

strl04

( Haa

13 = stré7

)~ has_debug
1 = RX_sec_num

2342 other features

RX_sec_num

C_charl
569 = imports m
strl
1988¢€ sizeof_code
size =0i88 .
has_debug . +0.37
Imp312 -0.33 .
str104 ' £0:20,

2342 other features

a 3 -2 -1 o L)
EfX))
(b)
fx)
0 = C_charl t0:32
1 = Imp604 Shite -
)06 = str104 - ot
109 28 = sec_size_44 -0.44 .
0 = C_char4 ' o
796032 = timestamp ' s
11 - str1s B
0 - H222 |

3 4 5 6 7 8

(d)

2
EL1X)] >

Figure 6. Waterfall plot of a FP sample (a), a FN sample (b), a TP sample (c), and a TN sample

(d) from the D2 dataset in shap value.

-0.08

0.5

0 = subsystem9
C_charl
C_chara

= BEn253
str78

= str47
str104
timestamp
RX_sec_num

2342 other features

0.8
E[fX)]

-0.1

0.0

01

0.2

(©)

RX_sec_num

C_charl

imports

strl

1988608 - sizeof_code
size

has_debug

Imp312

strl04

2342 other features

0 = C_charl
H33
1 Imp604
str104
sec_size_44
0 = C_char4
timestamp
strls

H222

0.80 0.85

0.90 0.95 1.00

ETfX)]

(d)

Figure 7. Waterfall plot of a FP sample (a), a FN sample (b), a TP sample (c), and a TN sample
(d) from the D2 dataset on probability scale.



Sensors 2022, 22,2798

19 of 23

4.9. Derivation of Inductive Rules

The five top features are identified in Table 11 in the features column for FP, FN, TN,
and TP samples. It identifies the five top features with “P” and the amount of contribution
of a feature on the probability scale for each category of prediction. The contribution of
the topfeature for each category is in bold, such as C_Char1 (0.03) for the TP category and
Imp321 (—0.18) for the FP category. A top feature present in a category of the sample such
as Imp321 in FP but not present in other categories such as FN, TP, and TN is marked as
“N”. Few cells have feature names identified such as in row 13. The “Features” column has
the value BEn253, but the “false positive” column has the value BEn50. This means that the
FP sample does not have any contribution from the BEn253 feature but has a contribution
from the BEn50 feature. The following observations can be derived from the table:

e FP FN, TP, and TN predicted samples have a disjoint set of features. The top features
are very different for each predicted sample category.

e  The top feature for a false negative sample is “Rx_sec_num” and is present with a very
low contribution in the false positive and true negative.

e  The top feature for true positive is “C_charl” and contributes very low, but has a high
contribution for samples in FP and FN.

e  The probability scale value is high for 2342 features for the TP sample compared to
other top features.

Table 11. Comparison of features and their probability scale value in all predicted categories by
XGBoost model. Bold means topmost feature.

Features Included in XGBoost ML Prediction Categories and Their Contribution

S1. No. Features
False Positive (FP)  False Negative (FN)  True Positive (TP) True Negative (TN)
1 Imp321 —0.18 N N N
2 C_charl P, 0.16 P,0.15 0.03 P, 0.08
3 C_char4 P, 0.04 N P,0.01 P,0.07
4 H33 P0.15 N P,0.03 N
5 Subsystem9 0.04 N N P, —0.33
6 Rx_sec_num —0.07 P, 0.28 N +0.05
7 Str43 P—-0.13 N P, 0.01 P, —0.04
8 Str104 P, —-0.1 P, 0.07 0.02 —0.05
9 Imports N P, —0.13 N N
10 Strl N P, —-0.13 N Str78. Strd7
11 Sizeof_code N P, —0.10 N N
12 Imp604 N N P, —0.02 N
13 BEn253 BEn50 N BEn151 -0.07
14 Other 2342 features P 0.16 P, —0.60 P 0.17 —0.23

Having identified a misclassified prediction by a waterfall plot by trend, the technique
outlined with data in Table 11 can be used to differentiate between FP and FN prediction.
Waterfall plots can also be used for confirmation of the correct classification of samples.

The Inductive rules are derived as follows.

1.  An unknown real-time sample that has top features of Imp321, C_charl, H33, and
Str43 is a FP sample. The amount of contribution from 2342 features is opposite to
Imp321. It is predicted as malware but can be used as benign software.

