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Abstract: Brain tumor analysis is essential to the timely diagnosis and effective treatment of patients.
Tumor analysis is challenging because of tumor morphology factors like size, location, texture, and
heteromorphic appearance in medical images. In this regard, a novel two-phase deep learning-based
framework is proposed to detect and categorize brain tumors in magnetic resonance images (MRIs).
In the first phase, a novel deep-boosted features space and ensemble classifiers (DBFS-EC) scheme is
proposed to effectively detect tumor MRI images from healthy individuals. The deep-boosted feature
space is achieved through customized and well-performing deep convolutional neural networks
(CNNs), and consequently, fed into the ensemble of machine learning (ML) classifiers. While in the
second phase, a new hybrid features fusion-based brain-tumor classification approach is proposed,
comprised of both static and dynamic features with an ML classifier to categorize different tumor
types. The dynamic features are extracted from the proposed brain region-edge net (BRAIN-RENet)
CNN, which is able to learn the heteromorphic and inconsistent behavior of various tumors. In
contrast, the static features are extracted by using a histogram of gradients (HOG) feature descriptor.
The effectiveness of the proposed two-phase brain tumor analysis framework is validated on two
standard benchmark datasets, which were collected from Kaggle and Figshare and contain different
types of tumors, including glioma, meningioma, pituitary, and normal images. Experimental results
suggest that the proposed DBFS-EC detection scheme outperforms the standard and achieved
accuracy (99.56%), precision (0.9991), recall (0.9899), F1-Score (0.9945), MCC (0.9892), and AUC-PR
(0.9990). The classification scheme, based on the fusion of feature spaces of proposed BRAIN-RENet
and HOG, outperform state-of-the-art methods significantly in terms of recall (0.9913), precision
(0.9906), accuracy (99.20%), and F1-Score (0.9909) in the CE-MRI dataset.

Keywords: brain tumor; analysis; detection; classification; hybrid learning; deep-boosted learning;
ensemble learning; transfer learning; convolutional neural network

1. Introduction

The brain is a complex and vital organ of the human body, controlling the nervous
system. Irregular and uncontrolled growth of cells in the brain can cause a brain tumor.
Brain tumors are usually categorized into primary and secondary tumors. The creation
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of brain tumors is not identifiable along with the growth rate, and brain tumors have the
world’s highest mortality ratio of cancers. Primary brain tumors are devised in the brain
tissues, whereas secondary tumors are produced in some other part of the body and shift
to the brain through blood flow. Among the primary brain tumors, meningioma, glioma,
and pituitary are harmful types of brain tumors and are most challenging for their early
detection and effective treatment. Furthermore, these may lead to critical conditions if not
addressed in a timely manner [1].

Early detection and classification of brain tumors with high prognosis accuracy is
the most critical step for diagnosis and treatment to save a patient’s life. However, the
manual analysis of brain MR images is laborious for radiologists and doctors to detect
as is localizing the tumor and normal tissues and categorizing the tumors from medical
images [2]. A computer-aided diagnosis (CADx) system is essential to overcome this
problem. It needs to be implemented to relieve the workload and facilitate radiologists or
doctors in medical images analysis. In the past, numerous researchers proposed several
robust and accurate solutions to automate the brain tumor detection and classification task.

Conventional machine learning (ML)-based approaches have been employed for brain
tumor analysis. However, ML-based techniques entail manual feature extraction and clas-
sification and also are used on limited data. Deep learning (DL) has combined feature
extraction and classification into a self-learning manner on a significant amount of labeled
data, which considerably improved the performance. Moreover, CNN is a branch of DL,
specially designed for image or two-dimensional (2D) data. It only takes datasets with
minimal preprocessing and captures various features from MR images without human in-
tervention [3]. Deep CNN models are largely used for brain tumor detection, classification,
and segmentation. However, brain tumor analysis is highly challenging because of variable
morphological structure, complex tumor appearance in an image, and nonlinear illumina-
tion effects which need an efficient DL-based brain tumor analysis system to strengthen the
radiologist’s decision.

In this regard, we develop a deep-boosted hybrid learning-based approach to over-
come these limitations by customizing the CNN models to exploit brain tumor-specific
patterns from the brain MRI dataset. CNNs have shown admirable performance for identi-
fying tumors from normal individuals and segregation of tumor types by using medical
images. Moreover, deep feature boosting, ensemble learning, and ML classifiers help to
improve performance considerably. Experimental results suggest that the proposed deep
learning-based approaches would assist radiologists in diagnosing tumors and other irreg-
ularities from medical imaginings. The key contributions of the work are listed as follows.

1. An automated two-phase deep hybrid learning-based detection and classification
(DHL-DC) framework is proposed for brain tumor analysis by using MRI images.

2. A novel deep-boosted features space, and ensemble classifiers (DBFS-EC)-based
scheme is proposed to detect brain tumors. In this scheme, deep-boosted feature
space is accomplished by using outperforming customized CNNs and provided to a
majority voting-based ensemble of ML classifiers.

