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Abstract: The validity of the impedance parameters of the five body segments estimated using
octapolar segmental bioelectrical impedance analysis (OS-BIA) has not been confirmed. This study
aimed to verify the accuracy of the resistance (R), reactance (Xc), and phase angle of each five-
body segment. The accuracy of the OS-BIA at 50 kHz was measured based on the direct tetrapolar
segmental BIA. The differences in the estimated impedance parameters of the five body segments
were compared to those measured from the OS-BIA in elderly men (N = 73) and women (N = 63).
The estimated 50 kHz-R (Ω) was significantly higher than the measured 50 kHz-R in the right and
left arms, and lower than the measured 50 kHz-R of the trunk, right leg, and left leg (all, p < 0.05).
The estimated 50 kHz-phase angles in all the five body segments were significantly lower than the
measured ones (all, p < 0.05). The findings suggest that the estimated impedance parameters, R,
Xc, and phase angle of the trunk, were remarkedly underestimated, limiting the assessment of the
physiological state of the organs in the body. Therefore, further intensive research is needed in the
field of estimated segmental BIA in the future.

Keywords: segmental bioimpedance; validity; estimated resistance; aging; body composition

1. Introduction

Bioelectrical impedance analysis (BIA) is a portable, easy-to-use, and inexpensive
method that is commonly used to assess total body water (TBW) and body composition [1,2].
It measures the electrical resistance (R) and impedance (Z) that are observed in the human
body in response to electric current from surface electrodes. The Z parameters measured by
BIA include resistance (R) and reactance (Xc). The phase angle (ϕ, PhA), which is directly
calculated from R and Xc as arctangent (Xc/R) × (180/π), can be expressed for both the
changes in the amount as well as the quality of the soft tissue mass, which is independent
of conventional regression equations for estimating the body composition. Resistance is an
impedance parameter generated by preventing the conduction of electric current into the
body’s interstitial fluid (ISF) and TBW, including blood.

Reactance is an impedance parameter that is observed when conduction is delayed in
the membranes of cells in the human body. When an AC flows through the human body,
healthy cell membranes function as capacitors that store electrical energy, consequently
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causing a delay in the current’s flow. This lag in the current that penetrates the cell mem-
branes and tissue interfaces creates the phase difference between the current and voltage,
which is expressed as the PhA [3]. These impedance parameters are used as variables
of prediction equations in cross-validation studies to develop predictive equations and
are often used to indirectly assess TBW and body composition. However, body composi-
tion estimated using prediction equations was inferred from inaccurate assumptions and
contained errors [3–5], and such limitations led to an attempt to evaluate and interpret
physiological principles using raw impedance parameters, including the measured R and
Xc, instead of indirectly estimating body composition from the impedance parameters [6,7].

To date, studies have shown that impedance parameters are highly correlated with the
severity and prognosis of diseases such as human immunodeficiency virus infection, cancer,
dialysis of patients with end-stage renal disease, malnutrition, and anorexia nervosa, sug-
gesting that the raw values of impedance parameters may be used in clinical settings [8–13].
In previous studies, the phase angle (ϕ) was shown to be related to muscle mass [14]. A
cross-sectional study reported a significant positive correlation between the phase angle
and fat-free mass (FFM) and significant differences in resistance and reactance between
well-trained bodybuilders and healthy control individuals [6,8]. In clinical studies, BIA
parameters have been reported as prognostic factors in patients with heart failure [15–17].
These findings suggest the association between raw impedance parameters and health,
disease, and physical fitness, thereby increasing the interest in the clinical application of
these parameters [6,18–21].