2. An unknown real-time sample that has the top features of Rx_sec_num and the
contribution of 2342 features is opposite to Rx_sec_num features is a FN sample. It is
predicted as benign but is actually malware. Manual static and dynamic analysis of
the sample may be performed.

3. An unknown real-time sample that has C_charl as the top feature, no contribution of
Imp321 feature, and much higher contribution from the remaining 2342 features is
malware. It is a verification of the sample and a robust prediction.



Sensors 2022, 22,2798

20 of 23

4. Anunknown real-time sample that has the top feature of Subsystem9 and contribution
from 2342 features in the same direction as Subsystem9 should be a benign sample. It
is a verification of the sample and a robust prediction.

As all the misclassified samples can be corrected by the trends in top features, the
result of the ML model for XGBoost reaches 100% accuracy for the two datasets D2 and
D3 in a controlled environment. Please note this is not a property of ML algorithms but
enhancement due to the trend in top features identified using Shapley values. Hence, all
the objectives (bullet points listed in the Section 1) are met.

4.10. Comparison with Five Zero-Day Malware Projects

Table 12 has comparison details of this work with five zero-day malware detection
projects. This project achieves higher accuracy with a large number of future zero-day
malware from D2 and D3 datasets compared to Yousefi-Azar et al. [4]. The Source of
unknown malware is not specified in Venkatraman et al. [3]. It may be possible they also
took future malware as unknown malware. Jung et al. [23] took 333 known malicious adobe
flash files with the extension .swf and 333 benign .swf for training the ML model, and tested
it with .swf files from 2007-15 as zero-day malware. They achieved 51-100% accuracy.
Alazab et al. [24] considered all unknown malware as zero-day malware and achieved an
accuracy of 98.6. This work has an accuracy of 98.49%. They used much higher malware
(three times) compared to benign software for training. They created new malware using
code obfuscation that changed the code of malware but did not change the functionality of
the malware. This is the same as malware generation using polymorphic and metamorphic
engines. This work used 256 entropy features of the sample file and 50 features from the
entropy of sections of the file. These 256 entropy features were extracted by dividing the
sample file into multiple parts of size 2048 bytes with an overlapping window for 1024 bytes
and then taking the entropy of each part. These 306 features can detect such obfuscation
in sample malware files. Shafiq et al. [25] used the 10K malware dataset from Vxheavens,
5 K malware from malfease dataset (now not accessible), and 1447 benign files from a local
laboratory and divided them into malware types such as backdoor, DoS, Nuker, Trojan,
Virus, etc. They stated that unknown malware or malware with unknown signatures are
zero-day malware. However, they did not describe ways to determine unknown malware
or malware with unknown signature but the test samples were drawn from Vxheaven and
malfease datasets.

Table 12. Comparison with five zero-day malware projects.

Consideration for

Project Methodology Details of Dataset Result/Accuracy Zero-Day Malware
Three datasets D1, D2, D3 Train with the dataset
of January 2017, February from January 2017 and

Boosting algorithms: 2017, March 20‘17. predict for malware
LightGBM, XGBoost With D1 for training and from February 2017,
This work Bagging allgoritth' Random D2, D3 for prediction 98.49 March 2017.
Forost. Extratree ’ D2 for training and D3 for Train with
’ prediction and effect on the February 2017 and
D1 dataset predict malware from

Details in Table 3 March 2017




Sensors 2022, 22,2798

21 0f 23

Table 12. Cont.

