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Abstract: We demonstrated a fiber optic distributed acoustic sensor based on a double Sagnac
interferometer, using two wavelengths separated by CWDM modules. A mathematical model of
signal formation principle, based on a shift in two signals analysis, was described and substantiated
mathematically. The dependence of the sensor sensitivity on a disturbance coordinate and frequency
was found and simulated, and helped determine a low sensitivity zone length and provided sensor
scheme optimization. A data processing algorithm without filtering, appropriate even in case of a
high system noise level, was described. An experimental study of the distributed fiber optic sensor
based on a Sagnac interferometer with two wavelengths divided countering loops was carried out.
An accuracy of 24 m was achieved for 25.4 km SMF sensing fiber without phase unwrapping.

Keywords: Sagnac interferometer; fiber optic sensor; disturbance localization; sensitivity

1. Introduction

Distributed fiber optic sensors (FOS) have become quite popular for pipeline moni-
toring and perimeter security, etc., due to their ability to interrogate a long sensor length
at a high spatial resolution and sampling rate. For recording high-frequency vibration
influences, the most popular scheme is a phase-sensitive reflectometer, which provides a
high accuracy of disturbance localization but has disadvantages such as a complex scheme
and a high cost of components. A distributed sensor based on a Sagnac interferometer (SI) is
gaining popularity due to its simple optical scheme, signal processing, and low dependency
on laser phase noise [1]. In contrast with reflectometers, the possibility of using distributed
measurements in schemes involving SI is not a default method. Such sensors are currently
developing rapidly and there are three main ways to implement distributed sensing. The
first is the “null frequencies” method, based on the position of the minima in the spectrum
of the recorded signal from one loop of the interferometer [2]. The second is the expected
time delay method, based on the correlation of arrays generated from two signals from
loops of different known lengths or with another variant of delay [1]. The third method
uses the time delay method between oppositely directed sensory loops [3]. However, the
literature does not cover the issue of studying the sensitivity features of such systems.
Moreover, creating a system with a sensor length of more than 20 km, which demonstrates
a disturbance localization error of less than 0.1% of a total sensing length, especially in
the case of a high noise level, requires using expensive components, and applying phase
unwrapping and filtering. This makes data processing more complex and increases the cost
of a sensor. Therefore, the issue of implementing a system with a simple optical scheme
and low-cost components, which does not employ a complex data processing algorithm,
and can operate at a high noise level, remains relevant.
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The “null frequency” method is based on signal spectrum analysis from the sensor
and the determination of a disturbance location using the low spectral density points’
positions. They appear in a spectrum in the presence of an acoustic disturbance due to a
time delay between clockwise (CW) and counterclockwise (CWW) radiation. This method
can be implemented based on one fiber loop [2], demonstrated in Figure 1, or in more
complex schemes [4,5] such as the double Sagnac scheme [6], or another scheme in which a
linear section and a Faraday rotator mirror (FRM) form at the output of the imbalanced
Mach-Zehnder interferometer (MZI), with a laser coherence length less than the MZI arms’
difference [7–10]. In addition, the “null frequency” method was mentioned as an example
for comparison in [1,5]. In [8], to reduce localization errors, the authors proposed a modified
“null frequency” method, which consisted of applying the second Fourier transform to the
signal spectrum in order to determine a periodicity of “null frequency” points instead of
searching for individual ones. The error presented by the authors is 100 m for a sensor
length of 50 km. A great disadvantage of these methods is that localization error strongly
depends on a system noise level. Even after filtration, these methods are not appropriate for
practical use, since the obtained spectra are distorted and unreliable. It is extremely difficult
to determine the position of the low spectral density points or to find out the periodicity of
spectrum modulation in the case of high noise. To provide good localization it is necessary
to have some prior information about the position of the “null frequency” points, which
is possible in a laboratory setup with a stated disturbance position assembled [3] or if the
disturbance position can be obtained as a result of a numerical simulation [5].

Figure 1. Diagram of a “null frequency” method principle.