Raw impedance parameters were measured using the traditional BIA technique with a
tetrapolar (four-point electrode) segmental BIA(TS-BIA) at 50 kHz. Two current electrodes
and two voltage electrodes are attached to the proximal and distal ends of a specific human
body segment to measure the generated impedance parameters [1,22]. To perform seg-
mental BIA, TS-BIA requires electrodes on the wrist, ankle, hip, and shoulder. In addition,
subjects needed to remove part of their clothing during the measurement, which requires a
long measurement time. Therefore, it is not suitable to perform field studies in populations.
With the advancement of modern technology, the octapolar (eight-point electrode) segmen-
tal BIA (OS-BIA) was developed and commercialized recently [23,24]. There is growing
interest in the development of diagnostic methods for sarcopenia, following the increase in
the elderly population and prevalence of sarcopenia in developed countries. In addition,
the European Working Group on Sarcopenia in Older People has recently recommended
BIA to diagnose sarcopenia in the EWGSOP and EWGSOP2 sarcopenia guidelines, leading
to increasing demand for the use of the OS-BIA [22,25–27].

The OS-BIA involves four current electrodes and four voltage electrodes on the ends
of the extremities and analyzes the impedance parameters of arm-to-arm, right-arm-to-
right-leg, left-arm-to-left-leg, and leg-to-leg circuits to calculate the impedance parameters
of the right arm, right leg, trunk, left arm, and left leg based on the principle of the
equipotential [26–29]. This new method effectively estimates the impedance parameters
of the five body segments via one measurement with a simple procedure and minimal
effort. However, the validity of the impedance parameters between the extremities and
trunk, estimated by the OS-BIA, has not yet been confirmed. In other words, no study has
compared the accuracy of the estimated impedance parameters, including R, Xc, and phase
angle of the five body segments, in OS-BIA with the measured bioimpedance parameters
of the body segments. The estimated impedance parameters in the body segments with
the OS-BIA are used as predictor variables to develop a prediction equation of the body
composition of each segment, as well as the whole human body. Because inaccurate values
of the estimated impedance parameters must lead to errors in not only the impedance
parameters of each segment but also the body composition of the segments and the total
body composition [1,3,27], it is essential to verify the accuracy of the estimated impedance
parameters of each body segment in the OS-BIA.

To the best of our knowledge, no previous studies have verified the accuracy and valid-
ity of the estimated segmental impedance parameters obtained using the OS-BIA technique.
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Several previous studies have assessed the accuracy of the whole-body impedance parame-
ters obtained using the OS-BIA technique and compared these to those obtained using the
TS-BIA technique and reported significant differences in the impedance parameters of the
whole body in healthy adult women [30], hemodialysis patients [31], bodybuilders [32],
the elderly [33], and children [34,35]. Therefore, this study aimed to verify the accuracy of
the impedance parameters of each body segment as estimated using the OS-BIA method
based on the direct TS-BIA method in the elderly who required regular BIA assessments.

2. Materials and Methods
2.1. Participants

The participants of the current study comprised a total of 136 elderly people over the
age of 65, including 73 men and 63 women. The participants were recruited through local
newspapers and social media advertisements, and those who were registered at the public
health center of borough offices and voluntarily wished to participate were included. The
study was approved by the ethical committee of the Korean National Sport University
(No.1263-201903-HR-010-02) and performed in accordance with the Declaration of Helsinki.
The exclusion criteria were as follows: contraindications for BIA (such as neurological dis-
ease, musculoskeletal disorders, heart failure, renal disease, edema, cachexia, open wounds,
rash, cardiac pacemakers, and metal implants), individuals who had been hospitalized
within the last 3 months, or individuals who had a history of limb amputation. Prior to the
BIA, all participants fasted for 4–6 h. Body weight was measured in units of 0.5 kg (CAS
DB-1, Seoul, South Korea) in light clothes, and the height was measured in 1 mm units
(SECA 274, Hamburg, Germany).