Consideration for

Project Methodology Details of Dataset Result/Accuracy Zero-Day Malware
Android:
Drebin (5555 Malware,
5555 Benign software)
natural language processing DexShare (.2 0,255 Malware, Dataset from 2016 to
20,255 Benign software) .
. and the term frequency ! . build the model and
Yousefi-Azar et al. . . . Windows PE files:
tf-simhasing: multiply random .. 97.33 dataset from 2017 as
(2018) S .r 2016: Training dataset
projection matrix with term 11.983 Malware, 8912 zero-day malware to
frequency of sample Benign software test against the model.
2017: Testing dataset
12,127 Malware, 11,983
Benign software
la. Kernel Function
1b. Make images from
malware files and use them as
input to CNN (pre-trained) to
derive features
Venkatraman and  1c. Plot features into t-SNE to o
Alazab (2018) visualize clusters. 52 k samples 98.6% Unknown Malware
1d. Use of K-means for further
clustering using
image features.
2. SVM with SMO-Normalized
Polynomial
1. Extract API call sequence
features from both static
analysis and dynamic analysis.
2a. Use static analysis feature Benign 333 (.sw files) 2007 to 2014 dataset for
(Jung & Kim, 2015)  with Deep Feed-forward Mali%ious 33'3 (swf files) 51% to 100% training and 2015
Neural Network, Recurrent ’ dataset for testing
Neural Network for 2b. Use
dynamic analysis feature with
Recurrent Neural Network
k—Nearest, Neighbor (kNN.), 1. Unknown malware
Naive Bayes (NB), Sequential .
.. N 2. Unknown signature.
Minimal Optimization (SMO) .
. . Benign software 15,480 New malware created
(Alazab et al.,, 2010)  algorithm with 98.6 . .
. Malware 51,223 using code obfuscation
(SMONormalized PolyKernel, techniques with same
SMOPolyKernel, SMOPuk, P e
and SMO-RBF) kernels. unctionality.
Malware whose
. Ripper and SVM-SMO Benign software 1447 o signature is not in
(Shafiq et al., 2015) classifier Malware 14,478 99.2% g AUC database/Unknown
malware

There is much research work related to a zero-day attack. A zero-day attack refers
to a new network signature for Denial of Service (DOS) or Distributed Denial of Service
(DDOS). Kumar et al. [26] stated that zero-day attacks are a comparison between genuine
network data to find heavy hitters in attack data. A heavy hitter is to find a new signature
responsible for DOS or DDOS in network traffic data. They claimed that they found the
heavy hitters in a low amount of network data. Kim et al. [27] described that zero-day
DDOS attacks on websites are preceded by fingerprinting and infection of hosts or devices.
They captured network traffic to detect such early attacks and to detect emerging botnets
and new vulnerabilities. They monitored at the port level on a different section of the



Sensors 2022, 22,2798 22 of 23

network to detect anomalies and thereby new DDOS attacks. Such works are not considered
for comparison as the objective to find zero-day malware does not match.

5. Conclusions

In this work, three datasets, D1, D2, and D3, from Jan, Feb, and March 2017, respec-
tively, were derived from [12] and used for zero-day malware prediction. Static analysis
was used to get 2351 static features from the PE header and properties of files. Bagging
and boosting ML models were trained using samples from the D1 dataset, which had
2351 features. The trained ML model was used to predict samples in datasets D2 and D3
to detect zero-day malware. The best model among the bagging and boosting ML model
was selected based on accuracy and lowest FP and FN predictions. The best performance
was consistent from XGBoost at 97.87 and 97.50 accuracy, respectively, from D2 and D3
dataset as future zero-day malware. The XGBoost model using dataset D2 from February
2017 was used to predict the future malware in dataset D3 and the performance gave
98.492 accuracy. Bar plots and Waterfall plots based on a contribution of features in shap
value and probability scale were displayed. The plots helped identify the top features. Top
features were compared for FP, FN, TN, and TP categories of samples. The top features
and their contribution are different for each predicted category. The top features and their
contribution can be used to identify the FN and FP misclassified category of prediction. The
comparison among each category of the sample demonstrated trends in the top features.
These trends were used to detect misclassification in FP and FN samples. Hence, all the
misclassified samples can be put in correct categories leading to an increase in efficiency of
the ML model. The trend can also be used for confirmation of TP and TN samples for robust
detection of unknown zero-day malware and differentiate them from misclassification.

Future work in this area may be to train ML models for a specific family of malware
such as Trojan horse, Rootkit, Ransomware, etc. using a real-time large dataset. This could
help find reasons for misclassification and reduce the misclassification counts.

Author Contributions: Conceptualization, R K. and G.S.; Data curation, R K.; Formal analysis, R.K,;
Methodology, R.K.; Resources, G.S.; Software, R.K.; Supervision, G.S.; Validation, R K.; Visualization,
R.K.; Writing—original draft, R K.; Writing—review & editing, G.S. All authors have read and agreed
to the published version of the manuscript.

Funding: The authors are grateful to VIT management for providing the research Seed grant
(AY2019-20) to execute this work.