3. For the classification of brain tumor types, a new deep hybrid features space-based
brain tumor classification approach is proposed. In the proposed technique, the dy-
namic features are obtained from the proposed novel brain region-edge net (BRAIN-
RENet) and concatenated with a histogram of gradients (HOG) features to increase the
feature space diversity and to improve the learning capacity of ML classifiers. More-
over, the proposed BRAIN-RENet carefully learns various tumors’ heteromorphic and
inconsistent behavior.

The paper is arranged as follows. In Section 2 related work is discussed. Section 3
articulates the proposed methodology. Section 4 illustrates the experimental arrangements,
and Section 5 is dedicated to results and discussion, and the conclusion is in Section 6.
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2. Related Work

In medical image analysis, many research horizons are explored. These include various
areas of medical imaging, such as detection, classification, and segmentation [4–9]. As
cohorts build for brain tumor classification, there is a gap for novel approaches related
to feature extraction by using limited and class-unbalanced MR images datasets of brain
tumors and tumors from other parts of the human body [10,11]. Binary classifications
are primitively explored in the literature to detect benign and malignant instances of the
tumor. Kharrat et al. [12] explored the features of support vector machine (SVM) and
genetic algorithm (GA) for brain tumor classification into three classes—normal, benign,
and malignant. The proposed approach is only for binary classification. It is limited because
it necessitates fresh training whenever there is a change in the image database.

DL-based approaches performed better than conventional ML methods like Abdol-
maleki et al. [13], who constructed a shallow neural network by using thirteen distinct
features to distinguish benign and malignant tumors. These features were chosen based
on the visual understanding of radiologists. The classification accuracy obtained by their
proposed method was 91% and 94% for the malignant and descriptive tumors, respectively.
Papageorgiou et al. [14] used fuzzy cognitive maps (FCM) to bifurcate the low- and high-
grade gliomas. Their work achieved an accuracy of 93.22% for high-grade and 90.26% for
low-grade brain tumors. Zacharaki et al. [15] proposed the feature selection scheme and
then applied the conventional machine learning. They extracted the features like the shape
of the tumor, tumor intensity, and invariant texture for this purpose. Feature selection
and tumor classification are carried out by using SVM. Their work achieved the highest
accuracy of 88% for low-grade and high-grade gliomas classification.

Khan, M.A. et al. [16] proposed a multi-model method for brain tumor classification by
using DL. The proposed method is based on multiple steps, i.e., histogram equalization and
discrete cosine transform, feature extraction by using pre-trained VGG16 and VGG19, and
a correntropy-based learning method along with ELM for feature selection. Feature fusion
is attained by using partial least square (PLS) and finally employing ELM for classification.
Their method achieved accuracy of 97.8%, 96.9%, and 92.5% for BraTs2015, BraTs2017, and
BraTs2018, correspondingly. M. Sarmad et al. [17] proposed edge detection-based fuzzy
logic and a U-Net CNN-based brain tumor classification method. The proposed tumor
segmentation system consists of image enhancement, fuzzy logic-based edge detection, and
classification. They evaluate the proposed model by using accuracy, sensitivity, specificity,
and a dice coefficient index. Raja, N.S.M. et al. [18] proposed image processing based on
brain tumor classification by using thresholding and segmentation from 2D MRI slices.
The tumor part is extracted by using the Modified Moth–Flame Optimization algorithm
based on Kapur’s thresholding and a chosen segmentation technique by using benchmark
datasets BRAIN-IX and TCIA-GBM. The study suggests that the proposed method performs
slightly better on Flair modality images than the T2 modality.

Many researchers used the challenging benchmark dataset [19] consisting of MRI
brain tumor scans with meningioma, gliomas, and pituitary-tumors. Cheng et al. [20]
proposed a multi-phase brain tumor classification comprised of image dilation used as ROI
and an augmentation of the tumor region in ring form. They evaluated their proposed
model by using three different features and achieved 82.31% accuracy. In general, they
improved their performance by using bag of the word (BOW) features, but the overall
complexity of the model was increased. Sultan et al. [21] proposed a deep CNN-based brain
tumor classification model and employed extensive data augmentation. They attained
96.13% accuracy for multi-class categorization. Ahmet and Muhammad [22] employed
various deep CNN models for brain tumor analysis and achieved an accuracy of 97.2%
with modified ResNet50 architecture. Khwaldeh et al. [23] employed multiple CNNs for
brain MRI image classification and attained satisfactory accuracy. They attained a higher
accuracy of 97.2% by using reformed pre-trained Alexnet CNN. In general, previously
reported work aims to address the following points:
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1. Most of the previously done works have been evaluated using accuracy on the valida-
tion dataset. However, precision, recall, and MCC are assessed for better performance
evaluation on unbalanced datasets. Evaluation of such performance metrics is essen-
tial to measure the model’s generalization on the test dataset.

2. Previous work is largely restricted to either detection or classification of brain tumors.
However, only the detection of tumors puts radiologists in an ambiguous situation
due to insufficient details of the tumor type.

3. Largely normal individuals and tumors are classified in a single phase; this increased
the overall complexity of models. Hence, isolating normal instances from tumor
images for the classification phase may decrease the model’s complexity.

