
����������
�������

Citation: Rakrouki, M.A.; Alharbe, N.

QoS-Aware Algorithm Based on Task

Flow Scheduling in Cloud

Computing Environment. Sensors

2022, 22, 2632. https://doi.org/

10.3390/s22072632

Academic Editors: Miguel A.

Sánchez Vidales, Óscar García and

Ricardo S. Alonso

Received: 19 February 2022

Accepted: 26 March 2022

Published: 29 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

QoS-Aware Algorithm Based on Task Flow Scheduling in
Cloud Computing Environment
Mohamed Ali Rakrouki 1,2,3,* and Nawaf Alharbe 1

1 Applied College, Taibah University, Medina 42353, Saudi Arabia; nrharbe@taibahu.edu.sa
2 Ecole Supérieure des Sciences Economiques et Commerciales de Tunis, University of Tunis,

Montfleury 1089, Tunisia
3 Business Analytics and DEcision Making Lab (BADEM), Tunis Business School, University of Tunis,

Bir El Kassaa 2059, Tunisia
* Correspondence: mrakrouki@taibahu.edu.sa

Abstract: This paper deals with the challenging problem of scheduling users’ tasks, while taking
into consideration users’ quality of service (QoS) requirements, with the objective of reducing the
energy consumption of physical machines. This paper presents a model to analyze the current state
of the running tasks according to the results of the QoS prediction assigned by an ARIMA prediction
model optimized with Kalman filter. Then, we calculate a scheduling policy with a combined particle
swarm optimization (PSO) and gravitational search algorithm (GSA) algorithms according to the
QoS status analysis. Experimental results show that the proposed HPSO algorithm reduces resources
consumption 16.51% more than the original hybrid algorithm, and the violation of service-level
agreement (SLA) is 0.053% less when the optimized prediction model is used.

Keywords: cloud computing; virtual machine placement; scheduling; ARIMA; QoS

1. Introduction

When users purchase cloud services, they will sign an service-level agreement (SLA)
with the service provider. If the service provider violates the SLA, it will cause adverse
effects and pay liquidated damages. Therefore, the service provider needs to use various
means to ensure the QoS of users when designing cloud systems, to be able to complete on
time as agreed. The QoS reflects the satisfaction degree of the various indicators about the
service formulated by the user when negotiating with the service provider [1]. Since there
are many users’ tasks in the system, it is necessary to select an appropriate virtual machine
when assigning tasks, so the system will face the problem of task flow scheduling.

Task flow scheduling refers to the mapping of users’ tasks to cloud computing re-
sources. The cloud provider must take into account the different quality of service (QoS)
requirements laid down in the SLA signed with users. Moreover, processing tasks in a cloud
computing context raises QoS and energy-related problems, necessitating the use of effec-
tive scheduling algorithms [2], and SLA compliance [3] can be achieved at a fair economic
cost for end users, while keeping resource energy consumption to a minimum. From the
user’s point of view, different users need different service quality. For example, some users
are relatively concerned about the response time of the service, and some users care about
the service cost. From the provider’s point of view, the cloud provider must first complete
the tasks submitted by the users according to their QoS requirements. Completing these
tasks requires a series of cloud computing resources, such as CPU, memory, disk, network,
and other resources. However, cloud computing data centers are business-oriented, so
cloud computing providers need to reduce their costs by reducing the energy consumption
of the physical machines.

In this context, this paper considers the problem of task flow scheduling with the
objective of minimizing energy consumption of the cloud while taking into account users’

Sensors 2022, 22, 2632. https://doi.org/10.3390/s22072632 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22072632
https://doi.org/10.3390/s22072632
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6627-9161
https://orcid.org/0000-0002-1900-420X
https://doi.org/10.3390/s22072632
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22072632?type=check_update&version=2


Sensors 2022, 22, 2632 2 of 20

QoS. This challenging problem is a multi-objective optimization NP-hard problem [4] and
the research of the solution mainly focuses on heuristic algorithms based on global search
in the case of multi-objective constraints [5–9]. First, in order to satisfy user QoS, a scheme
is proposed for user task flow scheduling based on QoS prediction results. These results are
calculated using an ARIMA (autoregressive integrated moving average) forecasting model
based on user QoS [10] in order to predict the future trend of user QoS according to the
monitoring data of the system. When the prediction model evaluates that the trend exceeds
the safe area, it indicates that the user QoS is in danger. User tasks are scheduled to ensure
user QoS. If a suitable scheduling scheme cannot be found, it is necessary to apply for more
physical resources to the user. This prediction model is integrated in a hybrid metaheuristic,
originally proposed by [11]. This algorithm is based on the particle swarm optimization
(PSO) algorithm, and the gravitational effect between particles is added when the particles
move in each iteration, so that the search space is larger and the search accuracy is higher.
In the introduction of the hybrid algorithm in the original text, there is no plan to reserve
the virtual machine in the physical machine before each scheduling. Too many reserved
virtual machines result in waste of resources, while too few reserved virtual machines cause
great system overhead and energy waste due to the continuous deletion and creation of
virtual machines. Therefore, based on the original hybrid algorithm, this paper proposes a
virtual machine reservation scheme. The number of virtual machines reserved refers to
the idea of the network congestion control algorithm, and the specific virtual machines to
be reserved are judged according to the resource utilization. Finally, CloudSim is used to
conduct simulation experiments to verify the effectiveness of the improved algorithm.

2. Literature Review

According to the needs of different users or providers, the scheduling of cloud
computing resources can be divided into the following three categories according to
different purposes: reducing energy consumption, improving resource utilization, and
economy-oriented.

The energy consumption problem of cloud computing systems is a main research
direction of the cloud computing resource scheduling problem, and it is also an important
optimization goal responding to the call of green cloud computing [12], reducing the waste
of resources, and improving the benefits of cloud computing business models. Ref. [13]
studied the problem of energy optimization in virtual cluster environment, and proposed
a method to reduce CPU frequency to reduce energy consumption. The main idea is as
follows: by monitoring the status of the virtual machine, when its load is less than a certain
threshold (cannot affect the user QoS), the processor frequency is actively reduced to reduce
energy consumption. However, Ref. [13] does not strictly consider the impact of reducing
the processor frequency on task completion, so it may affect the user’s QoS. Ref. [14]
considered the problem of minimizing tasks’ completion time and energy consumption.
The experimental results show that this method has obvious improvement in energy
consumption and completion time compared with the method of [15]. Ref. [16] considered
the problem of energy management in green cloud and formulated it as a combinatorial
optimization problem with the objective of minimizing energy consumption and optimizing
load balancing. In order to solve this problem, Ref. [16] proposed an effective clonal
selection resource scheduling algorithm. An improved scheduling algorithm and an
optimal energy consumption minimization method were proposed by [17] for dynamic
resource allocation problem. The proposed solution outperformed the existing methods
by 8%.