2.2. Measurement of the Direct Segmental Impedance Parameters

Quantum Desktop RJL-101 (RJL Systems, Clinton Twp, MI, USA), a 4-point electrode
(tetrapolar) real-time BIA device, was used as the criterion measure to assess the accuracy
of the estimated segmental impedance parameters from the OS-BIA. Participants were
instructed to refrain from strenuous exercise, alcohol, and caffeine intake for the 24 h before
the experiment, finish their last meal at least 4 h before the measurement, and empty their
bladder within 30 min before the measurement. Participants adopted a supine position with
limbs slightly spread apart from the body (Figure 1a). Adhesive gel electrodes were placed
at defined anatomical sites on the anterior surface of the trunk and the dorsal surfaces of the
hands, wrists, ankles, and feet on the right and left side as explained in the following. The
measurements of the right and left arm were taken by attaching one pair of electrodes on
the hand and wrist and the other pair of electrodes on the anterior surface of the shoulder.
For the shoulder, the superior edge of the current electrode was attached on the inferior
border of two-thirds of the clavicle and the voltage electrode 5 cm inferior to this point. For
the hand and wrist, the proximal edge of the detecting (voltage) electrode was attached
to form an imaginary line bisecting the styloid process of the ulna and the proximal edge
of the source (current) electrode on an imaginary line bisecting the metacarpophalangeal
joint of the middle finger [36,37]. Trunk impedance was measured by placing one pair of
electrodes on the anterior surface of the shoulder and the other pair of electrodes on the
surface of the lingual crest on the anterior midline of the proximal thigh on the right and
left sides. For the right and left shoulders, the superior edge of the source electrode on
each side was attached over the inferior border of lateral two-thirds of the clavicle and the
detecting electrode 5 cm inferior to this point. For the lingual crest, the detecting electrode
was attached to the anterior superior iliac spine and the detecting electrode 5 cm superior
to the source electrode [36,37]. Leg impedance of each side was measured by placing one
pair of electrodes on the foot and ankle and placing the other pair of electrodes on the
surface of the lingual crest on the anterior midline of the proximal thigh. For the iliac crest
of each side, the detecting electrode was attached to the ASIS (anterior superior iliac spine),
and for the iliac crest of each side, the detecting electrode was attached to the ASIS and the
source electrode 5 cm superior to the detecting electrode. For the ankle and foot of each



Sensors 2022, 22, 2681 4 of 11

side, the proximal edge of the ankle detecting electrode was attached to form an imaginary
line bisecting the medial malleolus, and the distal edge of the foot source electrode was
placed to form an imaginary line through the metatarsophalangeal joints of the second and
third toes [36,37].
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Figure 1. The posture for assessment and locations of the electrodes. (a) The direct tetrapolar
segmental BIA and (b) octapolar segmental BIA. (À a pair of source electrodes on the right arm,
Á a pair of detecting electrodes on the right arm, Â a pair of source electrodes on the right trunk,
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2.3. Assessments of Estimated Octapolar Segmental Impedance Parameters

An octapolar segmental BIA device (InBody S10, InBody, Seoul, Korea) was used to
estimate the impedance parameters of the five segments (right arm, right leg, trunk, left
arm, and left leg) using the basic principle of the equipotential technique [28,29]. The
participants were asked to lie in the supine position with both arms 15◦ from the body and
legs 15◦ apart from each other for OS-BIA. The electrodes were attached according to the
manufacturer’s recommendations, and their locations were the same as those for the hands,
wrists, ankles, and feet during the TS-BIA.

For the hand and wrist of each hand, the proximal edge of the detecting electrode was
attached to form an imaginary line bisecting the styloid process of the ulna and the distal
edge of the current electrode on an imaginary line bisecting the metacarpophalangeal joint
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of the middle finger. For the ankle and foot, the proximal edge of the ankle electrode was
attached to form an imaginary line bisecting the medial malleolus, and the distal edge of the
current electrode was placed to form an imaginary line through the metatarsophalangeal
joints of the second and third toes [36,37] (Figure 1b). A single examiner measured all
the impedance parameters during the octapolar and tetrapolar segmental BIA. To assess
the intratester reliability, impedance parameters obtained from OS-BIA and TS-BIA were
evaluated in fifteen subjects on one day at two consecutive times. The electrodes used
for OS- and TS-BIA were repositioned before each measurement. Each evaluation was
performed by the same tester. Intraclass correlation coefficient (ICC) of the examiner for
the repeatability was conducted for the single tester. The intraclass correlation coefficients
of the examiner for the repeatability were 0.961 and 0.955, respectively.