The second method of implementing a distributed acoustic FOS based on a Sagnac
interferometer is a time delay estimation. This requires a scheme with two loops that
differ from each other by an fixed length amount LD. The scheme includes a MZI at one
end of the loop [11–13], as shown in Figure 2, or a linear section with a mirror at the
opposite edge [14,15], formed using couplers or WDM modules. The formed MZIs have a
length difference LD between the arms that exceeds the coherence length of a laser source.
Therefore, they do not create an interference signal and are only applied to separate optical
paths and form two loops of different lengths. When using WDM modules, instead of
splitters, radiation with a wavelength of λ1 and λ2 will propagate through the first and
second loops [16,17]. Signals from the two loops are shifted relative to each other by a time
delay, which is determined by the length LD. Since the loops have different lengths, each
of the CW and CCW beams receives a phase shift from disturbance at different times. A
demodulation data processing algorithm includes phase unwrapping of the signals from
the two loops followed by correlation. Therefore, it is possible to determine the beginning
moments of a disturbance in interference signals in each loop, calculate a time delay,
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and use it to find the location of the disturbance. A method of time delay introduction,
implemented based on a scheme with one unbalanced MZI, allows the creation of a sensor
with a length of 180 m [12] to 120 km [11]. In different studies, a disturbance position
error was approximately a few hundreds of meters for a sensor length of 10 km (1% of
the sensor length) [13], and up to 60 m for a sensor length of 120 km (0.05% of the sensor
length) [11]. However, the method of time delay introduction has disadvantages. One
disadvantage is a high noise level in a MZI due to an environmental influence, such as
temperature fluctuations and vibrations. In addition, since in most cases a disturbance in
the loop is quite intense, it becomes necessary to unwrap a signal phase. It requires at least
two photodetectors for each loop, which increases the cost of the sensor and makes a data
processing algorithm more complex.

Figure 2. Diagram of a time delay estimation method principle.

One more method for disturbance localization is based on determining a time delay
between signals from two counter loops of the same lengths. Two loops of a SI are formed,
using MZIs with a difference LM between the arms that exceeds the coherence length of
a radiation source, and Faraday mirrors (FRM) [3,18], as shown in Figure 3, or by using
light polarization state multiplexing [19,20]. Thus, two SI loops are formed based on
linear sections, which are located oppositely. As a result, in the presence of an acoustic
disturbance on the common sensory fiber along which the radiation of both interferometers
passes, a change in the interference signal is detected at time moments which differ from
each other, which is the time delay. The value of the time shift between the signals is
calculated by a correlation algorithm. However, the scheme with light polarization state
multiplexing has significant disadvantages, as it includes expensive optical components,
such as polarization-maintaining fibers, which contribute to the overall high cost and make
it impractical for use on objects with a long perimeter. The scheme with a MZI and SI
combination based on FRM has a great disadvantage of high loss. It has 4 fiber splitters
that lead to a dynamic range of 18 dB (Att = 3 dB · 3 (couplers) · 2 (passes)), which can
affect nonlinearity in propagating radiation and decrease signal power.

In this article, we proposed a distributed fiber sensor scheme based on a double Sagnac
interferometer. The directions were separated by CWDM splitters that formed opposite
loops of the Sagnac interferometer with equal lengths. These loops included two common
fibers, one of which was a sensor, and the other a reference. The proposed scheme was
promising in avoiding the disadvantages described above, as it was simple and did not
need to use expensive fibers or a narrow-band laser. It demonstrated high disturbance
localization accuracy even in the case of high noise level, and without phase unwrapping.
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Figure 3. Diagram of a counter loops method principle.