In order to improve resource utilization, the current main method is to schedule virtual
machines and tasks. Ref. [18] studied the deployment and migration of virtual machines,
and proposed an optimized resource management method for total dynamic scheduling
time. Ref. [19,20] proposed a dynamic scheduling algorithm for virtual resources, estab-
lished a constraint satisfaction model for task scheduling and virtual machine scheduling,
and then solved the scheduling scheme. Ref. [21] proposed two-level scheduling for sys-



Sensors 2022, 22, 2632 3 of 20

tem resource utilization: task scheduling and virtual machine scheduling, respectively.
Finally, the experiments proved that the effect of optimizing the load can be achieved. In
order to optimize the load balancing of virtual machines, a threshold-based task schedul-
ing algorithm was proposed in [22]. Recently, Ref. [23] proposed a novel multi-objective
metaheuristic algorithm for minimizing the completion time of tasks and maximizing
resource utilization. For predicting CPU utilization, Ref. [24] proposed two predictive
methods based on Holt–Winters exponential smoothing (HW) and long short-term memory
(LSTM). The experimental results showed that these approaches can reduce CPU slack
by over 40% for a variety of CPU workloads. Moreover, as compared to the HW method,
the deep-learning-based approach LSTM has been demonstrated to produce more stable
predictions. Similarly, Ref. [25] proposed a deep-learning-based method combining con-
ditional restricted Boltzmann machines (CRBMs) and clustering algorithms in order to
minimize resource utilization. The experiments showed that the proposed method can
improve CPU and memory utilization by 30%, by exploiting resource utilization patterns.
Ref. [26] designed a hybrid method by combining cuckoo search (CS) and particle swarm
algorithm for minimizing the energy consumption and the makespan of task scheduling.
The proposed algorithm was tested on real supercomputing workload traces and the exper-
imental results proved that this algorithm provided more efficient schedules than other
well-known methods.

An economic model-oriented scheduling algorithm was proposed by [27,28]. A market-
oriented cloud computing architecture, resource allocation, and scheduling algorithm were
established. The algorithm model realizes negotiation between users and providers through
an SLA resource allocator. Then, Ref. [29] designed a genetic scheduling algorithm to deal
with the market supply and demand balance, and the scheduling algorithm is mainly aimed
at the underlying resource scheduling. However, this algorithm is only for the scheduling
of CPU resources, and does not consider other resource issues of the virtual machine.
Ref. [30] established a cloud alliance model composed of multiple providers according to
the economic model. When a provider has insufficient resources, it can rent resources from
other providers through resource outsourcing, which effectively avoids resource waste
and shortage and cannot meet the problem of user service quality. An artificial bee colony
algorithm was proposed by [31] in order to ensure QoS during task scheduling and assure
scheduling security. The experimental results showed that the proposed algorithm achieved
the objective of securing job scheduling while assuring QoS of users. Ref. [32] proposed a
new computation-as-a-service (CaaS) cloud platform in order to reduce billing costs. The
proposed platform integrated three main methods: specific tasks are reactively assigned
to available computing units based on availability and defined time-to-completion limits,
Kalman filter algorithm is used to determine the best resource estimation, and the number
of units processing workloads is controlled using AIMD (additive increase multiplicative
decrease) algorithms. The experiments showed that the proposed platform was able to
reduce billing costs by 38% to 500% when compared to the present state of the art in CaaS
platforms on Amazon EC2.

Recently, Ref. [33] proposed a whale optimization algorithm for scheduling resources
in order to maximize the work completion for meeting users’ QoS. Ref. [34] proposed a
method based on a nature-inspired recent algorithm (salp swarm algorithm) for scheduling
tasks, in order to satisfy QoS requirements for both users and cloud provider. The proposed
algorithm was compared to well-known meta-heuristics and showed better results in terms
of makespan, resource utilization, throughput, and average waiting time. Ref. [35] designed
a method based on a traditional particle swarm algorithm and QoS-aware task scheduling
in order to ensure QoS of users: deadline, scheduling, budget, and reliability. This multi-
objective QoS algorithm was tested on a medical cloud platform and the experimental
results proved its effectiveness when compared to other known approaches.

A systematic literature review of scheduling approaches in cloud computing environ-
ment was presented by [36]. The authors highlight the benefits and drawbacks of existing
task scheduling approaches under different cloud environments and for various scheduling



Sensors 2022, 22, 2632 4 of 20

objectives. An in-depth investigation and analysis of cloud computing resource scheduling
algorithms is provided by [37–39].

3. Methodology

This paper is mainly composed of two modules, user QoS evaluation and early
warning module and task flow scheduling module. The cloud service monitoring system is
a supporting module and will not be introduced in detail in this paper. From Figure 1, it
can be seen that when a user purchases and runs a cloud service, the monitoring module
keeps track of the running status of the service and collects data. At the same time,
it collects feedback information from the user, and then stores the information in the
monitoring database.

QoS early warning module

QoS early warning moduleTask scheduling module

Cloud services Task monitoring

User User feedback

Service specifications

Task schedule

Output result

QoS warning

Evaluation results

Figure 1. User QoS guarantee overall scheme.

The QoS evaluation module is responsible for evaluating the predicted value of
QoS according to the monitoring data, service parameter specifications, virtual machine
parameter specifications, and other information. Then, this predicted value is transmitted
to the QoS early warning module. This module judges whether the user task has QoS
danger according to the monitoring data, QoS evaluation value, and QoS classification area,
and transfers it to the task scheduling module if there is danger.

The role of the task scheduling module is to schedule the deployment of the task flow
in the virtual machine according to the QoS warning, and try to satisfy the QoS of the user
through the scheduling of the task flow. The task flow scheduling algorithm is a hybrid
algorithm based on PSO and GSA algorithms.

4. User QoS Guarantee Model
4.1. ARIMA Prediction Model

The ARIMA (autoregressive integrated moving average model) state space model is
a time prediction model that combines autoregressive (auto regressive, AR) and moving
average (moving average, MA) models. The ARIMA model regards a time-based object
sequence as a random sequence. According to the autocorrelation of this sequence, a
mathematical model is expected to describe the object sequence [40]. Once it can be
described by a mathematical model, then the current and past values of this sequence can
be used to predict future values.



Sensors 2022, 22, 2632 5 of 20

1. MA model: The moving average MA model refers to the use of the lag value of the
series forecast error to correct the forecast value, and the n-order moving average MA
refers to the use of the forecast error value of the previous n periods.

xt = θ1εt−1 + θ2εt−2 + ... + θqεt−q + εt (1)

where θ1, θ2, ..., θq are the MA coefficients.
2. AR model: Each term in the expression represents the lag value of the unconditional

residual prediction, and the AR model is derived from the first n points of the series
to the subsequent data.

xt = φ1xt−1 + φ2xt−2 + ... + φpxt−p + εt (2)

where φ1, φ2, ..., φp are the AR coefficients.
3. Single-integer order I: The time series is not necessarily stationary, and the noise

in the sequence can be eliminated by sub-difference of the time series in order to
obtain a stationary sequence. This stationary series can then be processed using the
ARMA model.