In this manner, the proposed two-phase brain tumor identification and classification
framework can improve the diagnostics model’s performance by using standard perfor-
mance assessment metrics like Accuracy, Precision, Recall, F-score, MCC, and AUC-PR.

3. Anticipated Methodology

The detailed architecture of the proposed DHL-DC framework is explained in this
part. The proposed framework includes two phases. A deep-boosted features space and
ensemble classifiers (DBFS-EC) method for brain tumor detection is proposed in the phase
01. In the phase 02, a hybrid features fusion-based brain tumor classification (HFF-BTC)
model is proposed to classify brain tumor MR images detected from the first phase into
three different classes: meningioma, glioma, and pituitary. MR images are categorized into
different types by employing the proposed novel BRAIN-RENet based model. Feature
space diversity is attained by composing a fusion feature space comprised of dynamic
and static features. The proposed multi-stage brain tumor detection and classification
framework is shown in Figure 1.
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3.1. Preprocessing and Data Augmentation

In DL-based models, a deficient amount of data tends to model overt fit. Image
augmentation is employed for efficient training and the improved generalization ability
of models. Data augmentation techniques help to improve the performance of DL mod-
els [24,25]. This work employs four augmentation methods, shown in Table 1. Our dataset
has MR images of different widths and heights, but it is recommended to resize them in the
same height and width for obtaining optimum performance. In this proposed work, we
resize the grayscale MR images into either 299 × 299 or 224 × 224 pixels.
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Table 1. Augmentation methods.

Method Parameters

Image-Rotation 0 to 360 degree
Image-Sharing −0.05, +0.05
Image-Scaling 0.5–1 limit

Image Reflection ±1 in the right–left direction

3.2. Phase 01: Proposed Deep Learning-Based Brain Tumors Detection(DL-BTD) Scheme

We perform three distinct experimental approaches for brain tumor detection in the
proposed scheme. It includes; (1) Softmax-based implementation of existing customized
transfer learning-based (TL-B) and training from scratch (TR-SC) deep CNN models in
an end-to-end mode to differentiate tumor and normal brain MRI images (2). Secondly,
a deep feature space-based hybrid learning (DFS-HL) technique is designed. In DFS-HL,
feature spaces of the four best TL-B fine-tuned models are fed into three ML classifiers
to enhance the discrimination ability and generalization of the proposed scheme (3). In
the third approach, we propose the DBFS-EC based framework to exploit the benefits of
ensemble deep feature spaces and ensemble of ML classifiers. The block diagram of the
DBFS-EC approach is shown in Figure 2.

3.2.1. Implementation of Existing CNNs

In our proposed two-phase framework, both detection and classification models are
trained independently. Initially, we employ two different methods in our proposed DL-BTD
approach for Softmax-based classification by using TR-SC and TL-B fine-tuned deep CNN
models. For TL-B and TR-SC, we employed ten well-known customized CNN models
and trained them on the MRI image dataset. Employed CNN models include: i—VGG-
16 [26], ii—VGG-19 [26], iii—SqueezeNet [27], iv—GoogleNet [28], v—ResNet-18 [29],
vi—ResNet-50 [29], vii—XceptionNet [30], viii—InceptionV3 [31], ix—ShuffleNet [32],
and x—DenseNet201 [33]. We trained all CNN architectures from scratch, and all layers
of networks updated their weights consequently for TR-SC models. TL is employed to
optimize well-established TL-B CNNs. We replace the input of the TL-B CNNs with a
new one, which is the same as the size of the MRI images. The dimensions of the last
fully connected layer of all deep CNNs are set the same as the number of the classes, i.e.,
two. The Softmax layer is employed to get the class-specific probabilities, and weights
optimization is attained by using a backpropagation algorithm through minimizing the
cross entropy-based loss function.

3.2.2. Developed Deep Feature Spaces Based Hybrid Learning (DFS-HL)

Our suggested DFS-HL scheme selects four well-performing TL-B CNN models as
feature extractors and fed feature vectors individually into three competitive ML classifiers.
The MRI dataset used in this study is not enough for the training of the deep CNN model,
and there are chances of overfitting. So we have incorporated TL by using the pre-trained
weight of the CNN models on the ImageNet dataset. TL-B deep CNN models learn
the most discriminative features efficiently. We employ three different ML classifiers for
classification: SVM [34], MLP [35], and AdaBoostM1 [36]. In DFS-HL, deep CNNs minimize
the empirical risk and reduce training error during optimal hyper-parameter selection [37].
In addition, ML classifiers aim to minimize the test error on the unseen data with a fixed
distribution for the training set by exploiting the structural risk minimization principle and
improving generalization.
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3.2.3. Developed Deep-Boosted Feature Space and Ensemble Classifier (DBFS-EC)