2. Theory of a Disturbance Localization Method

The scheme of the proposed setup is shown in Figure 4. The principle of the sensor’s
operation is as follows. Radiation from a continuous light source (LD1), with wavelength
(λ1) in a range of 1540–1560 nm, enters the x-shaped fiber splitter (C1), and is divided into
two equal parts. We used a 3 × 3 splitter to avoid the Sagnac mirror effect that occurs
when using a 2 × 2 splitter. Moreover, the 3 × 3 splitter provided a 2π/3 phase shift, which
might be convenient for phase unwrapping in the scheme extension. One part of the light
remaining after passing through splitter C1 propagated CW, and passed through CWDM1,
the sensor fiber F1 in the 1→2 direction, CWDM2, CWDM3, the second reference fiber F2 in
the 3→4 direction, and CWDM4. It then returned to the C1 splitter. The second part of the
radiation, with a wavelength range of ∆λ1 = 1540–1560 nm and central wavelength λ1 =
1550 nm, passed through the interferometer loop CCW. It then passed through CWDM4,
the F2 reference fiber in the 4→3 direction, CWDM3, CWDM2, the sensor fiber F1 in the
2→1 direction, and CWDM1, then passed through splitter C1, where interference occurred
between the two parts of radiation with a wavelength λ1. After that, the interference result
entered photodetector PD1. Similarly, in the second loop, radiation from a continuous light
source (LD2), with a wavelength range ∆λ2 = 1560–1580 nm and central wavelength λ2 =
1570 nm, entered the splitter C2 and was divided into two equal parts. One of the parts
propagated CW through CWDM3, the reference fiber F2 in the 3→4 direction, CWDM4,
CWDM1, sensor fiber F1 in the 1→2 direction, and CWDM2. The second part passed CCW
through CWDM2, the F1 sensor fiber in the 2→1 direction, CWDM1, CWDM4, the F2 fiber
in the 4→3 direction, and CWDM3. Then, both parts arrived at the C2 splitter. Following
this process, photodetector PD2 detected the interference result. Due to signal forming
features in a Sagnac interferometer, a point of low sensitivity arose at the half-length of each
loop [21]. To move the points of low sensitivity outside the sensory region, we included
an additional length Ld in fiber F2. The lengths of fibers l1 − l6 were negligibly small
in comparison with L and Ld and were neglected in further calculations. Possible light
propagation paths are shown in Figure 5.
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Figure 4. Structural scheme of Sagnac-based sensor system with two counter loops.

Figure 5. Possible light propagation paths.

Laser phase noise did not affect the interference significantly in SI compared to other
types of distributed fiber sensors [10]. A narrow-bandwidth light source was not needed. In
our scheme, we used 15 mW and 9 mW Fabry-Perot laser diodes with central wavelengths
at 1550 nm and 1570 nm, respectively, for a 51,800 m loop. The spectra are shown in
Figure 6. The CWDM modules had a channel spectral bandwidth of 20 nm, and the SLD
transmission spectrum is shown in Figure 7. We did not achieve a perfect match between
the laser emission and the CWDM transmission spectra but the power received was enough
to achieve a signal-to-noise ratio (SNR) of up to 50 and to detect impacts.

Figure 6. Spectra of Fabry-Perot laser diodes used in a system.
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Figure 7. SLD transmission spectra of CWDM modules.

The usage of DWDM modules may narrow down the required spectral range. How-
ever, experiments using a narrow-band laser and DWDM modules show a quick nonlinear
growth of Brillouin scattering. Figure 8a demonstrates the spectra of narrow-band 2 kHz
laser radiation, the radiation passed through 25 km of fiber, and the Brillouin scattering
gathered in experiments. This effect leads to signal fluctuations, which made position
detection impossible, as shown in Figure 8b.

Figure 8. (a) Spectra of narrow-band 2 kHz laser radiation, radiation passed through 25 km of fiber
and Brillouin scattering, (b) Plot of a signal with high Brillouin scattering.

For a better understanding, the scheme shown in Figure 4 can also be presented as
two separate loops, as shown in Figure 9. Light spread with wavelengths λ1 and λ2 in
the first loop and the second loop, respectively. Light beams in CW and CCW directions
interfered at the splitters. We considered C1 to be in the first reference plane, and C2 to be
in the second reference plane. The central points O1 and O2 were located in half-length
of loops.
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Figure 9. Two-loop diagram for sensitivity analysis.

As two counter Sagnac interferometers were used, a disturbance influenced both loops
simultaneously, producing signal phase deviation, which led to interference changes. A
disturbance influenced the first loop at a point located at a distance of z1 from the first
reference plane. At the same time, it influenced the second loop at a point located at a
distance of z2 from the second reference plane. These two distances are related to total loop
length L as follows:

z1 + z2 = L/2. (1)

External disturbance added a signal phase deviation ϕ(t), and the resulting phase
difference at the photodetectors from the first and the second loop can be determined
as follows:

∆ϕ1(t, τCW1, τCCW1) = ϕCW(t− τCW1)− ϕCCW(t− τCCW1) +
2π

3
, (2)

∆ϕ2(t, τCW2, τCCW2) = ϕCW(t− τCW2)− ϕCCW(t− τCCW2) +
2π

3
, (3)

where ϕCW, ϕCCW is the phase deviation of light propagated in CW and CCW directions;
τCW1, τCCW1 shows the time during which the radiation travelled in the first loop in CW
and CCW directions, respectively, from the disturbance location point to the first reference
plane; and τCW2, τCCW2 shows the time during which the radiation travelled in the second
loop from the disturbance location point to the second reference plane in two directions.

