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Abstract: This paper investigates the problem of false data injection attack (FDIA) detection in
microgrids. The grid under study is a DC microgrid with distributed boost converters, where the
false data are injected into the voltage data so as to investigate the effect of attacks. The proposed
algorithm uses a bank of sliding mode observers that estimates the states of the neighbor agents.
Each agent estimates the neighboring states and, according to the estimation and communication
data, the detection mechanism reveals the presence of FDIA. The proposed control scheme provides
resiliency to the system by replacing the conventional consensus rule with attack-resilient ones. In
order to evaluate the efficiency of the proposed method, a real-time simulation with eight agents
has been performed. Moreover, a verification experimental test with three boost converters has been
utilized to confirm the simulation results. It is shown that the proposed algorithm is able to detect
FDI attacks and it protects the consensus deviation against FDI attacks.

Keywords: DC microgrid; attack-resilient control; boost converter; sliding mode observer; false data
injection cyber attack

1. Introduction

In recent years, distributed control has received considerable attention due to its high
efficiency, simplicity, and reliability. DC microgrids can be represented as a distributed
system, and therefore, distributed control techniques are widely utilized to control these
systems. However, due to the nature of distributed networks and also advances in cyber
attack methods, these systems are vulnerable to malicious attacks. One of the positive
points for these systems is the versatility of a wide range of DC sources, which allows
these sources to be used simultaneously in a microgrid [1–4]. Small energy sources such
as solar photovoltaics, fuel cells, batteries, and other renewable energy sources (RESes) [3]
mainly have low output voltage and need to boost converters to increase the voltage levels
up to the network reference. The most popular control techniques used to regulate the
voltage are back stepping [5], sliding mode control (SMC) [6,7], model predictive control
(MPC) [8,9], and passivity-based control [10]. These methods have the advantages of
robustness, stability, optimality, and flexibility [11].

In a microgrid, for supply distributed and different types of loads, we need dis-
tributed networked RESes with two features; all must be grid-connected and operate
autonomously [12]. In these cases, designing a distributed control law to reach an agree-
ment between all nodes regarding certain constraints that depends on the state of all agents
is named a consensus algorithm [13]. Decentralized and distributed controls are two main
keys for consensus problems [14].
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Decentralized consensus is not vulnerable at a breakdown point, and is considered
as a scalable and efficient control for network management [12]. In general, the purpose
of distributed control in a DC microgrid is to reach a voltage consensus and proportional
current distribution [15]. In the microgrid, each RES is an agent which cooperates and
communicates with the neighbors to reach a consensus. Consensus is possible if the cyber
networks report the measurements correctly. Any violation of measurement or incorrect
reporting will result in an incorrect voltage or current distribution. In communication-based
distributed networks, one of the main threats to the network is cyber attacks [16–18].

Cyber attacks are very costly for distributed power systems depending on the type,
time, and place of occurrence. It causes major economical and technical problems that
may be irreparable [19,20]. The most important of these attacks can be categorized into
replay attacks, in which transmitted data are stored and repeated periodically, denial of
service attacks (DOSA) [21], false data injection attacks (FDIA), and stealth attacks, in which
the attackers have sufficient knowledge about the system model, controller, and network
architecture [22]. Stealth attacks can easily bypass the bad-data detection mechanisms [19].
These attacks occurs in microgrids by injecting false data to the communication packets over
the communication cyber links. Due to the variety of attack categories, denial of service
attacks lead to disconnection and are very easy to detect. Therefore, from the viewpoint of
attackers, a false data injection attack has a better chance of winning. Therefore, one of the
most important attacks is FDIA, which is studied in this article.

There are several data security methods, such as cryptography, user administration,
etc.; these are necessary but not enough to protect the systems against all cyber attacks.
This is because the attackers are smart and their methods and knowledge about the systems
are growing. Prevention is the first step in countering attacks, and the next step is resiliency.
In recent years, several strategies have been proposed to detect and reduce the disadvanta-
geous effects of attacks in microgrids. Some approaches are Kalman-filter-based methods to
estimate process variables [23], local observers for fault and field level attacks [24], resilient
distributed strategies for detecting and isolating time-varying attacks [25], event-triggered
strategies proposed to make the control tolerant and robust under DOSA [26], the game
theory defense method for a hierarchical networked microgrid structure [27], secure dis-
tributed state estimation for the network under FDIA [28], and distributed cyber attack
detection for linear large-scale systems by a bank of unknown input observers (UIO) [29].
In general, all these works can be summarized as two main categories, secure robust control,
and secure state estimation.