Informed Consent Statement: Not applicable.
Data Availability Statement: Data supporting reported results can be found, as indicated at [12].

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pohl, H. Zero-Day and Less-Than-Zero-Day Vulnerabilities and Exploits. In Forschungsspitzen und Spitzenforschung; Physica-Verlag
HD: Heidelberg, Germany, 2008.

2. Egelman, S.; Herley, C.; van Oorschot, P.C. Markets for zero-day exploits: Ethics and implications. In Proceedings of the 2013
New Security Paradigms Workshop, Banff, AB, Canada, 9-12 September 2013; pp. 41-46. [CrossRef]

3. Venkatraman, S.; Alazab, M. Use of Data Visualisation for Zero-Day Malware Detection. Secur. Commun. Netw. 2018, 2018, 1728303.
[CrossRef]

4. Yousefi-Azar, M.; Hamey, L.G.C.; Varadharajan, V.; Chen, S. Malytics: A malware detection scheme. I[EEE Access
2018, 6, 49418-49431. [CrossRef]

5. Kardan, N.; Stanley, K.O. Fitted Learning: Models with Awareness of their Limits. arXiv 2016, arXiv:1609.02226.

6. Harang, R.; Ducau, EN. Measuring the Speed of the Red Queen’s Race; BlackHat: Las Vegas, NV, USA, 2018.

7. Ceschin, F; Pinage, F,; Castilho, M.; Menotti, D.; Oliveira, L.S.; Gregio, A. The Need for Speed: An Analysis of Brazilian Malware
Classifers. IEEE Secur. Priv. 2019, 16, 31-41. [CrossRef]

8. USENIX Association. Transcend: Detecting Concept Drift in Malware Classification Models; USENIX: Berkeley, CA, USA, 2005; p. 72.

9. Gove, R;; Saxe, J.; Gold, S.; Long, A.; Labs, G.B.L; Piper, Z. SEEM: A scalable visualization for comparing multiple large sets of

attributes for malware analysis. ACM Int. Conf. Proc. Ser. 2014, 10, 72-79. [CrossRef]


http://doi.org/10.1145/2535813.2535818
http://doi.org/10.1155/2018/1728303
http://doi.org/10.1109/ACCESS.2018.2864871
http://doi.org/10.1109/MSEC.2018.2875369
http://doi.org/10.1145/2671491.2671496

Sensors 2022, 22,2798 23 of 23

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Wagner, M; Fischer, F,; Luh, R.; Haberson, A.; Rind, A.; Keim, D.A.; Aigner, W. A Survey of Visualization Systems for Malware
Analysis. In Proceedings of the Eurographics Conference on Visualization (EuroVis), Cagliari, Italy, 25-29 May 2015; pp. 105-125.
[CrossRef]

Ye, Z.; Guo, Y.; Ju, A. Zero-Day Vulnerability Risk Assessment and Attack Path Analysis Using Security Metric; Springer International
Publishing: Berlin/Heidelberg, Germany, 2019; Volume 11635.

Anderson, H.S.; Roth, P. EMBER: An Open Dataset for Training Static PE Malware Machine Learning Models. arXiv 2018,
arXiv:1804.04637.

Fleshman, W.; Raff, E.; Zak, R.; McLean, M.; Nicholas, C. Static Malware Detection & Subterfuge: Quantifying the Robustness of
Machine Learning and Current Anti-Virus. In Proceedings of the 2018 13th International Conference on Malicious and Unwanted
Software (MALWARE), Nantucket, MA, USA, 22-24 October 2018; pp. 3-12. [CrossRef]

Kumar, R.; Geetha, S. Malware classification using XGboost-Gradient boosted decision tree. Adv. Sci. Technol. Eng. Syst.
2020, 5, 536-549. [CrossRef]

Raff, E.; Zak, R.; Cox, R.; Sylvester, ].; Yacci, P.; Ward, R.; Tracy, A.; McLean, M.; Nicholas, C. An investigation of byte n-gram
features for malware classification. J. Comput. Virol. Hacking Tech. 2018, 14, 1. [CrossRef]

Hemalatha, J.; Roseline, S.A.; Geetha, S.; Kadry, S.; Damasevicius, R. An efficient densenet-based deep learning model for
Malware detection. Entropy 2021, 23, 344. [CrossRef] [PubMed]