4. ARMA model: ARMA is an autoregressive moving average model formed by com-
bining AR and MA models. If a sequence of objects is stable, then the autocorrelation
function and partial correlation function of this sequence can be calculated. If both
functions are tailed, then the sequence conforms to the ARMA(p, q) model. However,
before using ARMA, nonstationary data must be transformed into stationary series
using difference methods. Therefore, the ARIMA model is proposed.

5. ARIMA model: It is an improved model of ARMA. It adds differential processing
of stationary data and provides a way to integrate AR and MA models. In the
ARIMA(p, d, q) model, AR represents autoregression, p represents autoregressive
term, MA represents moving average, q represents moving average term, and d is the
number of differences in the stationary period of the object series. The ARIMA model
has one more differential process than the ARMA model, as follows:

x̂t = φ1x′t−1 + ... + φpx′t−p + θ1εt−1 + ... + θqet−q + εt (3)

where x′t represents the difference expression d of the object sequence. If d = 0, it is
recorded as ARIMA(p, 0, q), then ARIMA is equal to the ARMA model. Equation (4)
gives the calculation of the predicted value at the next time point.

x̂t+1 = φ1x′t + . . . + φpx′t−p + θ1εt + . . . + θqεt−q + εt (4)

If p, d, and q can be determined in the ARIMA(p, d, q) model, then the future forecast
value can be easily calculated by Equation (4) and monitoring data.

4.2. Kalman Filter

In the context of state space models, Kalman filter [41] is an algorithm for estimating
unknown variables based on observations collected over time. This algorithm has proven
to be effective in a variety of applications. Kalman filters are simple in design and need
little computation time. However, because the Kalman filter can be applied to any state
space model, it is used in this paper to fit the ARIMA model presented previously. As a
result, combining Kalman filter with ARIMA could result in more accurate predictions
thanks to optimal estimations [42]. A detailed description of the algorithm is presented
in [43].

The Kalman filter algorithm consists of two main steps. The first step is to make a
state prediction. The filter is then given input in the form of measurements, which can be
noisy and imperfect. As a result, the filter is divided into two components, time prediction
and measurement update, as illustrated in Figure 2 .



Sensors 2022, 22, 2632 6 of 20

Kalman Filter Algorithm

ARIMA model

Output 

state

Figure 2. Kalman filter algorithm.

4.3. User QoS Warning Decision

In order to accurately describe the QoS status of users, the cloud must have a real-time
monitoring system that can monitor the QoS status of users. This system is responsible
for monitoring various parameter data of virtual machines, response time of user tasks,
resource consumption, and resource utilization. This basic monitoring information is not
described in detail in this paper.

In order to formulate an early warning system for QoS, it will be necessary to quantify
user QoS. The following are explanations of several terms and phenomena of QoS that will
be used:

1. QoS status: In a monitoring time period, according to the QoS monitoring data, the
current status of the user QoS is divided into areas: normal area, early warning area,
dangerous area, and failure area.

2. QoS degradation: In two monitoring time periods, QoS value is decreasing. In other
words, the QoS state is deteriorating.

3. QoS rises: In two monitoring time periods, QoS monitoring value develops in a good
direction, indicating that the QoS is in a rising stage at this time.

4. Minimum QoS standard for users: This is the minimum QoS standard agreed upon by
both parties when the user and the provider sign an SLA or contract. The provider
must complete requests submitted by the user with quality and quantity within the
agreed time. For tasks, the minimum QoS criteria are mainly the response time and
the successful completion of the task.

5. Service failure: The task submitted by the user was not completed on time, or was not
completed successfully.

We need to use a QoS variation value ∆Q to measure the current state of QoS.

∆Q = min
i
(∆qi) (5)

where qi represents each QoS index; the larger the value of ∆Q, the farther the current
value is from the minimum standard, and the better the user QoS state. ∆qi is calculated by
Equation (6).

∆qi =

{
|qp

i −q f
i | ; if within the scope of user standards

0 ; if exceeds user-set standards
(6)

where qp
i is the QoS value calculated at a certain monitoring time point, and q f

i is the
corresponding minimum user QoS standard. According to the floating range of QoS, the
current user QoS status is divided into four categories (see Figure 3):



Sensors 2022, 22, 2632 7 of 20

1. QoS normal area: The user’s task can obtain the response of the server in a very timely
manner, and the user is satisfied with the current service.

2. QoS early warning area: The user’s task can obtain timely response from the server,
but the QoS response time of the task is slightly higher than that of the normal area,
indicating that the user’s QoS is in a relatively dangerous area. At this time, the
prediction data of the prediction module are needed to judge the trend of user QoS.
If the QoS trend has a serious downward trend, then the scheduling center needs
to schedule the user’s tasks to ensure that the user’s QoS is in the normal area or
develops toward the normal area.

3. QoS dangerous area: The response time of the user’s task is close to the bottom line
set by the user. If the prediction data indicate that the QoS is not on the rise, then the
scheduling center needs to schedule the user’s task and allocate resources to it with
high priority.

4. QoS failure area: The user’s task cannot be responded to in time by the service, and
then it will not be completed on time. Thus, the user’s loss should be calculated and
compensated according to the contract. Therefore, it must be ensured that the user’s
QoS does not reach the failure area.

Timeline

Se
rv

ic
e

re
sp

on
se

ti
m

e

QoS failure area

QoS dangerous area

QoS warning area

QoS normal area

Minimum QoS Standard

Figure 3. User QoS state diagram.

According to the prediction result of user QoS and the current monitoring value, the
QoS change trend of the user can be calculated, and the QoS change trend can be divided
into four states according to the value range of the change trend:

1. QoS rises: QoS status changes to a good direction;
2. Slow QoS degradation: QoS status deteriorates, speed is low;
3. QoS medium-speed degradation: QoS state deteriorates, the speed is medium;
4. QoS high-speed degradation: QoS state deteriorates, speed is high.

Then, by integrating QoS status and QoS trend, we can obtain the QoS early warning
decision, as shown in Table 1.



Sensors 2022, 22, 2632 8 of 20

Table 1. QoS early warning decision.

QoS Status QoS Trends Corresponding Decision

Normal area

QoS rises Normal operation
Slow degradation Normal operation

Medium-speed degradation Normal operation
High-speed degradation Early warning

Warning area

QoS rises Normal operation
Slow degradation Normal operation

Medium-speed degradation Early warning
High-speed degradation Early warning

Dangerous area

QoS rises Normal operation
Slow degradation Early warning

Medium-speed degradation Early warning
High-speed degradation Early warning

Failure are All Alert

4.4. QoS Guarantee Processing Flow

Figure 4 shows the task scheduling process based on user QoS guarantee. First, the
system obtains a user’s task flow input according to the user’s task request and user QoS.
The submitted task run in the virtual machine in the cloud system. During operation,
the monitoring system can obtain various monitoring information about the task and the
virtual machine, and calculate the current status of the user’s QoS. Then, the current QoS
state is evaluated. If the evaluation result complies with the QoS evaluation model standard,
the task will continue to be executed until the end. If the evaluation result shows that the
user’s QoS is in a dangerous state or exceeds the normal range of the user’s QoS, then in
the next task scheduling, a scheduling scheme that is beneficial to the user’s QoS will be
calculated and scheduled. The monitoring of QoS status of tasks continues after scheduling
until the task ends. If the evaluation results after scheduling still cannot meet the user’s
QoS, the system will issue an alarm.