As one can see, at the points of half-loop length, O1 and O2, the phase deviations in CW
and CCW directions were equal (ϕCW(t− τCW1) = ϕCCW(t− τCCW1); ϕCW(t− τCW2) =
ϕCCW(t− τCCW2)). Therefore, there was zero phase deviation in the output of the loops
∆ϕ1(t, τCW1, τCCW1) == ∆ϕ2(t, τCW2, τCCW2). It means that a low sensitivity region oc-
curred closer to the center of the loop, the so-called “dead zone”. By including an additional
length Ld in the loops, we moved the points O1 and O2 outside the sensory region.

The indicated delays are important for signal forming process and can be determined
from the lengths in Figure 1:

τCW1 =
(L + Ld − z1)n

c
; τCCW1 =

z1n
c

, (4)

τCW2 =
z2n

c
; τCCW2 =

(L + Ld − z2)n
c

(5)

The light with gathered phase deviation from point A came to the first reference plane
after time delays τCW1 and τCCW1, and in both these moments optical power variations
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occurred at the photodetector, which were the interference signal changes. For the second
loop, the interference signal changes occurred in the moments after the τCW2 and τCCW2
time delay, when the light came from point A to the second reference plane. Due to a sensor
configuration, it is obvious that for any coordinate of point A, the condition (L/2 + Ld) >
L/2 ≥ zi, i = 1,2 is satisfied. Therefore, the inequalities τCW1 > τCCW1 and τCW2 < τCCW2
are always correct. Consequently, the interference signal reached the photodetectors PD1
and PD2 at times τCCW,1 and τCW,2, which were the earliest moments of interference signal
changes in both loops. The shift between them is as follows:

∆τ =
z2n

c
− z1n

c
=

(z2 − z1)n
c

. (6)

This value allowed us to calculate a coordinate of point A as its position towards the
first reference plane:

z1 =
∆τc
2n

+
L
4

(7)

Expression (7) is the final equation for determining the disturbance coordinate. As
one can see, for disturbance localization it is necessary to gather two interference signals at
the outputs of the loop, find the time delay value ∆τ between them, and then calculate the
distance from the disturbance point to the first reference plane z1.

3. Simulation of a Sensor Sensitivity Distribution

To study sensitivity distribution over the loop of SI, phase change occurring due to
acoustic disturbance can be expressed as follows:

ϕ(t) = sin(2π ftt)·A(t), (8)

where A(t) is the disturbance envelope, we used A(t) = a0exp(−aact)·rect
(

t−(t0+τimpact/2)
τimpact

)
,

a0 is a constant that determined the magnitude of the disturbance, aac is an acoustic signal
attenuation, t0 is the time of impact beginning, τimpact is the impact duration, and ft is the
disturbance frequency.

The phase difference in the first loop output is:

∆ϕ1(t, ∆τ1) = sin(2π ftt)·A(t)− sin(2π ft[t− ∆τ1])·A(t− ∆τ1) ≈
≈ A(t)·[sin(2π ftt)− sin(2π ft[t− ∆τ1])] =

= A(t)·sin(π ft∆τ1)·cos
(

2π ft

[
t− ∆τ1

2

])
,

(9)

where a time delay can be calculated as follows:

∆τ1 = τCCW1 − τCW1 =
(L + Ld − z1)n

c
− z1n

c
=

((L + Ld)− 2z1)n
c

(10)

For the second loop, the same phase difference can be written as:

∆ϕ2(t, ∆τ2) = sin(2π ftt)·A(t)− sin(2π ft[t− ∆τ2])·A(t− ∆τ2) ∼=
∼= A(t)·[sin(2π ftt)− sin(2π ft[t− ∆τ2])] =

= A(t)·sin(π ft∆τ2)·cos
(

2π ft

[
t− ∆τ2

2

])
,

(11)

where a time delay can be calculated as follows:

∆τ2 = τCCW2 − τCW2 =
z2n

c
− (L + Ld − z2)n

c
=

(2z2 − (L + Ld))n
c

(12)

Three parts can be highlighted in these expressions. A(t) is the envelope of the
external impact and determines the main form of the interference pattern. It has slow
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changes in time, so A(t) ≈ A(t− ∆τ1,2). The cos
(

2π ft

[
t− ∆τ1,2

2

])
component has the

highest frequency and is responsible for the oscillations of the interference pattern with
the frequency of the external impact ft. When registering a signal, the intensity of this
component will pass through the entire range from minimum to maximum, from −1 to
1. An additional amplitude coefficient for the phase difference and, consequently, the
amplitude of the interference pattern at the receiver, is the sin(π ft∆τ1,2) component. It
becomes zero when the argument is:

π ft∆τi = πN, where N ∈ Z, i = 1, 2,
ft∆τi = N, where N ∈ Z, i = 1, 2,

and becomes the maximum when:

ft∆τi =
1
2
+ N, where N ∈ Z, i = 1, 2

Thus, the sensitivity graph is a two-dimensional oscillation field, and the maxima,
and the minima on the axes of the impact coordinates z1,2 and frequency ft will change
according to a hyperbolic dependence:

ft =
cN

n((L + Ld)− 2z1)
and ft =

cN
n(2z2 − (L + Ld))

N ∈ Z f or minima (13)

ft =
c(N + 1/2)

n((L + Ld)− 2z1)
and ft =

c(N + 1/2)
n(2z2 − (L + Ld))

N ∈ Z f or maxima (14)

Taking into account the fact that signals usually have a wide spectrum, low impact fre-
quencies and sensor areas close to the middle of the loops are critical for sensing applications

Due to the principles of SI signal formation, a phase difference at the sensor loops
output differs if the same disturbance influences the loops at points with different coor-
dinates z1. We considered the sensitivity of the sensor as a maximum phase difference
amplitude at the output of the loop, in the presence of an acoustic disturbance. In order to
investigate sensitivity distribution through loops and define zones of low sensitivity, where
disturbance localization is difficult, we simulated phase difference at the loop outputs
∆ϕ1(t,∆τ1), ∆ϕ2(t,∆τ2), in a case when a disturbance influences the loops at different dis-
tances z1 from the first reference plane. Figure 10 presents diagrams of the phase difference
at the output of the first and the second loops, with a length of L = 51,800 m, that arises
when a disturbance influences the loops at points distanced for z1 = 200 m, 500 m, 10,000 m,
and 12,950 m from the first reference plane. We assumed that a disturbance had a frequency
of f t = 11 kHz and produced a phase shift with an amplitude of 2 radians. The ADC
sampling frequency was vD = 25 MHz, the observation time was 2.5 ms, and the loops
included additional coils with a length of Ld = 1000 km in its half-length, in order to move
“dead zones” outside the sensory region. The first diagram for z1 = 200 m shows that this
disturbance point is close to the “dead zone” of the first loop. A phase difference amplitude
ϕA1 = max{∆ϕ1(t,∆τ1)}-min{∆ϕ1(t,∆τ1)} was too small in such a case, so the interferential
signal amplitude was also small, and the moment when the signal started to change due to
a disturbance cannot be distinguished. On the contrary, the phase difference in the second
loop was large because the disturbance point was close to the second reference plane, but
we needed a start time in both loops for disturbance localization. The point located at a
distance of z1 = 500 m is on the edge of the “dead zone”, as the second diagram shows.
The amplitude of the phase difference and an interferential signal amplitude increased,
which made it possible to determine the moment when the signal started to change due to
a disturbance both in the second loop and in the first loop. The third diagram, showing
the point with coordinate z1 = 10,000 m, shows that phase differences both in the first loop
and in the second one are sufficient to localize the disturbance. The fourth diagram shows
that for the point with coordinate z1= L/4 = 12,950 m, phase differences at the output of the
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first and second loops become the same and both are sufficient for disturbance localization.
Moreover, in such a case, zero time delay exists (∆τ = 0), which is consistent with (7). With
a further increase in z1, when a disturbance point shifts closer to the first loop half-length,
the phase difference amplitude increased for the first loop and decreased for the second
loop, until the “dead zone” of the second loop was reached, closer to its half-length.