Considering these issues, the main objective of the current work is to design a dis-
tributed consensus algorithm to be resilient against false data injection attacks in a DC
microgrid. The proposed method is developed based on the distributed observer form
of attack detection schemes to achieve a resilient strategy. In this structure, each agent is
locally equipped with a detection mechanism and resilient consensus control that utilizes
the information of neighbor agents’ states. To regulate the output voltage of each agent,
the sliding mode controller is employed while the reference voltage of the controller is
generated by the consensus law. Moreover, it is assumed that the converter voltage and cur-
rent value can be measured. In order to achieve a resilient control structure, the consensus
control is designed so as to be resilient in the presence of the FDIAs. Therefore, when an
attack is detected, the corresponding agent will be neglected from the agreement process.
In order to detect an FDI attack, a bank of sliding mode observers is designed in each agent
in such a way that each observer is related to one of the neighbors.

Using the proposed attack detection algorithm, the compliance of received data from
the neighboring agents will be checked with the estimated data from the corresponding
observer and so the presence of the attack will be detected. The performance of this method
has been validated with simulation and experimental tests to conclude that the proposed
mechanism is able to detect the presence of attacks effectively and it is resilient. Compared
with the existing literature, the main contributions of this article can be summarized
as follows.
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1. Compared to previous studies such as [12,22], the proposed approach develops a
bank of robust observers for each agent that makes the detection and isolation of the
false data injection attacks feasible. Therefore, by eliminating the effect of the attack
in the consensus law, a resilient control is achieved.

2. The controller and observers are designed based on robust approaches, which is very
important in practical applications. It is shown that consensus is successfully achieved
even in the presence of cyber attacks, while the modeling uncertainty is considered.

3. A resilient consensus law is proposed to remove the false data injection attacks from
the agreement procedure.

4. The practical efficiency of the proposed method is evaluated in an experimental
testbed that is close to real-world applications. To this aim, a complex real-time
hardware test is performed by MATLAB, Simulink real-time (XPC-Target), LAN
communication, FPGA and Microblaze coding, control board design, and three DC-
DC boost converters.

The remaining structure of this article is as follows. In Section 2, the basic concepts
for graph theory, consensus protocol, and the microgrid model are presented. A model
for the communication link attacks is provided in Section 3. Sliding mode controller and
observers are designed in Section 4. The proposed resilience consensus law is developed
in Section 5. Simulations and experimental validation are presented in Sections 6 and 7.
Finally, the paper is concluded in Section 8.

2. Background
2.1. Graph Theory

In this section, some basic definitions of graph theory are reviewed. A graph is a set of
nodes that are connected to each other by several links. It is noted as G = {V, E, A} that
represents information flow between the nodes in the network; V = {v1, . . . , vn} is the set
of network nodes, where n is the number of nodes, E ⊆ V ×V is the set of network links,
and A = [aij] is the adjacency matrix that aii = 0, 0 < δ ≤ aij < 1, where δ is a lower bound
for gain of adjacency matrix links. If node i has access to the states of node j, it means there
is a link between them, which is denoted by eij = (vi, vj) ∈ E. The neighbors of node i are
denoted by Ni = {j ∈ V : (i, j) ∈ E, i 6= j}, which can communicate with node i.

L = [lij]n×n ∈ Rn×n is the Laplacian matrix, where lii = ∑n
j=1,i 6=j aij and (lij = −aij

for i 6= j). The eigenvalues of the Laplacian matrix can be ordered as λ1 < λ2 < . . . < λn,
where λ2 is called the algebraic connectivity of the graph. A graph is connected if only its
algebraic connectivity is positive: λ2 > 0. In a connected graph, agreement will be met, if
the condition lim

t→∞
‖xi(t)− xj(t)‖ = 0, ∀i, j = 1, . . . , n, is established [30,31].