Task flow input

Start

QoS data input

QoS model 

computation

QoS satisfied? No Task scheduling

QoS satisfied?

Yes

Execute tasks

End

No
Execute tasks and 

report errorsYes

QoS monitoring

Figure 4. Task execution process based on user QoS guarantee.



Sensors 2022, 22, 2632 9 of 20

5. Task Flow Scheduling Algorithm

The task flow scheduling in cloud computing is a discrete problem, but since the
particle swarm is a continuous model, it is necessary to mathematically model the particles
to correspond to the task flow scheduling scheme, so that the solution of PSO algorithm
corresponds to the task flow scheduling. In the following is an introduction to algo-
rithm modeling.

The task flow in cloud computing can be regarded as a topological sequence, such as
in Figure 5, which is a directed acyclic graph (DAG). Each node in the graph represents
a cloud task, and each edge represents the execution order of the tasks. Now, map the
tasks to the particles in the PSO algorithm: each particle in the algorithm is a solution and
represents a scheduling scheme. The dimension number of a particle corresponds to the
number of the tasks, and the value of the space dimension indicates the number of the
virtual machine to which the task is deployed. The dimension of the particle is d = n,
where n represents the number of tasks to be scheduled. Particles are constantly moving
in space to search for a best scheduling scheme of the task. The quality of the scheduling
scheme is judged through a fitness function. Because each particle represents a solution,
the larger the number of particles, the larger the search space, but too much search will
bring additional overheads. Generally, the number of particles will be greater than the
number of tasks.

3

1 6 9

4
11

7

2 5 10

8

Figure 5. Task flow DAG topology.

According to the task flow topology in Figure 5, a scheduling encoding represented by
a one-dimensional string can be derived.

The task corresponds to the assigned virtual machine number. It can be seen from
Figure 6 that each task number corresponds to an assigned virtual machine number, which
can be represented as a slice of a particle in one dimension in a certain number of iterations.
Figure 6 indicates which virtual machine tasks 1 to 11 are allocated to. This allocation
method can be represented by an 11-dimensional particle, and the number on the 11th di-
mension of the particle represents the virtual machine number. The solution corresponding
to the task assignment strategy can be represented by a particle in the particle swarm. The
dimension of the particle corresponds to the task number, and the number of the spatial
position of the particle corresponds to the assigned virtual machine.

Task number 1 2 3 4 5 6 7 8 9 10 11

Virtual machine number 4 2 1 4 3 2 1 1 5 1 4

Figure 6. Assignment of tasks to virtual machines.

When scheduling tasks, in addition to satisfying the user’s QoS, it is also necessary
to reduce the energy consumption of physical machines and their total running time. The
main consumption of a task on the system is its running time multiplied by the resources



Sensors 2022, 22, 2632 10 of 20

occupied by it, and the amount of data transmission performed by the task on the virtual
machine. The running time can be estimated through historical data, and the amount of
data transfer is an agreement with the user. Therefore, the total consumption f it(Ti) of the
task i can be obtained.

f it(Ti) = ωi
1Pi +

ωi
2Si

L
(7)

where ω is a correction parameter and Pi is the estimated processing time of the task i.
The first call can take a similar time according to the historical database, and the time is
predicted by Equation (4) when the task is migrated; Si is the size of the data that the task i
needs to transfer, including the size of the task processing data and the number of transfers
of the migration task; L is the I/O speed of the data center, and the scheduling objective is
to minimize the total consumption function f it(T).

5.1. Introduction to Hybrid Particle Swarm Optimization—HPSO

As a metaheuristic algorithm, PSO has excellent search ability for near-optimal solu-
tions. However, there are also some shortcomings. PSO can easily fall into local optima,
and the solution result is dependent on the velocity parameters.

The gravity search algorithm (GSA) was proposed in 2009 [44]. This algorithm adjusts
the position of the solution space by transforming an attribute into mass between objects
which are then gravitationally affected by each other, and it finally obtains the best solution
through multiple iterations.

The following will introduce an algorithm that combines GSA and PSO algorithms in
order to realize task scheduling based on user QoS. By calculating the gravitational force
between particles, the algorithm expands the search range of the particle solution space
and improves the search accuracy of the particle, which makes up for the deficiency of PSO.

5.1.1. Introduction to Particle Swarm Optimization

The PSO algorithm process is as follows. Each particle i has a D-dimensional position
vector xi = (xi1, xi2, ..., xiD) and a velocity vector vi = (vi1, vi2, ..., viD). The algorithm
iteratively calculates the movement of particles. When particle i searches the solution space
in each iteration, the best position in the moving process is judged by a fitness function
and saved as pi = (pi1, pi2, ..., piD) . In each iteration, the particle’s current velocity consists
of three parts: particle inertia, effect of the particle’s best position on the current one, and
effect of the swarm’s best position pg = (pg1, pg2, ..., pgD) on the particle itself. The particle
velocity can be calculated according to Equation (9), where c1 and c2 are positive numbers,
called acceleration factors, r1, r2 ∈ [0, 1], which can be adjusted and interfered according to
requirements, d is a dimension in D dimension, and ω is the inertia weighting factor.

The new position xt+1
id of the particle is calculated from the current position xt

id and
velocity vt+1

id , as in Equation (8).

xt+1
id = xt

id + vt+1
id (8)

vt+1
id = ωvt

id + c1r1(pt
id − xt

id) + c2r2(pt
gd − xt

id) (9)

The first part ωvt
id in Equation (9) is the inertial velocity of the particle. The larger the

inertial velocity, the stronger the global search ability of the velocity, but it will affect the
local search accuracy of the particle, and vice versa. The second part c1r1(pt

id − xt
id) is the

thinking of the particle itself, that is, the influence of the best position saved by the particle
on the current speed, and the effect is affected by (c1, r1) adjustments. This form increases
the global search ability of particles and avoids local optima. The last part c2r2(pt

gd − xt
id)

is the influence of the particle by the best position of other particles. This form shows that
the particles influence each other, which is a cooperative embodiment of multi-objective
optimization. This part is also subject to parameter adjustments.



Sensors 2022, 22, 2632 11 of 20

5.1.2. Introduction to Gravitational Search Algorithm

The gravitational search algorithm (GSA) was proposed by [45]. The algorithm models
the problem as multiple particles, each of which is affected by the gravitational force of
other particles. This force provides particle acceleration, enabling them to move in the
solution space. The mass of a particle is affected by a moderate value, and the larger
the moderate value, the greater the mass and the greater the gravitational force on other
particles. Therefore, the particles farther away from the optimal solution position have
low mass and are easily affected by other particles in the optimal solution position. They
move to them and have good local search ability. Gravitational search is not affected
by environmental factors, but shares optimized information between particles through
gravitational actions between particles.

The particle swarm is represented by Equation (10).