Figure 10. Simulated signal plots for two loops.
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The phase difference range ϕA1 in the first loop output, depending on a disturbance
position z1 along the first loop, and its frequency ft were studied. For this purpose, several
disturbances were simulated. Each of them had a fixed frequency and a position along
a sensing loop. The time duration was similar to the plots in Figure 10. A simulation
of the sensitivity distribution along the first SI loop was carried out depending on two
parameters: the coordinate of the disturbance relative to the first reference plane z1, and
the disturbance frequency ft. For the loop length L = 150 km, 50 values of the disturbance
coordinate were selected in a range of 0 km to 150 km with a uniform step, as well as 50
values of the disturbance frequency in a range of 40 Hz to 4 kHz with a uniform step. The
results are presented in Figure 11a,b.

Figure 11. Phase different range depending on disturbance frequency and position: (a) L = 150 km,
(b) L = 51.8 km.

The sensitivity has a periodical distribution, with a shorter period at high disturbance
frequencies, which is consistent with (9) and (11). A “dead zone” is located in the center
of the loop, at a distance of d1 = L/2 = 75 km. If a loop has a shorter length, a plot is
limited by the length values. When applied to the loop with a length of 51,800 m, the plot
from Figure 11a includes only its central region, as shown in Figure 11b. To avoid a low
sensitivity region, we used an additional Ld = 1000 m fiber spool that moved the “dead
zone” outside of the sensory region. Thus, the ±500 m “dead zone” close to the half-length
of the loop was inside the additional coil and throughout the rest of the loop, along the
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entire sensory region, the disturbance was localized easily. We carried out experimental
studies at the coordinate ž = 24,500 m with a total loop length of (L + Ld) = 51,800 m.

However, the disturbance localization error depends not just on impact spectra, which
are determined by the signal shape. It is necessary to take into account the SNR and the
ADC sampling rate. To study a mutual dependence of disturbance localization error on
these three parameters, an experimental setup was assembled. A series of experiments,
with a certain impact shape, were conducted to obtain a coordinate of the disturbance
determined by the sensor system.

4. Experiment

An experimental setup of the sensor model shown in Figure 4 was assembled to im-
plement the method and analyze disturbance localization error. A piezoelectric transducer
(PZT) wound with 20 m of fiber was used to emulate a disturbance. It was positioned at
the coordinate z0 = 25,450 m from the first reference plane, which was measured using
a reflectometer. In further experiments, we defined z0 as a true value of the disturbance
coordinate. The sensor measured the value of z1, so we compared z1 with z0 to calculate
an error of disturbance localization. The total length was L = 51,800 m, considering both
the coils’ length Lc = 25,400 m and the delay fiber length Ld = 1000 m. Pulses from a
signal generator with a width of 10 µs produced a deformation with 4 µm amplitude for
20 m of wounded fiber, which were supplied to the PZT. Two FEMTO HCA-S-200M-IN
were used as photodetectors. A LeCroy WaveRunner 620Zi oscilloscope operated in the
system as an ADC and delivered acquired data to a computer for processing in MATLAB,
which was carried out according to the specified method. To investigate the accuracy with
which the system identifies localized disturbances, 100 data realizations were acquired and
processed. An example of a single data realization obtained from the sensor with vD = 25
MHz sampling frequency is shown in Figure 12.

Figure 12. Measured signal plots for two loops.

For disturbance localization, we used an adaptive threshold method, consisting of
determining the moments of the interference signal modulation beginning with the outputs
of loops t1 and t2. The moments were determined using a signal that exceeded a threshold
level, and the time difference, defined as ∆τ = t1 − t2, is used in (7).

In the data processing algorithm diagram shown in Figure 13, UPD1,2 is the level of
the signal gathered from PD1,2, TH is the threshold level, t1,2 is the beginning moment of
interference signal modulation for the first and the second loops, and z1 is the determined
disturbance position.
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Figure 13. Data processing algorithm.