2.2. Conventional Consensus Protocol

In a network of agents, reaching an agreement between nodes is called consensus. In
general, each node is modeled as

xi(t) = f (xi(t), ui(t)) (1)

A dynamic graph is shown by (G, x), where G is the graph topology and x is agents’
states that are described by (1). The consensus problem is described by finding a way
to guide agents’ states to an agreement. In a simple and ideal multi-agent system, ui(t)
depends on the states of neighbors that are compared and gained. This is expressed as:

ui(t) = fc(xi(t), xj1(t), . . . , xjm(t)) (2)

The neighbors of node vi are denoted by Ni = {vj ∈ V : (vi, vj) ∈ E}, in which m is
the number of neighbors. The consensus protocol is using a function for ui = fc(xi, xj∈Ni ),
which causes asymptotically an stable agreement. It is the main goal in the consensus
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problems. In general, a consensus rule with a variable topology graph, communication
time delay, and asynchronous update for agreement is

ui(ti) = ∑
vj∈Ni

aij(ti)[xj(tj − τij(ti))− xi(ti)] (3)

where aij(ti) is an entry of the adjacency matrix A that may change by time and is related
to the edge of Eij, τij < τ is the bounded delay related to the edge Eij at time ti, tj ≤ ti is the
update time for Agent j , which shows that the update time for any agent may be different.
By (3), each agent state goes to the neighbors’ states and the graph reaches consensus
limt→∞ ∑j∈Ni

‖xi(t)− xj(t)‖ = 0.

2.3. DC-Microgrid Dynamic

The aim of this section is to introduce a typical model for a DC-DC boost converter in
a state space approach. A typical DC-DC boost converter circuit is depicted in Figure 1.

sw

Lr

Vin

d-PWM

Co
R

D

iL

Vc

E

+

-

Figure 1. Generalized power model for DC-DC boost converters.

In this figure, Vin is the battery voltage, r is the sum of inductor resistance and battery
resistor, L is an inductor, sw is an ideal switch, D is an ideal diode, Co is the capacitor, and
R is the load. The iL is the inductance current that is considered as a state x1 and Vc is the
voltage of the capacitor or output voltage considered as a state x2. Based on Kirchhoff’s
laws for the ON and OFF states of the switch, two models are given. These two models
alternate with switching frequency periods.

Due to the fact that the switching frequency is very high and the rising time and
falling time of the switch is very small, the average model for the converter can be used.
According to the duty cycle of switch operation (switch is ON for d and OFF for (1− d) in
any period), the non-linear average model of the DC-DC boost converter is presented in (4)
and the linear time-variant state space is presented in (5).

ẋ1 = − r
L

x1 −
1− d

L
x2 +

1
L

Vin

ẋ2 =
−1
RCo

x2 +
1− d

Co
x1

y = x2

(4)

Ai =

 −r
L

−(1− d)
L

(1− d)
Co

−1
RCo

, Bi =

[ 1
L
0

]
Ci =

[
0 1

] (5)

where x ∈ Rn is the state vector, y ∈ Rp is the output vector, u ∈ Rq represents the known
inputs, and the r term is intended to take into account the voltage drop that is caused by
the battery current. It is assumed that Ai, Bi, and Ci are known matrices with appropriate
dimensions. For power balance in the steady state, it is:{

sw = 0
Qin = Qout

→ iL(1− d)T = IoutT

→ iL =
Iout

(1− d)
→ x1 =

x2

R(1− d)

(6)
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3. Cyber-Physical Attack Model

In the microgrids, two features are very important; first, a global voltage reference
exists, which must be followed by all the network nodes, and the second is that all the
network nodes must follow the neighboring nodes. With these two requirements, the goal
of the network, which is a uniform and homogeneous voltage distribution, is achieved.
Because the microgrid consensus is based on interaction and communication within the
network, the microgrid consensus is always under threat. Despite all the security and
encryption in communications, there are always some attacks aimed at systems by destabi-
lizing goals; thus, the agents must be sensitive to these attacks. In this case, it is assumed
that attacks are performed by injecting false data into the output voltage information that
transmits between agent neighbors in the network.

For cyber-link attacks in the ith controller, the attacked value can be modeled as

yat
ij (t) = yi(t) + kat(t− Tij

at) f at
ij (t) (7)

where kat indicates the attack vector that expresses the existence of an attack, f at
ij (t) denotes

the attack function in communication link ij, Tij
at > 0 is the initial time of attack, yi is the

real voltage output of Agent i, and yat
ij represents the attacked value that Agent j receives

through the communication link about Agent i. For example, according to Figure 2, the
communication data from Agent i to Agent j are attacked and the voltage data delivered to
Agent j are false.

Agent-i Agent-j

Rij

Rki

Battery Based 
DC-DC Boost 

Converter

Battery Based 
DC-DC Boost 

Converter

Attack

Rjl

Other Agents

Vc Vc

Transmission 
Power Line

Figure 2. Physical cyber layer and communication link false data injection attack for a DC microgrid.