Xi = x1
i + x2

i + ·+ xd
i + ·+ xn

i ; i = (1, 2, ..., N) (10)

where xd
i represents the position of the particle in the dth dimension.

The calculation of gravity between particles refers to the formula of universal gravita-
tion as follows.

Fd
ij(t) = G(t)

Mi(t) ·Mj(t)
Rij(t)

(xd
j (t)− xd

i (t)) (11)

ad
i =

Fd
i

M(t)
(12)

Equation (11) is a modification of the gravitational formula, where Fd
ij(t) represents

the gravitational force between particles at time t. It can be seen that the distance inside is
not squared, because according to [44], it is shown through experiments that the distance is
better than the squared distance. The distance between two particles can be represented by
the Euclidean distance, as in Equation (13).

Rij(t) =‖ Xi(t), Xj(t) ‖Z (13)

Particle i will be attracted by other particles, and the gravitational force Fd
i (t) of the

particle i is calculated by Equation (14).

Fd
i (t) = ∑

j∈k−best,j 6=i
Fd

ij(t) (14)

where k − best means the k best particles at a certain time. These particles will have a
gravitational pull on other random particles, causing a new round of positional changes.
The new particle velocity vd

i (t + 1) is calculated from the current velocity plus acceleration
ad

i (t+ 1). The acceleration is calculated from gravity, and the new particle position xd
i (t+ 1)

is calculated from the current position plus the displacement per unit time.

vd
i (t + 1) = randi · vd

i (t) + ad
i (t + 1) (15)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (16)

Then, the particle with the best position best(t) and the particle with the worst position
worst(t) are solved by a minimum optimization algorithm.

best(t) = min f itj(t); ∀j ∈ {1, 2, ..., N} (17)

worst(t) = max f itj(t); ∀j ∈ {1, 2, ..., N} (18)

The mass of the particle is obtained by solving the corresponding fitness value of the
position of the particle. At time t, the mass of the particle is represented by Mi(t). The



Sensors 2022, 22, 2632 12 of 20

mass fitness value in this paper is given by Equation (7). The larger the mass of the particle,
the better the local optimization of the particle, the closer to the optimal solution, and the
greater the gravitational force on other particles. The mass Mi(t) is calculated according to
Equations (19) and (20).

Mi(t) =
mi(t)

N
∑

j=1
mj(t)

(19)

mi(t) =
f iti(t)− worst(t)

besti(t)− worst(t)
(20)

The gravitational algorithm is gradually stable in the iterative process, so the grav-
itational constant G(t) is gradually reduced. Equation (21) gives the solution for the
gravitational constant G(t).

G(t) = Go · e−a(1/T) (21)

The initial value Go is set to 100, the initial value a is set to 20, and the parameter T is
the number of iterations of the algorithm.

The advantage of the gravitational algorithm is that the positions of some particles are
very optimized. In order to improve the convergence speed of the algorithm, some well-
optimized particles are selected in each round, and these particles will attract other particles.
The selected number directly affects the performance of the algorithm. Therefore, at the
beginning of the iteration, this paper selects all particles as the optimized particles which
have a gravitational effect on other particles. As the number of iterations i increases, the
number of optimized particles decreases linearly [44], so in the end, only 2% of the particles
will be selected as optimized particles, and the selected number is given by Equation (22).

k_best_size = p ·
(

i− 0.02− T
1− T

(i− 1)
)

(22)

5.2. A Hybrid Algorithm Based on PSO and GSA

The algorithm proposed by [11] combines PSO and GSA algorithms. The algorithm
uses PSO to complete the global search of particles, and then uses GSA to complete the local
search task of particles. The two algorithms have a clear division of labor, and can well solve
the problem that global search and local search cannot take into account, and experiments
show that the hybrid algorithm has a fast convergence speed and can avoid local optimal
solutions well. However, Ref. [11] does not provide a virtual machine reservation scheme
for the scheduling period. The following is the scheme proposed in this paper.

When the task flow starts scheduling, there are two tables; one is the virtual machine
table, and the other is the task table to be allocated. First, according to the historical data
of cloud computing, the virtual machine that needs to be reserved for the next scheduled
task needs to be selected from the virtual machine table. This is because retaining a virtual
machine saves more resources and time than deleting and then creating a new virtual
machine. However, retaining too many virtual machines may cause a waste of resources,
and the reserved virtual machine model may not be consistent with the next task scheduling.
If it matches completely, it will inevitably cause a large number of resource fragments,
reduce resource utilization, and cause waste. Therefore, a strategy is required to decide
how many virtual machines to reserve and which ones to reserve.

Firstly, we need to select the number of virtual machines. The number should not be
too large or too small. This paper is inspired by the network congestion control algorithm.
Both algorithm scenarios need to find a maximum value in a dynamic model, and this value
is still changing. Both scenarios can adjust their own policies according to the feedback
information of the other party. The congestion algorithm is judged by the maximum value
and the transmission of data packets, and the virtual machine reservation can be judged
by its operation. However, the fluctuation of cloud computing in general will not be as
large as the fluctuation of network transmission, so the specific strategy will be different.



Sensors 2022, 22, 2632 13 of 20

Therefore, through the above analysis, there are three algorithm strategies for retaining the
number of virtual machines: in recovery phase, the number is increased by multiplication;
in the hold stage, the number is increased in small steps; in the fallback phase, the number
is multiplicatively decremented.

According to the historical data, the percentage of the number of virtual machines
and the optimal percentage value for maintaining a good running state in each scheduling
round are calculated, and then the average and optimal percentage values are calculated
according to the current number of virtual machines. The initial number is set to the
average number value. For better understanding, it is assumed that the calculated average
value is 200, the optimal value is 733, the multiplication parameter in the recovery stage is
set to 2, the multiplication parameter in the fallback stage is also 2, and the addition step
size in the holding stage is 66. The number of virtual machines retention policy is shown in
Figure 7.

1 2 3 4 5 6
0

200

400

600

800

1000

200

400

800

400
466

533

600

Scheduling time

N
um

be
r

of
re

se
rv

ed
vi

rt
ua

lm
ac

hi
ne

s

Recovery phase Fallback phase Hold phase

Best value

Average value

Figure 7. Schematic diagram of virtual machine reservation policy.

After determining the number of reserved virtual machines, we need to determine
which virtual machines to reserve. This paper adopts the judgment based on machine load,
and allocates the virtual machine with high load.

5.3. Algorithm Process

During the operation of the cloud computing system, the provider provides services
to cloud users in an on-demand mode, and in order to collect and analyze data, it is
necessary to monitor the entire system and increase the number of virtual machines in
a timely manner to meet user requests. During the scheduling process, the scheduling
center will estimate the task based on historical data. If the existing virtual machine cannot
meet the user QoS, the user task will be assigned to a virtual machine with more powerful
performance. The scheduling center schedules tasks according to the user’s to-be-assigned
task list and cloud resources in hand. The specific process of the proposed method is
proposed in Algorithm 1.