Ensemble learning aspires to performance improvement and encourages combining
multiple feature vectors of various models into one rich information feature vector, and
avoids the risk of using a feature vector extracted from a single model with unsatisfactory
performance [38]. It can be applied to two schemes, i.e., feature ensemble and classifier
ensemble, dependent on the fusion level. The features ensemble implicates concatenating
feature sets provided to the ML classifier for the final result. In contrast, ensemble classifiers
are based on voting strategy by integrating decisions from multiple classifiers. In the
proposed DBFS-EC scheme, we use both features and classifiers ensemble techniques.
We concatenate feature vectors of four best-performing TL-B CNN models to compose
deep-boosted feature space (DBFS) shown in Equation (1) and an ensemble classifier (EC)
by integrating all three classifiers on majority voting base for the final decision shown in
Equation (2),

fBoosted = tc(tCNN−1(f)||tCNN−2(f)||tCNN−3(f)||tCNN−4(f)) (1)

X(D) = mode{h1(D), h2(D), h3(D)}. (2)

In Equation (1), fBoosted defines the boosted feature space and tc represents the feature
spaces of all four CNNs individually. In Equation (2), X(D) denotes the final prediction of
all three classifiers h1(D), h2(D), and h3(D). The deep-boosted feature space of the four
best CNNs and ensemble learning enhances the feature space diversity and discrimination
power of the proposed DBFS-EC framework.

3.3. Phase 02: Proposed Brain Tumors Classification Framework

In the phase 02, a hybrid features fusion-based brain tumor classification (HFF-BTC)
methodology for brain tumor categorization is proposed. Dynamic and static features are
concatenated to enhance the feature space diversity, and an ML classifier is employed to
improve the distinction power of the proposed approach. Deep features are extorted from
the one layer before the last fully connected (FC) layer of the proposed novel BRAIN-RENet.
Static features are extracted by using the HOG features descriptor. The proposed brain
tumors classification framework is illustrated in Figure 3.

3.3.1. Proposed Deep BRAIN-RENet

A novel brain tumor classification model using BRAIN-RENet is proposed in the phase
02 of the current study. A deep feature space that contains 1024 features is obtained from
the one layer before the last fully connected layer of BRAIN-RENet, as shown in Figure 4.
In the proposed BRAIN-RENet, systematic deployment of the region and edge operations
exploit the region uniformity and edge-related features. We explored the benefits of
systematic average- and max-pooling for distinguishing patterns of different brain tumors.
Experiments prove that extracting edge- and region-based features enhances the proposed
model’s performance.

The proposed BRAIN-RENet contains six convolutional blocks. Every block is com-
prised of one convolutional layer, ReLU, and batch-normalization. The convolution layer
extracts the tumor-specific features while ReLU act as an activation function. At the end
of each block, average- and max-pooling operation is applied to learn region uniformity
and boundary features of brain tumors as illustrated in Equations (4) and (5). Region and
boundary-based operators are implemented systematically to capture patterns of differ-
ent types of brain tumors. The detailed architecture of the proposed BRAIN-RENet is
illustrated in Figure 4.
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The convolutional operation is used in Equation (3). The input feature-map has size
M × N and is illustrated by w, and the filter of size r× s is denoted by k. The output
feature map is illustrated by W, m, and n starting from 1 to (M− r + 1) and (N − s + 1),
correspondingly. As illustrated in Equations (3)–(5), we determine the Wavg and Wmax

processes, denoted by WAvg and WMax, respectively. In Equations (4) and (5), t denotes the
average- and max-window sizes. In Equation (6), the output of the dense layer is defined
by Q, which employ global operation on Wc; the output of the feature extraction phase.
Neurons of FC layers are shown by ud. The FC layer at the ending obtains important
features for the classification Equation (6). The CNN also contains a dropout layer to reduce
overfitting. In brain MR images, various patterns show the intensity value variations in
different image partitions. The smoothness of the region, changing texture, and edges form
the pattern’s structure. MR images show the patterns of brain tumors, distinguished into
different types of complexities and severity levels.

In the proposed BRAIN-RENet, the systematic employment of edge- and region-
based operations Equations (4) and (5), with a combination of convolutional operation
Equation (3), facilitates the model for enhancing pattern-specific properties for brain tumor
classification [39]. The advantages of the systematic employment of edge- and region-based
operations in proposed BRAIN-RENet are as follows:

1. The proposed BRAIN-RENet improves imitating the image’s sharpness and smooth-
ing dynamically, and can also fine tune the magnitude of smoothing and sharpening
according to the spatial content of the image without human intervention.

2. Systematic employment of edge- and region-based operations after each convolutional
block enhances the region homogeneity of different image segments.

3. The region operator smooths variations by applying average-pooling and suppresses
the noise added during the MRI acquisition process. In contrast, the edge operator
inspires CNNs for learning highly discriminative features by using a max-pooling operation.