Tang, M.; Qian, Q. Dynamic API call sequence visualisation for malware classification. IET Inf. Secur. 2019, 13, 367-377. [CrossRef]
Jindal, C; Salls, C.; Aghakhani, H.; Long, K.; Kruegel, C.; Vigna, G. Neurlux: Dynamic malware analysis without feature
engineering. In Proceedings of the 35th Annual Computer Security Applications Conference, San Juan, PR, USA, 9-13 December
2019; pp. 444-455. [CrossRef]

Kim, D.; Mirsky, D.; Majlesi-Kupaei, A.; Barua, R. A Hybrid Static Tool to Increase the Usability and Scalability of Dynamic Detec-
tion of Malware. In Proceedings of the 2018 13th International Conference on Malicious and Unwanted Software (MALWARE),
Nantucket, MA, USA, 22-24 October 2018; pp. 115-123. [CrossRef]

Raff, E.; Sylvester, J.; Nicholas, C. Learning the PE header, malware detection with minimal domain knowledge. In Proceedings
of the 10th ACM Workshop on Artificial Intelligence and Security, Dallas, TX, USA, 3 November 2017; pp. 121-132. [CrossRef]
Shafiq, M.Z.; Tabish, S.M.; Mirza, F.; Farooq, M. PE-miner: Mining structural information to detect malicious executables in
realtime. In Recent Advances in Intrusion Detection; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5758, pp. 121-141.
[CrossRef]

Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, ] M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.I. From local
explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56—67. [CrossRef] [PubMed]

Jung, W.; Kim, S. Poster: Deep Learning for Zero-day Flash Malware Detection. In Proceedings of the 36th IEEE Symposium on
Security and Privacy (S&P), San Jose, CA, USA, 18-21 May 2015; pp. 2-3.

Alazab, M.; Venkatraman, S.; Watters, P.; Alazab, M. Zero-day malware detection based on supervised learning algorithms of API
call signatures. Conf. Res. Pract. Inf. Technol. Ser. 2010, 121, 171-182.

Shafiq, M.Z.; Tabish, S.M.; Mirza, E; Farooq, M. A Framework for Efficient Mining of Structural Information to Detect Zero-Day
Malicious Portable Executables; FAST National University of Computer & Emerging Sciences: Islamabad, Pakistan, 2015.

Kumar, V.; Sinha, D. A robust intelligent zero-day cyber-attack detection technique. Complex Intell. Syst. 2021, 7, 2211-2234.
[CrossRef] [PubMed]

Kim, J.Y,; Bu, S.J.; Cho, S.B. Zero-day malware detection using transferred generative adversarial networks based on deep
autoencoders. Inf. Sci. 2018, 460-461, 83-102. [CrossRef]


http://doi.org/10.2312/eurovisstar.20151114
http://doi.org/10.1109/MALWARE.2018.8659360
http://doi.org/10.25046/aj050566
http://doi.org/10.1007/s11416-016-0283-1
http://doi.org/10.3390/e23030344
http://www.ncbi.nlm.nih.gov/pubmed/33804035
http://doi.org/10.1049/iet-ifs.2018.5268
http://doi.org/10.1145/3359789.3359835
http://doi.org/10.1109/MALWARE.2018.8659373
http://doi.org/10.1145/3128572.3140442
http://doi.org/10.1007/978-3-642-04342-0_7
http://doi.org/10.1038/s42256-019-0138-9
http://www.ncbi.nlm.nih.gov/pubmed/32607472
http://doi.org/10.1007/s40747-021-00396-9
http://www.ncbi.nlm.nih.gov/pubmed/34777966
http://doi.org/10.1016/j.ins.2018.04.092

	Introduction 
	Literature Survey 
	Methodology 
	Zero-Day Malware Model 
	Feature Importance Visualization in Shap Value 
	Conversion from Shap Value to Probability 

	Experimental Results and Analysis 
	Datasets 
	Design of Experiments 
	Zero-Day Malware Detection with XGBoost 
	Zero-Day Malware Detection with LightGBM 
	Zero-Day Malware Detection with Random Forest 
	Zero-Day Malware Detection with Extratree 
	Comparison of Model Performance 
	Improvement to XGBoost Model by Trend in Top Features 
	Derivation of Inductive Rules 
	Comparison with Five Zero-Day Malware Projects 

	Conclusions 
	References