Sensors 2022, 22, 2632 14 of 20

Algorithm 1 HPSO algorithm

1: Retain virtual machines according to the reservation scheme;
2: Initialize the number of particles according to the number of tasks;
3: Set the initial speed of particle swarm algorithm in Equation (8);
4: while not reaching the maximum number of iterations do
5: Calculate particles velocity by Equation (8);
6: Calculate the positions of particles by formula Equation (9);
7: Calculate the mass of particles by Equations (19) and (20);
8: Find the kbest particles by Equation (17);
9: Select particles with poor positions by Equation (18);

10: Calculate the gravitational force of particles by Equation (11);
11: Update particles accelerations by Equation (12);
12: Update particles positions by Equation (16);
13: Update the gravitational parameters by Equation (21);
14: Find out the particle solution set with the best predicted value by Equation (7);
15: end while
16: return The best solution

It can be seen from the above algorithm that in each round of iteration, the particles
are first moved by the PSO algorithm, and then some particles are locally searched by the
GSA. In this way, the two algorithms complement each other, expand the search space, and
increase search accuracy.

6. Experimental Results

The simulation experiments in this paper use CloudSim [46]. The pricing method of
virtual machines and the configuration parameters of virtual machines in the experiments
refer to Amazon EC2 standards, and are set as small virtual machines, medium virtual
machines, large virtual machines, and extra large virtual machines, according to the specifi-
cations shown in Table 2. The input tasks is a task flow DAG, and the attributes of each
task are the same. In CloudSim, the file input size and output size are both set to 1 GB.

Table 2. Amazon EC2 virtual machine types.

Type MIPS RAM Size

Extra large instance 2500 850 MB
Large instance 2000 3750 MB

Medium instance 1000 1700 MB
Small instance 500 613 MB

For the parameters of the PSO algorithm, refer to the experimental settings of [47]. In
order to expand the search space, the number of particles is set to be twice the number
of tasks, and the initial speed of particles in PSO is a random number. The maximum
number of iterations is set to 400, and the particle’s inertia value is 0.9. The initial velocity
of particles in GSA algorithm is set to 0. The scheduling time of the entire scheduling
algorithm cannot be greater than 100 ms, each experiment is run 20 times, and the final
data are averaged.

An important indicator in the experiments refers to Equation (7), where ω1 and ω2 are
both 0.5. The first is the consumption of the test task running (processing) on the virtual
machine, and the second is the data transmission consumption of the task.

Because the time consumption of the ordinate in Figure 8 is weighted in the calculation
process, there is no unit added here. The lower the cost in the figure, the better the
performance of the algorithm. It can be seen from the experimental results that the main
consumption is the processing of the task, mainly because the task occupies the processor
core for calculation. We remark that the running consumption occupies more than 80%
of the total consumption. When scheduling, it is necessary to reasonably allocate tasks



Sensors 2022, 22, 2632 15 of 20

according to their consumption. Because virtual machines come in different sizes, more
resource-intensive tasks will tend to be allocated to larger virtual machines.

200 400 600 800 1000
0

200

400

600

800

1000

1200

1400

234

457

699

912

1253

202

390

594

774

1060

Number of Tasks

R
es

ou
rc

e
co

ns
um

pt
io

n

Processing
Data transmission

Figure 8. The consumption costs of executing tasks.

6.1. Performance Analysis

In order to assess the performance of our proposed HPSO algorithm, it is compared to
the following algorithms:

1. Greedy algorithm: This algorithm selects the cheapest virtual machine that can meet
the deadline of the task to deploy the task, and uses historical data to roughly estimate
the running time and end time of the task. The disadvantage of the greedy algorithm
is that it does not consider the total consumption of tasks on the virtual machine, and
it is easy to fall into local optimum.

2. PSO algorithm [47]: The parameter settings are consistent with those in the HPSO
algorithm.

3. GSA algorithm: The parameter settings are consistent with the GSA in HPSO.
4. P-G algorithm [44]: This algorithm makes the solution space search larger and more

accurate by combining PSO and GSA.

The performance index of the algorithm refers to Equation (7), which mainly includes
the running cost of the task and the cost of data transmission. The goal of the algorithm is
to keep this cost as low as possible.

As can be seen from Figure 9, the greedy algorithm increases the task execution cost
significantly when the number of tasks increases, because it is prone to generate local
optimal solutions, which is not obvious when the number of tasks is small. However, when
the number of tasks increases, the shortcomings become obvious. The GSA algorithm
has significant improvement over the greedy algorithm, but it is slightly worse than P-G
and PSO algorithms. This is because the global search ability of the gravitational search
algorithm is relatively poor, and the particles can form a good local search ability due to the
gravitational interaction between each other. However, gravity is a search technique that
keeps particles confined to nearby spaces, rather than spreading out across other spaces.
Although the PSO algorithm has limited global search capabilities, a higher initial velocity
can be given to the particles to optimize its global search ability. Therefore, the performance
of PSO is slightly better than GSA.



Sensors 2022, 22, 2632 16 of 20

100 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

4000

Number of Tasks

Ta
sk

ex
ec

ut
io

n
co

st

HPSO
P-G
PSO
GSA
Greedy

Figure 9. Consumption comparison chart.

The P-G algorithm uses the global search ability of the PSO algorithm, so that particles
can first generate a better global position in each iteration, and then use the GSA algorithm
to fine-tune the particles. In this way, the particle search is divided into two steps, so it
has a better search effect. In addition, it has better convergence in the case of increasing
number of tasks.

The improved algorithm HPSO proposed in this paper increases the virtual machine
reservation scheme. In each iteration of task scheduling, an algorithmic decision is made on
the reserved quantity and quality of virtual machines. Therefore, it can effectively reduce
the waste of resources and increase their utilization rate. Compared with the original
algorithm P-G, when the number of tasks is low, there is not much change, and when the
number of tasks reaches 1000, the execution cost is reduced by 16.51%.

6.2. QoS Experimental Results

SLA violations occur when cloud service providers fail to provide services in accor-
dance with SLA to users. The QoS guarantee in this paper, as part of the SLA, primarily
ensures that the user’s tasks are completed on time, and does not include any further
economic or legal guarantees. In this paper, the completion time of each task must not
exceed a predefined deadline. Thus, SLA violation rate is defined as the percentage of
tasks that are unable to be completed by their deadline. Figure 10 presents the effect of
the prediction model proposed in this paper, and Figure 11 presents the comparison of the
algorithms in term of SLA violation rate.

The values of p, d, and q in the ARIMA prediction model used in this paper are 2,
0, and 2, respectively [10]. The ARIMA model is optimized by using the Kalman filter
JAVA package of the Efficient Java Matrix Library (EJML) (http://ejml.org/, accessed on 7
March 2022). It can be clearly seen from Figure 10 that the SLA violation rate is significantly
better than without the prediction model. Since the ARIMA model is based on historical
information and the current server status prediction, and due to the uncertainty of user task
execution, it still cannot fully guarantee user QoS. The prediction model cannot achieve
good results when physical resources are insufficient. It is found through experiments that
when the number of tasks reaches 1400, the SLA violation rate using the prediction model
is reduced by 0.045%. In addition, Figure 10 shows that the Kalman filter improved the
ARIMA prediction model. Indeed, the SLA violation rate was reduced by 8% when using
Kalman filter.

http://ejml.org/


Sensors 2022, 22, 2632 17 of 20

600 800 1000 1200 1400
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of Tasks

SL
A

vi
ol

at
io

n
ra

te
(%

)

With ARIMA model
Without ARIMA model
With Kalman Filter

Figure 10. Effect of the prediction model on the proposed algorithm HPSO.