TH level is defined as follows:

TH1,2(vD) = mN1,2(vD) + k(vD)·σ, (15)

where σ is the standard deviation, calculated from 100 sample points, and mN1,2(νD)
is the expected value calculated from N sample points for both data realizations. The
number of points N(νD) depends on sampling frequency νD, as well as k(νD), which
refers to a proportional coefficient. Adjusting the adaptive threshold level allowed us to
consider noise level changes and interference signal range changes due to photodetector
noise, environmental influence, and polarization instability [8]. Thus, a timely response
to disturbances was insured. The moments t1,2 were determined by linear interpolation
between two successive signal points: one occurred before the threshold exceeding, and
the other after it, as shown in Figure 14a.

Figure 14. Determination of the detected moments at which the signal exceeds the threshold (a) with
and (b) without interpolation.

When using an algorithm for defining a time delay ∆τ, by determining when the
moments of the interference signal modulation begin as specified above, a method for
defining these moments is essential. If a time delay ∆τ is defined improperly, it causes
errors of disturbance localization. A theoretical minimum error of sensor disturbance
localization is theoretical spatial resolution δz, which can be determined using the sampling
rate of the formula δz = c/(n νD). In a case when a realization is obtained using low
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sampling frequency, disturbance can be localized with error, limited by SNR in a realization
analyzed by the sensor and by a signal shape. Therefore, in practice, an error of disturbance
localization is greater than the theoretical spatial resolution due to system noise, and
it depends on both SNR and sampling frequency. Implementing interpolation makes
it possible to improve the accuracy of determining the interference signal modulation
beginning moments when the SNR is high enough, but in a case of a high noise level,
this is not enough to overcome the limitations of the algorithm, and interpolation does
not provide high-precision results. The SNR value depends on both system state and
experimental conditions. The SNR particularly depends on the sampling frequency of ADC.
We investigated the SNR dependence on sampling frequency and a disturbance localization
error of our system, using the algorithm with and without interpolation for different SNR,
i.e., for different sampling frequency values. It allowed us to discover if interpolation is
excessive for realizations with high noise and it is appropriate to save computing resources
by excluding this stage.

Experiments were carried out with ADC sampling frequencies ranging from 1 to 25
MHz. For each sampling frequency, 100 data realizations with a duration of 1 ms were
acquired. First of all, we defined an SNR in a realization as follows:

SNR =
S

σN
, (16)

where σN is noise standard deviation, and S is signal amplitude.
Signal amplitudes were calculated as a difference between the maximum and the

minimum of optical power in the photodetector values when it is modulated due to an
acoustic disturbance. Noise standard deviation values were calculated by 162, 829, 1662,
and 4162 points for 1, 5, 10, and 25 MHz respectively, which refers to a duration of (1/6) µs.
For each certain value of sampling frequency, the SNR was calculated for each realization,
and then averaged over 100 realizations. The result is shown in Figure 15. As one can
see, the SNR reached the maximum value at vD = 10 MHz. This value will affect spatial
resolution as described in the following.

Figure 15. The SNR averaged over 100 realizations for different sampling frequencies.

For each sampling frequency, 100 data realizations were processed according to the
specified algorithm with interpolation. For every sampling frequency value, coordinate
distribution histograms were plotted. An example of a histogram for the 25 MHz sampling
frequency with its Gaussian approximation is shown in Figure 16.
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Figure 16. Coordinate determination histogram at νD = 25 MHz.

The histogram envelopes of the determined coordinates for the different sampling
rates are shown in Figure 17. Table 1 shows values calculated from the results of the
experiments performed. Standard deviation σz represents the coordinate determination
error for 100 measurements. The expected value ž is the average coordinate value for all
realizations, ∆z is its deviation from the true value z0.

Figure 17. Gaussian approximation of z1 obtained using interpolation algorithm for different νD values.

Table 1. System parameters in case of interpolation.

νD, MHz N(νD) k(νD) δz, m 2σz, m ž, m ∆z, m

1 32 5 200 296 25,413 37
5 64 7 40 51 25,380 33

10 64 11 20 33 25,416 34
25 128 11 8 20 25,426 24

The results indicate that when the sampling frequency grows, the coordinate deter-
mination error decreases. However, it increases the theoretical value of δz. At νD = 25
MHz, it exceeds the theoretical limit by 2.5 times. Under such conditions, interpolation
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for coordinate determination is inappropriate. This was verified on the same data using
the algorithm from which the interpolation stage was excluded. The obtained results are
presented in a similar form in Figure 18 and Table 2.

Figure 18. Gaussian approximation of z1 obtained without interpolation for different νD.