This malicious data lead to an incorrect consensus for the microgrid. For different
types of attacks, the f at

ij (t) can take different functions [32]: for FDIA, f at
ij (t) can take any

function of time; for a reply attack, it can be f at
ij (t) = −yi(t) + yi(t− nT), where T is a

period of time; in a denial of service attack, it is f at
ij (t) = −yi(t), which blocks the link by

preventing some or all data transmission over the communication link, and for a stealth
attack, all data vectors may be replaced with malicious data in such a way that observers
cannot find any deviation compared to the system model.

4. Observer-Based Attack Detection

To reach a correct consensus in a DC microgrid network, the communication data
between the neighboring agents must be correct. If only one piece of the communication
data within the network is attacked, the network will reach a false consensus around
this value. Therefore, each agent must prevent the influence of defective data. Moreover,
because of model parameters’ uncertainty due to factory tolerance, derating, temperature
sensitivity, and others, the model is not accurate and control needs to implement a robust
strategy. In this paper, a sliding mode controller is proposed to control the converter, and a
sliding mode observer (SMO) is proposed to detect the presence of the attack in the received
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data. To reach consensus in the proposed method, in addition to the conditions mentioned
in the graph theory, each agent must be connected to the n + 1 neighbors, where n is the
maximum number of attacks in time. This is because, if n attack occurs at the same time, at
least a healthy link is needed to achieve consensus.

4.1. Sliding Mode Control

The challenge for the boost converter is to design a control law for the duty cycle
u(t) ∈ [0, 1] to regulate the output voltage lim

t→∞
x2(t) = xd

2 (xd
2 is the desired output voltage),

while the battery voltage E is uncertain and bounded with ∆E < ζ. For this goal, a sliding
mode control is designed. The boost converters represent non-linear dynamics with non-
minimum phase characteristics [6]. Therefore, the voltage regulation using the switching
function S = x2 − xd

2 is not acceptable, though it causes the output voltage to be equal to
the desired value. This voltage sliding surface results in an unstable zero dynamic in the
inductor current in the sliding motion [33]. According to the relation between position and
velocity control, the dynamic of the current is much faster than the output voltage.

Theorem 1. Consider the system defined in Equation (4). For this system, there exists a distributed
sliding mode controller that keeps the microgrid voltages in an asymptotically stable agreement.

Proof. Design the distributed sliding mode controller for each agent

u = ueq + un = ueq + ksgn(S)

sgn(S) =
{

1
−1

S > 0
S < 0

(8)

where S is the sliding surface that is shown in Equation (9), sgn is the sign function, k is the
gain for sign function, and ueq is the equal control law that is derived in Equation (11).

To improve the stability of the mentioned sliding mode control, S is the state variable
trajectory and is described as

S = λ1 x̃2 + λ2

∫
x̃2 + λ3x1 (9)

where the voltage error has been defined as x̃2 = x2 − xd
2 and λ1, λ2, λ3 are sliding coeffi-

cients. The time derivative of the switching function is

Ṡ = λ1 ˙̃x2 + λ2 x̃2 + λ3 ẋ1

= λ1(
−1
RC

x2 +
1− u

C
x1 − ẋd

2) + λ2 x̃2 + λ3(−
1− u

L
x2 −

r
L

x1 +
1
L

E)

= (1− u)(
λ1

C
x1 −

λ3

L
x2) + (− λ1

RC
x2 + λ2 x̃2 −

λ3r
L

x1 +
λ3

L
E)

(10)

where xd
2 is assumed to be constant, which is calculated by the consensus algorithm in

Equation (3). In order to attend to the dynamics of the sliding surface, the time derivative
of the sliding surface is investigated. The purpose of this rule is to ensure that, for any
initial values, the states will reach the sliding surface. This equation expresses that if we
are not on the sliding surface, the path S is an absorbing path to the sliding surface. It is
found from Ṡ = 0 that

(1− ueq) = −
(− λ1

RC
x2 + λ2 x̃2 −

λ3r
L

x1 +
λ3

L
E)

(
λ1

C
x1 −

λ3

L
x2)

ueq =
(

λ1

C
x1 −

λ3

L
x2) + (− λ1

RC
x2 + λ2 x̃2 −

λ3r
L

x1 +
λ3

L
E)

(
λ1

C
x1 −

λ3

L
x2)

(11)
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The ueq value is calculated for the nominal parameters of the model, and according to
the uncertainties of the model, another component must be added to the input to be robust.
According to Equation (8), for finding the range of k values, the stability condition of the
sliding mode controller is SṠ ≤ −η|S|. For achieving finite-time convergence,