600 800 1000 1200 1400
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of Tasks

SL
A

vi
ol

at
io

n
ra

te
(%

)

HPSO
P-G
PSO
GSA
Greedy

Figure 11. SLA violation rate comparison.

7. Conclusions

This paper is mainly based on the historical data and the monitoring information
of the system to give an early warning to the user’s future QoS situation; it divides the
user’s QoS early warning into three states and then uses a heuristic task flow scheduling
algorithm to schedule tasks. The HPSO algorithm searches the solution space to find
the most suitable solution for user QoS, and this solution should also minimize the cost
consumption of the system. Finally, experiments show that our proposed HPSO algorithm
reduces the execution cost by 16.51% compared to the algorithm of [11]. In addition, by
using the ARIMA model optimized with the Kalman filter, the SLA violation rate is reduced
to 0.092%, compared with the original 0.145%, when the number of tasks reaches 1400.

Several various adjustments, testing, and experiments remain to be completed in the
future. Future work concerns exploring more objective functions and prediction improve-
ments. Load balancing, makespan, and weighted completing time can be considered in
the future as scheduling objectives. The ARIMA model is feasible as a prediction model,
but the periodicity of user task data in the cloud computing data center and the user’s QoS



Sensors 2022, 22, 2632 18 of 20

preference attribute are not considered in the prediction model, so there is still a lot of room
for improvement in the accuracy of prediction.

Author Contributions: Conceptualization, M.A.R. and N.A.; methodology, M.A.R. and N.A.; valida-
tion, M.A.R. and N.A.; formal analysis, M.A.R. and N.A.; investigation, M.A.R. and N.A.; resources,
M.A.R. and N.A.; experiments, M.A.R. and N.A.; writing—original draft preparation, M.A.R. and
N.A.; writing—review and editing, M.A.R. and N.A.; visualization, M.A.R. and N.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

QoS Quality of Service
ARIMA Autoregressive Integrated Moving Average Model
HW Holt–Winters
LSTM Long Short-Term Memory
CRBM Conditional Restricted Boltzmann Machine
CaaS Computation-as-a-Service
AIMD Additive Increase Multiplicative Decrease
SLA Service-Level Agreement
PSO Particle Swarm Optimization
GSA Gravitational Search Algorithm
DAG Directed Acyclic Graph
CPU Central Processing Unit
AR Auto Regressive
MA Moving Average
ARMA Autoregressive Moving Average Model
HPSO Hybrid Particle Swarm Optimization
EC2 Elastic Compute Cloud

References
1. Ardagna, D.; Casale, G.; Ciavotta, M.; Pérez, J.F.; Wang, W. Quality-of-service in cloud computing: modeling techniques and their

applications. J. Internet Serv. Appl. 2014, 5. [CrossRef]
2. Yinong, C. Service-Oriented Computing and System Integration: Software, IoT, Big Data, and AI as Services, 6th ed.; Kendall/Hunt

Publishing Co.: Dubuque, IA, USA, 2017.
3. Emeakaroha, V.C.; Netto, M.A.; Calheiros, R.N.; Brandic, I.; Buyya, R.; Rose, C.A.D. Towards autonomic detection of SLA

violations in Cloud infrastructures. Future Gener. Comput. Syst. 2012, 28, 1017–1029. [CrossRef]
4. Zhu, X.; Young, D.; Watson, B.J.; Wang, Z.; Rolia, J.; Singhal, S.; McKee, B.; Hyser, C.; Gmach, D.; Gardner, R.; et al. 1000 islands:

An integrated approach to resource management for virtualized data centers. Clust. Comput. 2009, 12, 45–57. [CrossRef]
5. Li, B.; Li, J.; Huai, J.; Wo, T.; Li, Q.; Zhong, L. EnaCloud: An energy-saving application live placement approach for cloud

computing environments. In Proceedings of the 2009 IEEE International Conference on Cloud Computing, Bangalore, India,
21–25 September 2009; pp. 17–24. [CrossRef]

6. Ajiro, Y.; Tanaka, A. Improving packing algorithms for server consolidation. In Proceedings of the 33rd International Conference
Computer Measurement Group, San Diego, CA, USA, 2–7 December 2007.

7. Gupta, R.; Bose, S.K.; Sundarrajan, S.; Chebiyam, M.; Chakrabarti, A. A two stage heuristic algorithm for solving the server
consolidation problem with item-item and bin-item incompatibility constraints. In Proceedings of the 2008 IEEE International
Conference on Services Computing, SCC 2008, Honolulu, HI, USA, 7–11 July 2008; Volume 2, pp. 39–46. [CrossRef]

8. Domanal, S.G.; Guddeti, R.M.R.; Buyya, R. A Hybrid Bio-Inspired Algorithm for Scheduling and Resource Management in Cloud
Environment. IEEE Trans. Serv. Comput. 2020, 13, 3–15. [CrossRef]

http://doi.org/10.1186/s13174-014-0011-3
http://dx.doi.org/10.1016/j.future.2011.08.018
http://dx.doi.org/10.1007/s10586-008-0067-6
http://dx.doi.org/10.1109/CLOUD.2009.72
http://dx.doi.org/10.1109/SCC.2008.39
http://dx.doi.org/10.1109/TSC.2017.2679738


Sensors 2022, 22, 2632 19 of 20

9. Emara, F.A.; Gad-Elrab, A.A.; Sobhi, A.; Raslan, K.R. Genetic-Based Multi-objective Task Scheduling Algorithm in Cloud
Computing Environment. Int. J. Intell. Eng. Syst. 2021, 14, 571–582. [CrossRef]

10. ur Rehman, Z.; Hussain, O.K.; Hussain, F.K.; Chang, E.; Dillon, T. User-side QoS forecasting and management of cloud services.
World Wide Web 2015, 18, 1677–1716. [CrossRef]

11. Mirzayi, S.; Rafe, V. A hybrid heuristic workflow scheduling algorithm for cloud computing environments. J. Exp. Theor. Artif.
Intell. 2015, 27, 721–735. [CrossRef]

12. Lee, Y.C.; Zomaya, A.Y. Energy efficient utilization of resources in cloud computing systems. J. Supercomput. 2012, 60, 268–280.
[CrossRef]

13. Laszewski, G.V.; Wang, L.; Younge, A.J.; He, X. Power-aware scheduling of virtual machines in DVFS-enabled clusters. In Proceedings
of the IEEE International Conference on Cluster Computing, ICCC, New Orleans, LA, USA, 31 August–4 September 2009. [CrossRef]