3.3.2. Hybrid Features Fusion-Based Brain Tumor Classification (HFF-BTC)

In our proposed hybrid features fusion-based brain tumor classification (HFF-BTC)
model, we compose a hybrid feature space comprising static and dynamic features. Static
features are extracted by using the HOG feature descriptor. Dynamic features are extracted
by using the proposed BRAIN-RENet from the second last layer. Features fusion with
hybrid learning exploited the advantages of empirical and structural risk minimization
to enhance the performance of the brain tumor classification stage [37]. Deep CNNs
contain strong learning ability and focus on reducing the empirical risk factor to minimize
the training loss and to avoid overfitting [33]. The HOG feature descriptor counts the
illustration of gradient orientation in local segments of an image. The HOG-descriptor
emphasizes the shape or the structure of an object in images. [38]. The ML classifier SVM is
used to minimize the structural risk factors, and hence improves generalization with the
help of increased inter-class margins [39].
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4. Experimental Setup
4.1. Dataset

We collect a brain tumor data set of normal and tumor images; normal images are
collected from the open-source Kaggle website [40] and named as dataset1 (DS-1). Fur-
thermore, tumor images are taken from a publicly available CE-MRI figshare [19], titled
dataset2 (DS-2). We collected 5058 images containing 1994 healthy patients and 3064 tumor
images; thus, the acquired dataset is imbalanced and called dataset3 (DS-3). In the phase
01, detection is performed on DS-3, which contains (5058) MR images, 3064 of which are
tumor images, and 1994 of which are normal brain MR images. The classification stage
categorizes tumor instances (3064) brain tumor MR images into different family classes,
i.e., glioma, meningioma, and pituitary by using DS-2. Sample images of normal brain and
tumors are shown in Figure 5.
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4.2. Implementation Details

In the proposed work, we divide data into training and testing in the detection phase
with a percentage of 60:40% for training and testing, correspondingly, and a percentage of
80:20% in the classification phase. Furthermore, the training data is again subdivided into
train and validation sets for parameter optimization. Optimization of the model is attained
by employing holdout cross-validation. We used stochastic gradient descent (SGD) [41] as
an optimizer with a momentum of 0.95 in the training of CNNs. Training of deep models
is run for 10 epochs, with a weight decay factor of 0.4, L2 regularization of 0.001, and a
learning rate of 0.001. For efficient training, we have employed sixteen images for training
one epoch. Cross-entropy loss is minimized by optimizing the CNN models for image
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classification. Softmax is employed as an activation function. All the CNN models are
designed and simulations are performed by using MATLAB-2021a. Simulations were
performed on Core-I, i7-7500 CPU by using a 2.90 GHz processor using CUDA-enabled
Nvidia® GTX-1060 Tesla. Our proposed model took almost 5–7 h, ~20–30 min/epoch for
training. The experimental setup in both detection and classification approaches training
was fixed for all networks in TL-B, TR-S, and proposed methods.

4.3. Assessment Metrics

The categorization capability of the proposed approaches is empirically assessed by
using classification accuracy [42] (Acc.), recall (Rec.) [43], precision (Pre.) [43], F1-Score [44],
Mathew Correlation Coefficient (MCC) [45], and PR Curve [46] which are expressed in
Table 2, and Equations (7)–(11).

Acc = ((TN + TP)/(TP + TN+ FP + FN)) × 100 (7)

Rec. = TP/(TP + FN) (8)

Pre. = TN/(TN + FP) (9)

F1-Score = (2 × (Pre. × Rec.))/(Pre. + Rec.) (10)

MCC = ((TP × TN) − (FP × FN))/
√

((TP + FP) × (FP + FN) × (TN + FP) × (TN+FN)) (11)

Table 2. Assessment Metric Details.

Metric Description

Precision (Pre.) The fraction of correctly detected class to an actual class
Recall (Rec) The proportion of correctly identified class and actual negative class

Accuracy (Acc.) % of the total number of correct detection
MCC Matthews correlation coefficient

F1-Score The harmonic mean of Pre. and Rec.
TP Truly positive prediction
TN Truly negative prediction
FP Falsely positive prediction
FN Falsely negative prediction

5. Results and Discussion

A two-phase DL-based framework is designed for brain tumor analysis in this pro-
posed work. In the phase 01, the detection of brain tumor individuals from normal instances
is performed. In the phase 02, the classification of tumor images into further family classes
is accomplished. Tumor detection alone is not completely beneficial for the successful
curing process, hence, it is essential to classify tumors further into relevant classes for
effective and efficient treatment. The empirical effectiveness of the proposed framework is
evaluated by performing two experiments. In the first experiment, the brain tumor detec-
tion task is performed by assessing the performance of DL and DFS-HL-based models. In
the phase 02, we evaluated the advantages of feature spaces fusion by combining dynamic-
static feature spaces to discriminate patterns of different brain tumors. The suggested
brain tumor analysis framework is validated on unseen data by using accuracy, sensitivity,
precision, AUC-ROC, MCC, and F1-Score. The experimental results of dual stages are
deliberated below.

5.1. Performance Evaluation of Tumor Screening Stage

In the proposed framework, initially, to categorize all samples into the tumor or
healthy brain image, a DL-based DBFS-EC approach is proposed. Optimization of this
stage results in minimum numbers of false positives for identifying tumors. The detec-
tion rate is enhanced by using three improvements in the detection phase. In the first
step, we evaluate customized TR-SC and TL-B -based CNN models and determined that
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TL-B models perform better than TR-SC models ((0.75–8.4%) improvement in accuracy
(Table 3)). The performance of TL-B CNN models is improved by replacing the Softmax
layer with three ML classifiers after features extraction from fully connected layers of
TL-B CNNs (0.24–0.65% improvement in accuracy (Tables 4 and 5)). At last, our proposed
novel DBFS-EC based detection approach further improves the performance ((1.39–9.05%)
accuracy (Tables 3 and 6)) of the brain tumor detection compared to existing customized
CNN models.