SṠ ≤ −η|S|, η > 0→ tr =
|S(0)|

η

S
[
(− λ1

RC
x2 + λ2 x̃2 −

λ3r
L

x1 +
λ3

L
E +

λ3

L
∆E) + (1− ueq − ksgn(S))(

λ1

C
x1 −

λ3

L
x2)

]
=

S
[

λ3

L
∆E + (−ksgn(S)(

λ1

C
x1 −

λ3

L
x2)

]
≤

|S|
[

λ3

L
ζ +−k(

λ1

C
x1 −

λ3

L
x2)

]
≤ −η|S|

λ3

L
ζ − k(

λ1

C
x1 −

λ3

L
x2) ≤ −η

k ≥ η

|λ1

C
x1 −

λ3

L
x2|

+
λ3

L
ζ

(12)

4.2. Sliding Mode Observer Attack Detector

Observers are dynamic systems that are used to estimate the system states based
on the measurements of system inputs and outputs [34]. The estimation occurs when
we do not have access to some state variables or we face a fault detection problem. In
order to design an observer for the non-linear systems or with parametric uncertainty
and perturbation, the sliding mode observers are proposed. It is appropriate for robust
estimation, accurate tracking, limited time convergence, and fault detection. In this paper,
we convert a non-linear DC-DC boost converter problem to a time-varying linear problem
by the assumption that we know the duty cycle values. According to Figure 3, if we have
access to the duty cycle d, the non-linear model for the boost converter can be replaced with
a linear time-varying model. By this definition, nothing changes for the system dynamics,
and we can use a linear sliding mode observer for this problem.

X

y, Vin

Nonlinear System

Linear time Varying

X

y, d

Figure 3. In order to estimate the state vector X, two explanations for boost converter modeling from
the viewpoint of observer design exist. The first is a non-linear model where y and d are observer
inputs, and the second is a linear time-varying model where y and Vin are observer inputs.

In the systems where software controls the process (usually, digital control systems
execute some software), the safety of software cannot be measured and proven. In control
and automation processes, due to the use of software, one of the approaches that is recom-
mended to increase the safety of the systems is the use of different methods and algorithms
for one process to increase the redundancy and security of the system. For this reason, with
respect to matters of security and safety, it is recommended to use observers that have a
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completely different structure from the controllers in order to diagnose attacks and faults;
if possible, the implementation methods for controller and observer must be different. The
difference in the structure of controller and observer results in the fact that the smallest
incompatibilities can be easily detected and catastrophic failures can be prevented.

For the observer, if we consider the system input as d, the system is modeled non-
linearly, and if we consider the system input as vin = E, the system becomes a linear system
whose dynamic varies with time. This assumption is correct because the values of these
two parameters are always available. Considering these cases, the system state equations
can be written as (5).

In order to design an observer, the pairs (A,C) must be observable. Therefore, we form
the visibility matrix as

Q =

[
C
CA

]
=

 0 1
1− d

Co

−1
RCo

 (13)

If the matrix Q is full rank, the system is fully observable. A matrix by dimension of
2× 2 has full rank if its determinant is non zero. Thus,

det(Q) = −1− d
Co

(14)

This value for d 6= 1 is always the opposite of zero. Given that 0 < d < 1 (in the
simulation and experimental tests in this paper, d is about 0.3), this assumption holds.
Therefore, the system is completely observable. In the following, we will estimate the
system states by using the proposed observer structure.

S = ŷij − yij
v = sgn(S)

G =

[
β
γ

]
,
{

β ∈ R(np)×p

γ ∈ Rp×p

˙̂xij = Aij x̂ij + Bijuij + Gv,
ŷij = Cij x̂ij

(15)

where S is the sliding surface, x̂ij is an estimation for xij, Aij, Bij, Cij are the observer matrix,
uij is the input voltage for the boost converters (Vin). It describes the input voltage of the
ith converter, which is used in the observer of Agent i, where this observer is located in
Agent j, and Gv is a term for robustness. In this problem and for a new matrix definition,
we have

y = Cx, C = [0 1]⇒
[

x1
x2

]
=

[
x1
y

]
(16)

and so

ẋi = Aixi + Biui ⇒
{

ẋ1 = A11x1 + A12y + B1u
ẏ = A21x1 + A22y + B2u

(17)

According to (15), for the observer, we have

Observerij :