2.4. Fat Mass and Fat-Free Mass from Dual-Energy X-ray Absorptiometry

A whole-body DXA Prodigy Advance scanner (GE Lunar, Madison, WI, USA) was
used to measure each participant’s total fat mass and fat-free mass. The DXA instru-
ment was calibrated daily using the spine phantom provided by the manufacturer. For
standardization purposes of the scans, the files from the original DXA machine were trans-
ferred to iDXA Software, version 4.0.2. Whole-body scans were manually analyzed for the
manufacture-defined regions of interest (ROI) following the standard analysis protocol of
the GE Lunar User Manual.

2.5. Data Processing and Statistical Analysis

Descriptive statistics were analyzed for resistance, reactance, and phase angle, and the
normality of all variables was confirmed. A paired t-test was conducted for the mean differ-
ences between the estimated and measured data. Agreement between the two methods was
assessed using a linear regression analysis. The intraclass correlation coefficient (ICC) was
used to evaluate the consistency between the two methods. IBM SPSS Statistics (version
23.0; IBM Corporation, Armonk, NY, USA) was used for data analysis, and a p-value less
than 0.05 was considered statistically significant.

3. Results
Characteristics of the Study Population

One hundred and thirty-six older adults participated in this study. The total sample
was divided into groups of 73 men and 63 women to validate the estimated bioimpedance
parameters, including R, Xc, and the phase angle. The general characteristics of the two
study groups are summarized in Table 1. There were no between-group differences in age,
BMI, and Xc. Men were taller, weighed more, had lower FM, FMI, %BF, Z, and R, and
higher FFM, FFMI, and phase angles than women (all p < 0.05).

The accuracies of the estimated R, Xc, and PhA of the segmental bodies in elderly men
and women are presented in Table 2 and Figure 2. The estimated R values in men and
women were significantly higher than the measured R values in the right and left arms and
lower than those in the right and left legs (all p < 0.001). In addition, R of the trunk in men
and women was significantly underestimated compared to that measured (p < 0.001). The
ratio of R of the estimated to measured impedance parameters was high for the arms and
low for the trunk and right and left legs. For Xc in men, there were no differences between
the right and left arms. However, the estimated Xc of the right and left arms were higher
than that of the right and left arms in women. The estimated Xc of men and women was
significantly underestimated in the right and left legs (all p < 0.001). In addition, Xc of the
trunk in men and women was significantly underestimated compared to that measured
using the four-electrode bioimpedance technique (p < 0.001). Therefore, the trunk and right
and left legs had a low ratio of reactance. Meanwhile, the accuracy of the estimated phase
angle (PhA) in older men and women was significantly underestimated in all five segments
(all p < 0.001).
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Table 1. General characteristics of elderly participants.

Men (n = 73) Women (n = 63) Total (n = 136)

Age (year) 76.5 ± 4.1 75.1 ± 4.0 75.9 ± 4.1
Weight (kg) 65.4 ± 7.1 54.1 ± 6.1 *** 60.2 ± 8.7
Height (cm) 166.5 ± 4.8 152.2 ± 5.0 *** 159.9 ± 8.6

BMI (kg/m2) 23.6 ± 2.2 23.4 ± 2.2 23.5 ± 2.2
FFM (kg) 49.9 ± 4.3 36.9 ± 3.6 *** 43.9 ± 7.6
FM (kg) 15.5 ± 5.1 17.3 ± 3.9 * 16.3 ± 4.7