Table 3. Softmax probabilistic-based employment of custom-made CNN models 60:40% data portion-
ing (training: testing).

Model

Training Scheme

Transfer Learning-Based (TL-B) Training from Scratch (TR-SC)

Acc. % Rec. Pre. F1-Score MCC Acc. % Rec. Pre. F1-Score MCC

ShuffleNet 98.52 0.9824 0.9868 0.9846 0.9694 90.51 0.9849 0.8702 0.9241 0.8455
VGG-16 98.76 0.9837 0.9901 0.9869 0.9739 94.07 0.9899 0.9155 0.9512 0.9016

SqueezeNet 98.91 0.9849 0.9917 0.9883 0.9768 95.36 0.9498 0.9556 0.9527 0.9058
VGG-19 98.22 0.9949 0.9744 0.9846 0.9691 96.54 0.9799 0.9569 0.9683 0.9362

ResNet-50 98.42 0.9649 0.9966 0.9805 0.9621 97.53 0.9448 0.9948 0.9692 0.9412
Xception 98.81 0.9824 0.9917 0.9807 0.9743 97.23 0.9599 0.9801 0.9698 0.9405

Inception-V3 98.52 0.9924 0.9806 0.9856 0.9730 97.63 0.9573 0.9882 0.9725 0.9464
Resnet-18 98.91 0.9774 0.9966 0.9869 0.9744 97.43 0.9812 0.9701 0.9756 0.9511

GoogleNet 98.52 0.9924 0.9806 0.9856 0.9731 97.53 0.9937 0.9643 0.9788 0.9575
DenseNet-201 98.86 0.9724 0.9991 0.9856 0.9720 98.17 0.9636 0.9932 0.9782 0.9576

Table 4. Performance comparison of Softmax probabilistic-based and deep feature extracted from
custom-made TL-B CNNs with SVM-based classification of four best-performing TL-B CNN models
selected for proposed DFS-BTD framework. 60:40% data portioning (training: testing).

Model

DFS-HL Scheme

Transfer Learning-Based (TL-B)
Softmax Based Classification

4 Best Performing Transfer Learning-Based
(TL-B) with SVM

Acc. % Rec. Pre. F1-Score MCC Acc. % Rec. Pre. F1-Score MCC

Inception-V3 98.52 0.9924 0.9806 0.9856 0.973 99.01 0.9824 0.9950 0.9887 0.9776
Resnet-18 98.91 0.9774 0.9966 0.9869 0.9744 99.16 0.9799 0.9991 0.9894 0.9793

GoogleNet 98.52 0.9924 0.9806 0.9856 0.9731 99.11 0.9849 0.995 0.9899 0.9801
DenseNet-201 98.86 0.9724 0.9991 0.9856 0.9720 99.06 0.9887 0.9918 0.9902 0.9806

Table 5. Performance comparison of features extracted from custom-made TL-B CNN models with
MLP- and AdaBoostM1-based classification of four best-performing TL-B CNN models selected for
the proposed DFS-BTD framework. 60:40% data portioning (training: testing).

Model

DFS-HL Scheme

4 Best Performing Transfer Learning-Based
(TL-B) with MLP

4 Best Performing Transfer Learning-Based (TL-B)
with AdaBoostM1

Acc. % Rec. Pre. F1-Score MCC Acc. % Rec. Pre. F1-Score MCC

Inception-V3 99.31 0.9824 1.0000 0.9911 0.9826 99.06 0.9899 0.9910 0.9905 0.9810
Resnet-18 99.26 0.9912 0.9934 0.9923 0.9847 99.41 0.9912 0.9959 0.9935 0.9872

GoogleNet 99.36 0.9874 0.9975 0.9924 0.9851 99.11 0.9824 0.9966 0.9895 0.9793
DenseNet-201 99.41 0.9862 0.9991 0.9926 0.9855 99.46 0.9874 0.9991 0.9932 0.9867
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Table 6. Deep boosted feature space and ensemble classification (DBFS-EC) 60:40% data portioning
(training: testing).

Classifiers
Deep Hybrid Boosted Feature Space

Acc. % Rec. Pre. F1-Score MCC

SVM 99.41 0.9924 0.9950 0.9937 0.9876
MLP 99.41 0.9974 0.9918 0.9940 0.9888

AdaboostM1 99.46 0.9862 1.0000 0.9941 0.9863
Proposed DBFS-EC 99.56 0.9899 0.9991 0.9945 0.9892

5.1.1. Distinction Competency of the Brain Tumor Detection Approach

Experimentation results for the proposed brain tumor detection scheme are obtained
by using a combined dataset (DS-3). In the first experiment, we compare several customized
TL-B and TR-SC deep CNN models by using an end-to-end way to obtain the tumor-related
features. Performance assessment advocates that TL-B fine-tuned models learn the tumor-
related feature better than the deep CNN models, trained from scratch on brain MR images.
This is because of pre-trained weights that were learned from an extensive dataset named
ImageNet [47].