{
˙̂x1ij = A11ij x̂1 + A12ij ŷij + B1ij uij + βv
˙̂yij = A21ij x̂1 + A22ij ŷij + B2ij uij + γv

(18)
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By calculation of estimation error as follows, we have

e(t) =
[

e1(t)
ey(t)

]
ė =

[
ė1
ėy

]
=

[
˙̂x1ij − ẋ1
˙̂yij − ẏij

]
, ẏij = ẏi + kat ḟ at

ij

=

[
A11ij x̂1ij + A12ij ŷij + B1ij uij + βv
A21ij x̂1ij + A22ij ŷij + B2ij uij + γv

]
−[

(A11ij x1 + A12ij yij + B1ij uij)

(A21ij x1 + A22ij yij + B2ij uij)− kat ḟ at
ij

]
(19)

Thus, we have

ė1 = A11ij e1 + A12ij ey + βv
ėy = A21ij e1 + A22ij ey + γv + kat ḟ at

ij
(20)

There are two constraints for sliding mode control: first ėy = 0 to stabilize the error
dynamic, and when we are on the sliding surface, ey = 0 must hold, so:

ėy = A21ij e1 + A22ij ey + γv + kat ḟ at
ij = 0

v =
−1
γ

A21ij e1 −
kat

γ
ḟ at
ij

(21)

and

ė1 = A11ij e1 +
−β

γ
A21ij e1 −

βkat

γ
ḟ at
ij

ė1 = (A11ij −
β

γ
A21ij)e1 −

βkat

γ
ḟ at
ij

ė1 = Fije1 + Ḟat
ij

(22)

In order for e1 to be stable, Fij = A11ij −
β

γ
A21ij =

−r
L
− β

γ

(1− di)

Co
must be stable, and

then the error tends to zero. Therefore, by selection of β and γ, the error dynamics will be

stable. The effect of an attack is Fat
ij = − βkat

γ
f at
ij , where the derivation of it appears in the

derivation error of state estimation.

5. Resilience Consensus Law

In order to achieve consensus when the system is faced with cyber attacks, the con-
sensus law must be revised. The consensus law that is proposed in Equation (3) will be
changed to the following equation. The outcomes of the attack observers are now incor-
porated into the consensus law as a result of this modification. Therefore, the attacked
channels will be removed from the consensus protocol.

ãij = aijTr(Fat
ij ), Tr(x) =

{
0 |x| > threshold
1 else

xd
2i = ui(ti) = ∑vj∈Ni

ãij(ti)[xj(tj − τij(ti))− xi(ti)]
(23)

where xd
2i is the desired output voltage for Agent i and Tr(x) is a threshold function.

6. Simulation and Results

In this section, the efficiency of the proposed method has been validated via Simulink
real-time (SLRT) simulations. The case study is a network of eight DC-DC boost converters
with the non-linear dynamics that are linked as shown in Figure 4A. In this simulation, an
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attempt is made to choose a graph that considers different modes of connection. In general,
the consensus is achieved faster if there are few links between agents; however, it leads to
lower reliability as well as more vulnerability to cyber attacks. The coordinating algorithm
to achieve consensus becomes more complicated when a large number of communication
links is devoted to the agreement process—that is, when the connectivity order of the
graph is high, even though it results in greater reliability. Moreover, when the number
of participating agents increases, a more complex coordinating algorithm is required.
Different components, i.e., sensors and communication links, may be targeted by attackers.
The speed of the attack propagation and the scale of the impact will differ; for example,
aiming at agents with more connections will result in a faster and greater deviating effect
on neighbors. To address this issue, in the proposed algorithm, the communication link
that has been attacked is detected, and neglected from the agreement process. On the
other hand, aiming at the input communication link of the agent with more neighbors
has less effect on the overall graph since it has been removed from the agreement and
there are still more inputs to achieve the goal. From a security viewpoint, a large number
of connections is desirable because the attack impact is less and the attack is more likely
detected. Therefore, for the proposed method, which is based on neglecting malicious
input links, a large number of connections is more appropriate. To show the ability of the
proposed method, a proper scenario is considered in which agents communicate with a
maximum of four neighbor agents.

Ag2 Ag3

Attack

Ag1

Ag2

A B

Ag3Ag1

Ag8

Ag7
Ag6

Ag4

Ag5

Attack

Figure 4. Graph topology: (A) eight boost agents for simulation scenario, and (B) three boost
converters which communicate over the network for experimental test.