FFMI (kg/m2) 18.0 ± 1.1 15.9 ± 1.1 *** 17.0 ± 1.5
FMI (kg/m2) 5.6 ± 1.8 7.4 ± 1.6 *** 6.5 ± 2.0

%BF 23.3 ± 6.2 31.6 ± 4.8 *** 27.2 ± 6.9
Zmeasured (Ω) 458 ± 41.5 537 ± 47.9 *** 495 ± 59.3
Rmeasured (Ω) 456 ± 41.5 535 ± 47.9 *** 492 ± 59.4
Xcmeasured (Ω) 47.7 ± 5.3 48.4 ± 5.4 48.0 ± 5.4
PhAmeasured (◦) 6.0 ± 0.6 5.2 ± 0.6 *** 5.6 ± 0.7

Values are mean ± SD; %BF, percentage of body fat; BMI, body mass index; FFM, fat-free mass; FFMI, fat-free
mass index; FM, fat mass; FMI, fat mass index; PhA, phase angle; R, resistance; Xc, reactance; Z, impedance; Z, R,
Xc, and PhA are the whole-body electrical impedance parameters from 4-point electrode bioelectrical impedance
analysis, and whole body as assessed by right-arm-to-right-foot 4-electrode BIA; FM and FFM were assessed by
DXA; * = significantly different from females at p < 0.05; *** = significantly different from females at p < 0.001.

Table 2. Comparison of the estimated impedance parameters to the measured impedance parameters.

Male (n = 73) Female (n = 63)

Measured † Estimated ‡ Ratio Measured Estimated Ratio

Resistance (R, Ω)
RA 220 ± 22.8 299 ± 29.5 *** 1.36 ± 0.06 268 ± 28.3 360 ± 33.0 *** 1.36 ± 0.06
LA 225 ± 22.5 304 ± 29.1 *** 1.35 ± 0.06 272 ± 26.4 361 ± 33.1 *** 1.33 ± 0.06
TR 76 ± 8.6 27 ± 2.7 *** 0.36 ± 0.03 84 ± 8.7 27 ± 2.7 *** 0.33 ± 0.03
RL 209 ± 20.7 167 ± 18.1 *** 0.80 ± 0.07 230 ± 23.0 190 ± 16.4 *** 0.83 ± 0.05
LL 207 ± 20.5 170 ± 18.8 *** 0.82 ± 0.07 233 ± 25.0 191 ± 17.8 *** 0.82 ± 0.05

WBestimate 505 ± 43.8 493 ± 45.5 *** 0.98 ± 0.05 582 ± 51.8 577 ± 46.7 0.99 ± 0.05
WBmeasure 456 ± 41.5 493 ± 45.5 *** 1.08 ± 0.04 535 ± 47.9 577 ± 46.7 *** 1.08 ± 0.04

Reactance (Xc, Ω)
RA 28.0 ± 2.6 27.9 ± 3.3 1.00 ± 0.07 27.2 ± 3.0 8.9 ± 3.4 *** 0.33 ± 0.08
LA 27.2 ± 2.7 27.6 ± 3.3 1.02 ± 0.08 26.6 ± 3.0 8.0 ± 3.4 *** 0.30 ± 0.08
TR 14.0 ± 1.9 2.8 ± 0.4 *** 0.21 ± 0.03 11.6 ± 1.5 2.5 ± 0.4 *** 0.22 ± 0.03
RL 24.6 ± 3.9 17.8 ± 3.3 *** 0.73 ± 0.13 23.8 ± 3.4 17.8 ± 3.2 *** 0.75 ± 0.08
LL 25.3 ± 4.8 16.7 ± 3.4 *** 0.66 ± 0.10 25.0 ± 4.2 17.0 ± 2.9 *** 0.69 ± 0.10

WBestimate 66.5 ± 6.7 48.5 ± 6.1 *** 0.73 ± 0.07 62.6 ± 6.5 49.5 ± 6.0 *** 0.79 ± 0.06
WBmeasure 47.7 ± 5.3 48.5 ± 6.1 1.02 ± 0.07 48.4 ± 5.4 49.2 ± 6.0 * 1.02 ± 0.06