As for the second experiment, we employ a hybrid learning-based approach by ex-
tracting the dominant features and exploiting the learning capability of deep CNNs with
the strong discrimination power of ML classifiers. For this, we extract deep features spaces
from the end layers of four best-performing TL-B deep CNNs (InceptionV3, ResNet18,
GoogleNet, and DenseNet201), and fed them into competitive ML classifiers (SVM, MLP,
and AdaBoostM1) The performance assessment based on accuracy, sensitivity, precision,
and AUC-ROC, MCC, F1-Score, which are shown in Tables 3–5.

The deep features of DenseNet201 with all three ML classifiers perform better than
extracted deep features of other pre-trained CNNs. However, the performance of the deep
features extracted by using inceptionV3 fell shorter than features extracted from other
pre-trained CNN networks on DS-3. The performance assessment is based on accuracy,
recall, precision, F-score, and MCC (Tables 4 and 5).

In the last experiment for the proposed DBFS-EC approach, the effectiveness of the
deep-boosted ensemble learning is evaluated. A hybrid feature space is formed by concate-
nating all four selected feature spaces and ensemble classifier by using all three classifiers
employed in experiment 2. Utilizing ensemble deep feature spaces from more than one
TL-B deep CNNs is effective for ML classifiers. An ensemble of classifiers enhanced the
overall performance of the proposed DBFS-EC approach for brain tumor detection.

Table 6 shows that DBFS-EC, an ensemble of deep feature spaces from top-4 TL-B
CNN models and the ensemble of ML classifiers, achieves higher performance measures
than the ensemble of deep features from top-4 pre-trained CNN models and ML classifiers
individually (Tables 4–6). This is because ensemble learning employs feature spaces from
four best-performing TL-B CNNs and concatenates them. Integrating these deep features
results in a hybrid feature vector that increases the feature space diversity, and an ensemble
of ML classifiers enhances the discrimination ability of the ML classifiers.

5.1.2. ROC Curve-Based Performance Exploration

Analyzing the ROC curve is crucial for achieving the optimum analytic threshold
for a classifier. It pictorially shows the differentiation capacity of the classifier at possible
threshold values. As shown in Figure 6, our proposed DBFS-EC scheme for the brain MRI
dataset has improved performance (AUC_ROC: 0.999). ROC-based statistical analysis also
highlights that the proposed approach attained high sensitivity.
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5.2. Performance Analysis of Brain Tumor Classification Stage

Tumor classification is essential for designing effective treatment and diagnosis pro-
cesses. Thus, brain MR images recognized as the tumor in the detection stage by using
the proposed DBFS-EC are allocated to the brain tumor classification model for tumor
categorization. In the classification phase, we have proposed a hybrid features fusion-based
approach for tumor MR images categorization into particular classes, namely, meningioma,
glioma, and pituitary. Dynamic and static features are concatenated to enhance the feature
space diversity, and classification ability enhancement of the model is achieved by em-
ploying an ML classifier (SVM). Deep features are extracted by using the proposed novel
BRAIN-RENet, and static features are extracted by using the HOG descriptor.

5.2.1. Differentiation Proficiency of the Brain Tumor Classification Stage

The proposed model’s performance is assessed with the proposed BRAIN-RENet
and several ML-based models. Table 7 shows the performance comparison of the pro-
posed hybrid learning-based model containing fusion feature spaces with SVM, other HFF
models, and the proposed BRAIN-RENet. Performance of the proposed HFF-BTC model
is evaluated for standard metrics and attain recall (0.9913), precision (0.9906), accuracy
(99.20%), and F1-Score (0.9909). This framework outperformed the existing techniques in
recognizing the tumor in MRI images.
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Table 7. Performance comparison of proposed HFF-BTC with existing ML models.

Classifiers Parameters
HFF-HL

Rec. Pre. Acc. % F1-Score

Naïve Nayes Gaussian Kernel 0.9160 0.8923 90.5 0.9039

Decision Tree - 0.9223 0.9280 93.3 0.9251

Ensemble AdaboostM2 0.9670 0.9670 96.9 0.9670

SVM
Linear kernel 0.9743 0.9616 96.9 0.9679
Poly. Order 2 0.9823 0.9890 98.7 0.9856

RBF 0.9883 0.9866 98.9 0.9874

Proposed Framework (HFF-BTC) Dynamic + Static-SVM 0.9906 0.9913 99.2 0.9909

In the brain tumor classification stage, we initially analyze the performance of our
proposed HFF-BTC model with other existing hybrid learning-based models by using
different ML classifiers, namely Naïve Bayes, Decision Tree, Ensemble (Adaboost-M2),
and SVM with the linear, RBF, poly order-2 kernel. Confusion matrix-based performance
comparison of proposed HFF-BTC with other existing ML methods is illustrated in Figure 7.
We fed fusion feature space to several ML classifiers for performance evaluation. Table 7
and Figure 7 suggest that our proposed approach outperforms other models in terms of
recall (0.9913), precision (0.9906), accuracy (99.2%), and F1-Score (0.9909). HFF and SVM
with ploy order 3 learn and discriminate the tumor-specific patterns from MR images better
than other classifiers with minimized false negatives.