The goal of this paper is to achieve consensus in the output voltage of decentralized
converters in the presence of FDIA. In the simulations, the parameters of converters are
E = 200 V, r = 1 Ω, C = 2.2 mF, L = 2.2 mH, the load resistance R = 60 Ω and the
voltage reference is Vre f = 315 V. The parameters of the sliding mode controller are λ1 = 1,
λ2 = 2000, λ3 = 0.5 and the parameters of the observer are γ = 1 and the error pole is
−600. To draw a comparison between conventional controllers and the proposed algorithm,
two simulation scenarios are performed as follows.

First scenario: All the agents and communication links are healthy. The communica-
tion links are with [1, 2, 3, 1, 1, 2, 1, 2] sample delay and they are synchronous. In the time
stamp of 0.5 s, an FDIA occurs over the communication link from Agent 2 to Agent 3. As
shown in Figure 5, the output voltage of Agent 2 which is delivered to Agent 3 is different
from the real output voltage of Agent 2 due to a cyber attack that injects a false datum into
the communication link L23. Thus, the observer which is located in Agent 3, and estimates
the states of Agent 2, follows the attacked voltage, which is different from the real output
voltage of Agent 2. Figure 5 is shown for a better understanding of what is happening.
This figure explains the attack effect on the communication data, which shows that when
the output voltage of Agent 2 is at the steady state (blue color), an attack occurs at 0.5 s
and the reported voltage over the communication link deviates from the output voltage of
Agent 2 (red color). Therefore, the observer of Agent 2 that is located in Agent 3 follows
the attacked value.
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As shown in Figure 6, by the conventional consensus control law, agreement deviates
from the normal condition and the FDIA cyber attack is successful. According to this figure,
the output voltages of all agents will deviate because all of them are connected to each
other by the communication links. In this scenario, when Agent 3 receives the wrong data,
the controller regulates its output voltage to a false value, and this false value is sent to the
other agents over the communication links.
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Figure 5. Voltage values for Agent 2, and the concept for what happens when an attack occurs; Vo2 is
the real output voltage for Agent 2, Vatt2 is the information about voltage of Agent 2 that is delivered
over the communication link to Agent 3, which is manipulated by the false data injection attack, Vhat2
is the voltage observer for Agent 2 that is located in Agent 3.
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Figure 6. Output voltages of boost converters for conventional consensus algorithm in the presence
of false data injection attack at time 0.5 s. The values of V1 to V8 are output voltages for Agent 1 to 8,
respectively.

Second scenario: This scenario is the same as the first one, except that the consensus
algorithm that is used to detect the attack is based on the developed algorithm in this paper.
As shown in Figure 7, the voltages will reach consensus again immediately after the attack
has occurred. Therefore, according to Figure 7, it is clear that the consensus will not deviate
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from FDIA cyber attacks and the consensus process will be performed properly in the
presence of this type of attack. As shown in this figure, the attack at Agent 3 affects the
other agents. The proposed algorithm detects the source of the attack using residuals from
the observer banks, and removes the attacked communication links from the consensus
process. Therefore, it is shown that the proposed algorithm has resiliency or attack-tolerant
control abilities.

Time (seconds)

O
ut

p
ut

 V
ol

ta
ge

 (
V

ol
ts

)

0 0.2 0.4 0.6 0.8 1

290

300

310

320

330

340

350

360

370

380 V1
V2
V3
V4
V5
V6
V7
V8

Attack 
time

Figure 7. Proposed consensus algorithm results in the presence of false data injection attack at time
0.5 s. The values of V1 to V8 are output voltages for Agent 1 to 8, respectively.

7. Experimental Results

In order to validate the results, an experimental prototype with three agents is prepared
according to the graph shown in Figure 4B and the hardware shown in Figure 8. Due
to limited laboratory equipment, the number of agents is reduced to three, and the main
reason is that the control board does not support more than three channels. However, a
different control board with more channels can be utilized for practical implementation.
Moreover, due to the fact that the laboratory power supplies have limited output voltages
which are less than 30 volts, the operating voltage is reduced. However, it is worth noting
that the nature of the experimental test is not different from the simulations.