Phage Angle (◦)
RA 7.3 ± 0.7 5.3 ± 0.5 *** 0.74 ± 0.05 5.8 ± 0.7 4.6 ± 0.5 *** 0.79 ± 0.06
LA 7.0 ± 0.8 5.2 ± 0.6 *** 0.76 ± 0.06 5.6 ± 0.7 4.4 ± 0.5 *** 0.80 ± 0.06
TR 10.5 ± 1.3 6.0 ± 0.7 *** 0.58 ± 0.09 7.9 ± 1.0 5.2 ± 0.6 *** 0.66 ± 0.09
RL 6.7 ± 0.8 6.1 ± 1.1 *** 0.91 ± 0.17 5.9 ± 0.8 5.3 ± 0.8 *** 0.90 ± 0.10
LL 6.9 ± 0.9 5.6 ± 1.0 *** 0.81 ± 0.11 6.1 ± 0.9 5.1 ± 0.7 *** 0.84 ± 0.11

WBestimate 7.5 ± 0.7 5.6 ± 0.6 *** 0.75 ± 0.07 6.2 ± 0.6 4.9 ± 0.5 *** 0.79 ± 0.06
WBmeasure 6.0 ± 0.6 5.6 ± 0.6 *** 0.94 ± 0.07 5.2 ± 0.6 4.9 ± 0.5 *** 0.94 ± 0.06

Values are mean ± SD; † = measured 4-electrode BIA parameters; ‡ = estimated 8-electrode BIA parameters;
RA: right arm, LA: left arm, TR: trunk, RL: right leg, LL: left leg; WBestimate: Whole body as the sum of the
segmental for right arm, trunk, and right leg. WBmeasure: Whole body as assessed by right-arm-to-right-foot
4-electrode BIA; * = Difference between the estimated and measured values at p < 0.05; *** = difference between
the estimated and measured values at p < 0.001.
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Figure 2. Comparison of the estimated impedance parameters to the measured impedance parameters
with respect to resistance (R), mean reactance (Xc), and mean phase angle (PhA) measured at 50 kHz
frequency. (a,c,e) correspond to R, Xc, and PhA values in males; (b,d,f) correspond to R, Xc, and PhA
values in females. WBsum: Whole body as the sum of the segments for right arm, trunk, and right leg.
*** = difference between the estimated and measured values at p < 0.001.