Table 2. System parameters without interpolation.

νD, MHz δz, m 2σz, m ž, m ∆z, m

1 200 250 25,302 148
5 40 36 25,374 76
10 20 24 25,414 36
25 8 19 25,426 24

The results show that at low sampling rates, ∆z and σz increase, but at high sampling
rates, they become similar to the equivalent values obtained when using interpolation.
Overall assessment can be carried out based on the graphical presentation of the tables in
Figure 19.

Figure 19. Dependence of disturbance localization error on sampling frequency.
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5. Discussion

Usually, the coordinate determination error σz is comparable to the theoretical expec-
tation for sampling frequencies of up to 10 MHz. Figures 15 and 19 presented that the SNR,
for a fixed time duration, has a correlation with the critical value of the coordinate deter-
mination error σz. The SNR stopped growing at νD = 10 MHz, and at the same sampling
frequency σz started to exceed its theoretical limit significantly, which demonstrates that
the SNR value influences the disturbance localization error critically. Nevertheless, SNR
depends on νD, as we have a number of points for the SNR calculation for different νD val-
ues, as shown in Equation (16). At νD = 25 MHz, the error in the coordinate determination
is significantly higher than the theoretical value, because of the SNR limitation. However,
the coordinate determination error decreases when increasing the sampling frequency, and
disturbance localization error ∆z for νD = 25 MHz is lower than the result for νD = 10 MHz.
It means that SNR is not the only limiting factor. Therefore, to achieve a small enough error
of disturbance localization in the proposed scheme, it is advisable to use an ADC with a
sampling rate of at least 10 MHz and SNR > 44. In addition, in the case of a low sampling
rate, interpolation can reduce the average value of ∆z, but it is not stable, as shown in
Tables 1 and 2.

In the proposed version of the scheme and algorithm, data processing does not require
signal phase unwrapping, so there is no need to use several photodetectors and ADCs at
the output of each loop. A disturbance’s coordinates can be determined in other ways,
including using correlation, for which it is necessary to restore the original disturbance
signal shape. In this case, it is possible to detect the radiation coming from the C1 and C2
splitter outputs, which are not used in the scheme in Figure 1. Phase restoration can be
performed, for example, according to the algorithm [22].

A comparison with previously described sensor configurations is presented in Table 3.

Table 3. Comparison of system parameters for reviewed schemes.

Used Method Coordinate Determination Error Sensor Length Comments Ref.

Combination of Michelson and Sagnac
interferometers 160 m for 120 km sensor (0.14%) 120 km [23]

Combination of Mach-Zehnder and
Sagnac interferometers 60 m for 61 km sensor (0.1%) 61 km [24]

SI based on TDE 10 m for a 50 km sensor (0.02%) 50 km Requires phase
unwrapping scheme [17]

SI based on “null frequencies” 100 m for 50 km sensor (0.2%) 50 km Highly sensitive to noise [4]

SI based on TD between countering
loops 15 m for a 5 km sensor (0.9%) 5 km

Losses on couplers
or

Requires PM-fiber
[18–20]

Suggested scheme 24 m for 25.4 km sensor (0.1%) 25.4 km

Results show that the suggested scheme does not require phase unwrapping, filtering,
and high-cost components such as special fibers, but it demonstrates good localization
accuracy, and is competitive with the best existing schemes.

6. Conclusions

In this article, we proposed a new scheme for a distributed fiber optic sensor based
on a double Sagnac interferometer, and explored its sensitivity for different disturbance
frequencies and coordinates, and measured disturbance localization accuracy. We proposed
a simple algorithm for determining the coordinates of the disturbance and have confirmed
its high-accuracy operation with several experiments. In the laboratory setup, a 25 km
sensor fiber was used. A disturbance with stated parameters was localized with different
sampling rates and SNR values. The results show that the SNR value is important for
reaching a minimal error of disturbance localization. However, increasing the sampling
rate allowed the obtention of better accuracy, even with lower SNR. For example, in our
setup, we achieved 34 m accuracy (at νD = 10 MHz and SNR = 52) and 24 m accuracy (at νD
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= 25 MHz and SNR = 44) which is less than 0.1% of the sensing fiber length. This scheme
can be used to implement distributed acoustic fiber monitoring systems.
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