This test-bench consists of: a development computer for FPGA and Microblaze pro-
gramming by Xilinx-ISE and Xilinx-SDK softwares with a JTAG Xilinx programmer; a
host computer to generate MATLAB codes, boot the target computer over the network,
set-up and logging data from the target computer; a target computer that is booted by
the Simulink real-time kernel and runs the tolerant consensus algorithm in real-time and
communicates (Ethernet-UDP) with FPGA; a Spartan 6-based FPGA control board that is a
controller and logger for the boost converters in an independent and very fast structure;
three boost converters that are placed at the graph nodes and supply the hmic loads; three
boost power supplies to supply the converters; three ohmic loads for three agents; three
transmission ohmic loads between the agents to simulate the transmission power losses
and a 100 Mbps Ethernet switch for connection between agents, host computer, and the
target computer. In general, this testbed consists of three boost converters that are tied
in a physical ring-bus network and a communication network. In order to implement
three independent control loops for three agents, an FPGA Spartan 6 based board is used.
This processor is connected to the target computer via a LAN-UDP connection link. For
ease of programming and debugging, some local control loops are implemented in the
Microblaze Xilinx-SDK environment. Boost converters are a 150 watt commercial type
with a maximum operating voltage of 36 volts. Each agent consists of an ohmic load of
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23 Ω, a boost converter with an efficiency of about 90%, a power supply with a voltage
output about 17 volts, and 5 Ω transmission lines. The consensus control algorithm is
implemented in the MATLAB software using Simulink real-time. Simulink and FPGA data
are exchanging via the LAN connection link with 1 and 10 kHz times updates.

DC-Source1,2,3   FPGA-Controller   Target   Boost1,2,3   Load1,2,3   Host   Dev.Soft.

Figure 8. Experimental prototype for the validation of the proposed algorithm. This test-bench is
composed of: development computer; host computer; target computer; Spartan 6 FPGA controller;
three boost converters; three power supplies; three transmission loads, and a LAN switch.

According to Figure 9, the false data injection attack is aimed at the communication link
L23 between t = 1 and t = 2 s. It is shown that for the conventional consensus algorithm,
the output voltages of the converters deviate and consequently the consensus mechanism
also is violated. Therefore, the conventional consensus algorithms are vulnerable in the
presence of attacks. The attack occurs by injection of a fast ramp voltage from 24 to 28 volts
into the L23 communication channel. Due to the fact that the converters are connected to
each other through the 5 Ω power transmission lines, in practical applications, and in this
experimental test, the output voltage measurement for each agent is affected by the other
agents, and the voltage distribution is not ideally distorted. According to this figure, the
maximum deviation is related to Agent 3, which is directly attacked. It is observed that
after the end of the attack time, the consensus returned to its normal behavior.

Figure 10 also shows that with the proposed algorithm, the effect of the attack is
eliminated and the consensus for the graph will occur correctly. This figure shows that
the proposed tolerant consensus is resilient in the presence of the FDI attacks. It is shown
that using the proposed algorithm after the attack has occurred, the attack is successfully
detected and isolated, and then the attacked channel is removed from the consensus process
to achieve the agreement. This amount of deviation at the start of the attack is shown in
Figure 10, which is actually due to the fact that the detection process and the control loops
are running in parallel. The cost that this method imposes on the system is the requirement
of a larger computational burden compared to the conventional method, and also this
method needs to know the model of each agent. It is worth noting that these costs are not
comparable with the damages that may result due to cyber attacks.
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Figure 9. Experimental results for conventional consensus algorithm. FDI attack occurred at time 1 s
and was removed at time 2 s.
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Figure 10. Experimental result for proposed consensus algorithm. FDI attack occurred at time 1 s
and was removed at time 2 s.

8. Conclusions

In this study, an observer-based resilient control method was proposed to reach the
consensus in a DC microgrid. In this microgrid, each agent is a battery-based boost
converter and, at an unknown time, a false data injection attack appears. In order to
control the voltage for each agent, the sliding mode control method has been used. To
estimate the states of the neighboring agents, a bank of sliding mode observers has been
proposed, which is organized to detect the attacks. If the states of the observers are not
compatible with the communication data, the adjacency matrix will be modified with the
correction values applied by the observers. The efficiency of the proposed method has
been investigated by using simulations and experimental results. As a suggestion and
continuation of the work in this paper, it is recommended that this method be extended
for resiliency against stealth attacks. According to the results, it has been shown that by
using the proposed method, the DC microgrid network will be resilient against false data
injection attacks and the consensus will not deviate.
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11. Xu, Q.; Vafamand, N.; Chen, L.; Dragičević, T.; Xie, L.; Blaabjerg, F. Review on advanced control technologies for bidirectional
DC/DC converters in DC microgrids. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 1205–1221. [CrossRef]
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