Performance of the proposed HFF-BTC model using deep and static features individ-
ually and existing DL models are evaluated and demonstrated in Table 8 and Figure 8.
Results show that the proposed HFF-BTC using SVM (with poly order 3) performs bet-
ter than deep and static feature spaces separately and previously reported work. Cheng
et al. [20] proposed multi-phase brain tumor classification comprises image dilation used
as ROI and augmentation of the tumor region in ring form. They evaluated their proposed
model by using three different features and achieved 91.28% accuracy. In general, they
improved their performance by using bag of the word (BOW) features. Still, the overall
complexity of the model was increased. Badža et al. [48] presented a CNN architecture for
brain tumor classification and achieved an accuracy of 97.28%. The authors focused their
work on auto-feature extraction by using a highly general model for brain tumor classifica-
tion with good execution speed. Gumaei et al. [49] proposed a brain tumor classification
approach by using hybrid feature-extraction methods with regularized extreme learning
machines (RELM). Authors compute the covariance matrix to project these features in a new
significant feature set and employ RELM for classification. Authors improved classification
accuracy from 91.51% to 94.23% for the experiment of random holdout technique. Díaz
Pernas et al. [49] proposed a fully automatic brain tumor classification and segmentation
model by using a deep CNN based on a multiscale approach. They achieved an accuracy
of 97.3% on a benchmark CE-MRI dataset. The proposed method achieves performance
metrics of recall (0.9906), precision (0.9913), accuracy (99.2%), and F1-Score (0.9909). This
improvement in the performance of the proposed HFF-BTC is attained by employing two
techniques. First, we concatenate the dynamic and static feature spaces and then use SVM
as a classifier. Systematic usage of max and average pooling in the proposed BRAIN-RENet
enabled the model in identifying fine-grained details and features high discrimination in
MRI images. In addition, the concentration of features enhances the feature space diversity,
the inter-class association is maximized, and SVM helps in structural risk minimization
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Table 8. Performance evaluation of proposed HFF-BTC with state-of-the-art models.

Method
The Proposed Classification Setup

Rec. Pre. Acc. % F1-Score

Cheng et al. [20] 0.8105 0.9201 91.28 -
Badža et al. [48] 0.9782 0.9715 97.28 0.9747

Gumaei et al. [49] - - 94.23 -
Díaz Pernas et al. [50] - - 97.30 -

Proposed BRAIN-RENet-SVM 0.9683 0.9750 97.40 0.9716
HOG-SVM 0.8906 0.8790 87.20 0.8897

Proposed HFF-BTC 0.9906 0.9913 99.20 0.9909
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5.2.2. Features Space Visualization

Features space diversity attained by the proposed DBFS-EC and DFS-HL is assessed
to elucidate the tumor detection and classification process. In general, the discrimination
ability of the model is dependent on the associated properties of the features set. Distin-
guishing the class features strengthens the learning ability of the model and improves
robustness on a wide-ranging set of instances. The proposed DBFS-EC framework boosted
the feature space diversity and improved brain tumor recognition and categorization. The
2-D scatter plot of principal components (PC) and their divergence attained by proposed
DBFS-EC with the comparison of best-performing TR-SC and TL-B deep CNNs on test
data are shown in Figure 9 and by HFF-BTC compared with HOG and BRAIN-RENet in
Figure 10.
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6. Conclusions

An efficient brain tumor diagnosis system is necessary for the early treatment of the
patient. In this regard, a new two-phase brain tumor detection and classification framework
is proposed to improve brain tumor diagnosis and reduce computational complexity. In
the detection phase, we proposed a novel DBFS-EC approach for differentiating brain
tumor instances from normal individuals with fewer false negatives, and performance
is compared with the existing DL techniques. Experimental results demonstrate that the
proposed DBFS-EC outperformed other models by achieving better accuracy (99.56%), recall
(0.9899), precision (0.9991), F1-Score (0.9945), and MCC (0.9892). In the tumor classification
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phase, an FSF-HL technique is proposed, which is based on novel brain-RENet model
and benefits from feature space fusion and ML. The feature space fusion exploits region
uniformity, edge-related, and static features and then provides to ML to improve the model
generalization by reducing structure risk minimization. The proposed technique achieved
recall (0.9906), precision (0.9913), accuracy (99.20%), and F1-score (0.9909) for brain tumor
classification on a benchmark dataset. The two-phase framework is expected to assist
clinicians in decision-making in clinical practice and will be helpful for radiologists in brain
tumor diagnosis. In the future, we will appraise our proposed framework’s performance
and a more optimized one on other large medical image datasets to improve efficacy
and reliability for real-time detection and classification. In this regard, we will focus
on augmenting the training sets by generating synthetic examples using the generative
adversarial network.
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