4. Discussion

This study aimed to verify the accuracy of the impedance parameters of the body seg-
ments estimated using the OS-BIA technique and compare their values with those obtained
using the direct TS-BIA technique in the elderly who required regular BIA assessments. The
differences in the estimated and directly measured impedance parameters of the segmental
bodies in elderly men and women were compared. In our study, the estimated segmental
resistances of the upper and lower extremities were overvalued and undervalued, respec-
tively, when compared to those obtained from the direct TS-BIA technique. The estimated
segmental resistance of the trunk was severely undervalued, with a low value. Similar
trends were observed for estimated segmental reactance. The values of the upper and
lower extremities were overvalued and undervalued, respectively, and that of the trunk
was severely undervalued. As a result, the phase angle, which indicates the standardized
resistance and reactance, measured using eight-electrode BIA, was significantly lower
than that obtained from direct four-electrode BIA in both elderly men and women. In
particular, the estimated reactance of the trunk was only 0.22 times the measured reactance.
These results suggest that the impedance parameters, R, Xc, and phase angle, of the lower
extremity and trunk were highly undervalued and needed to be calibrated. The results of
the current study show that the trunk and lower extremities should be assessed carefully
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when developing a predictive equation for body composition and appendicular skeletal
muscle because the underestimated segmental impedances and resistance must be reduced
the Z index (=Ht2/Z), which can overvalue the TBW (total body water = ρZ index), FFM
(=TBW/0.7372), and sarcopenia (or muscle mass). Additionally, the underestimated phase
angle of all the five segments should represent underestimation of cell body mass, low
integrity, and distorted homeostasis. The results of this study are consistent with those
of several previous studies, showing that the original estimated impedance parameters
must be carefully interpreted because they were either undervalued or overvalued. Several
reasons may account for such differences in the segmental impedance parameters between
the two techniques. First, differences in the positions of the current and voltage electrodes
may lead to different impedance parameters. According to the cylindrical model proposed
by Cornish et al. (1999), inaccurate placement of the electrodes on the ends of the arms
or legs and a 1 cm shift in the position of the electrodes may cause an error of 2% in the
measured impedance parameters [38]. Therefore, the position of the electrodes may affect
the measurement of the whole body or the segmental impedance parameters. In a recent
study, Shiffman (2013) demonstrated that different electrode characteristics significantly
affect the resistance [39]. A slight shift in the position of the electrodes can have significant
effects on the resistance of the whole body as the current flows through the disproportionate
ends of the extremities [40]. However, we used a well-defined region for the electrode
attachment location, and a single researcher reliably performed all assessments. Therefore,
the bias in the electrode position was considered insignificant in this study. Second, the
path of the current for the TS-BIA technique is clearly defined as being composed of just a
single circuit from the right hand to the right forearm, trunk, right thigh, right leg, and right
foot; however, the path of the current for the OS-BIA technique has not been clearly estab-
lished, even though the principle of equipotential is quite clear [1,7,26–29]. Studies have
demonstrated that there are six current circuits (arm-to-arm, right-arm–left-leg, right-arm–
right-leg, left-arm–left-leg, right-arm–right-leg, foot-to-foot) for the equipotential-based
OS-BIA technique [28,29]; however, these circuits are not clearly defined, especially for
the determination of reactance and the phase angle. Importantly, studies have reported
additional body current circuits, such as right-arm–right-leg, left-leg–right-leg circuits, and
impedance parameters in these current circuits can overlap and lead to distorted results
in impedance values [1,37,41]. This overlap of the current circuits could be eliminated by
positioning the arm to be adducted 90 degrees at the shoulder joint, so that the voltage
between the measured and unmeasured volage electrode is equipotential. Alternatively, the
overlap can be removed by calculating the degree of overlap using an algorithm validated
through several experiments. BIA parameters have been used in different clinical settings
and as disease prognostic and mortality predictors. Therefore, it is necessary to conduct
research to remove the overlapping errors caused by the double-track circuit in the future.
Accurate raw impedance parameters of the trunk without masking errors will be of great
help in the study of internal organs for physiological and pathophysiological metabolisms
in the future.

The limitation of this study is that the TS-BIA requires electrodes on the wrist, ankle,
hip, and shoulder. In addition, the subjects had to remove a part of their clothing during
the measurement, which required a longer measurement, which required a longer mea-
surement time. Meanwhile, this new method, OS-BIA, effectively estimates the impedance
parameters of the five body segments with a simple procedure and minimal effort. However,
the validity of the impedance parameters between the extremities and trunk, estimated us-
ing the OS-BIA technique, has not yet been confirmed. Therefore, the estimated impedance
parameters of OS-BIA were validated by the TS-BIA based on 136 healthy elderly people
aged ≥65 years. Given the sample size of the population under study, the specific age
group and health status of the subjects cannot represent the adults, youth, and patients,
which may affect the generalizability of our results.
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5. Conclusions

In conclusion, the OS-BIA impedance parameters of the lower extremities and trunk
were markedly undervalued, leading to overestimation of the Z index, FFM, and sarcopenia.
In addition, the phase angles of all five segments were undervalued, which distorted cell
membrane integrity and homeostasis, limiting the evaluation of the physiological state of
body organs. Therefore, more intensive research on OS-BIA is needed in the future.
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