14. Mezmaz, M.; Melab, N.; Kessaci, Y.; Lee, Y.C.; Talbi, E.G.; Zomaya, A.Y.; Tuyttens, D. A parallel bi-objective hybrid metaheuristic
for energy-aware scheduling for cloud computing systems. J. Parallel Distrib. Comput. 2011, 71, 1497–1508. [CrossRef]

15. Lee, Y.C.; Zomaya, A.Y. A novel state transition method for metaheuristic-based scheduling in heterogeneous computing systems.
IEEE Trans. Parallel Distrib. Syst. 2008, 19, 1215–1223. [CrossRef]

16. Lu, Y.; Sun, N. An effective task scheduling algorithm based on dynamic energy management and efficient resource utilization in
green cloud computing environment. Clust. Comput. 2019, 22, 513–520. [CrossRef]

17. Praveenchandar, J.; Tamilarasi, A. Dynamic resource allocation with optimized task scheduling and improved power management
in cloud computing. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 4147–4159. [CrossRef]

18. Hermenier, F.; Xavier, L.; Menaud, J.M.; Muller, G.; Lawall, J. Entropy: A consolidation manager for clusters. In Proceedings of
the 2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, VEE’09, Washington, DC, USA,
11–13 March 2009; pp. 41–50. [CrossRef]

19. Van, H.N.; Tran, F.D.; Menaud, J.M. SLA-aware virtual resource management for cloud infrastructures. In Proceedings of the
IEEE 9th International Conference on Computer and Information Technology, CIT 2009, Xiamen, China, 11–14 October 2009;
Volume 1, pp. 357–362. [CrossRef]

20. Van, H.N.; Tran, F.D.; Menaud, J.M. Autonomic virtual resource management for service hosting platforms. In Proceedings of the
2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing, CLOUD 2009, Vancouver, BC, Canada, 23 May
2009; pp. 1–8. [CrossRef]

21. Jeyarani, R.; Ram, R.V.; Nagaveni, N. Design and implementation of an efficient two-level scheduler for cloud computing
environment. In Proceedings of the 2009 International Conference on Advances in Recent Technologies in Communication and
Computing, Kottayam, India, 27–28 October 2009; pp. 585–586. [CrossRef]

22. Lin, W.; Wang, J.Z.; Liang, C.; Qi, D. A threshold-based dynamic resource allocation scheme for cloud computing. Procedia Eng.
2011, 23, 695–703. [CrossRef]

23. Abualigah, L.; Diabat, A. A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud
computing environments. Clust. Comput. 2021, 24, 205–223. [CrossRef]

24. Wang, T.; Ferlin, S.; Chiesa, M. Predicting CPU usage for proactive autoscaling. In Proceedings of the 1st Workshop on Machine
Learning and Systems, EuroMLSys 2021, UK, 24 April 2021; pp. 31–38. [CrossRef]

25. Berral, J.L.; Wang, C.; Youssef, A. AI4DL: Mining behaviors of deep learning workloads for resource management. In Proceedings
of the 12th USENIX Workshop on Hot Topics in Cloud Computing, HotCloud 2020, Virtual Boston, MA, USA, 13–14 July 2020.
[CrossRef]

26. Chhabra, A.; Singh, G.; Kahlon, K.S. QoS-aware energy-efficient task scheduling on HPC cloud infrastructures using swarm-
intelligence meta-heuristics. Comp. Mater. Cont. 2020, 64, 813–834. [CrossRef]

27. Buyya, R.; Yeo, C.S.; Venugopal, S.; Broberg, J.; Brandic, I. Cloud computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility. Future Gener. Comput. Syst. 2009, 25, 599–616. [CrossRef]

28. Buyya, R.; Yeo, C.S.; Venugopal, S. Market-Oriented Cloud Computing: Vision, Hype, and Reality for Delivering IT Services
as Computing Utilities. In Proceedings of the 2008 10th IEEE International Conference on High Performance Computing and
Communications, Dalian, China, 25–27 September 2008; pp. 5–13. [CrossRef]

29. You, X.; Wan, J.; Xu, X.; Jiang, C.; Zhang, W.; Zhang, J. ARAS-M: Automatic resource allocation strategy based on market
mechanism in cloud computing. J. Comput. 2011, 6, 1287–1296. [CrossRef]

30. Goiri, Í.; Guitart, J.; Torres, J. Economic model of a Cloud provider operating in a federated Cloud. Inf. Syst. Front. 2012,
14, 827–843. [CrossRef]

31. Thanka, M.R.; Maheswari, P.U.; Edwin, E.B. An improved efficient: Artificial Bee Colony algorithm for security and QoS aware
scheduling in cloud computing environment. Clust. Comput. 2019, 22, 10905–10913. [CrossRef]

32. Doyle, J.; Giotsas, V.; Anam, M.A.; Andreopoulos, Y. Dithen: A computation-as-a-service cloud platform for large-scale
multimedia processing. IEEE Trans. Cloud Comput. 2019, 7, 509–523. [CrossRef]

33. Thennarasu, S.R.; Selvam, M.; Srihari, K. A new whale optimizer for workflow scheduling in cloud computing environment. J.
Ambient. Intell. Humaniz. Comput. 2021, 12, 3807–3814. [CrossRef]

34. Jain, R.; Sharma, N. A QoS Aware Binary Salp Swarm Algorithm for Effective Task Scheduling in Cloud Computing. In Progress in
Advanced Computing and Intelligent Engineering. Advances in Intelligent Systems and Computing; Panigrahi, C.R., Pati, B., Mohapatra,
P., Buyya, R., Li, K.C., Eds.; Springer: Singapore, 2021; Volume 1199. [CrossRef]

http://dx.doi.org/10.22266/ijies2021.1031.50
http://dx.doi.org/10.1007/s11280-014-0319-8
http://dx.doi.org/10.1080/0952813X.2015.1020524
http://dx.doi.org/10.1007/s11227-010-0421-3
http://dx.doi.org/10.1109/CLUSTR.2009.5289182
http://dx.doi.org/10.1016/j.jpdc.2011.04.007
http://dx.doi.org/10.1109/TPDS.2007.70815
http://dx.doi.org/10.1007/s10586-017-1272-y
http://dx.doi.org/10.1007/s12652-020-01794-6
http://dx.doi.org/10.1145/1508293.1508300
http://dx.doi.org/10.1109/CIT.2009.109
http://dx.doi.org/10.1109/CLOUD.2009.5071526
http://dx.doi.org/10.1109/CCGRID.2010.94
http://dx.doi.org/10.1016/j.proeng.2011.11.2568
http://dx.doi.org/10.1007/s10586-020-03075-5
http://dx.doi.org/10.1145/3437984.3458831
http://dx.doi.org/10.5555/3485849.3485852
http://dx.doi.org/10.32604/cmc.2020.010934
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1109/HPCC.2008.172
http://dx.doi.org/10.4304/jcp.6.7.1287-1296
http://dx.doi.org/10.1007/s10796-011-9325-x
http://dx.doi.org/10.1007/s10586-017-1223-7
http://dx.doi.org/10.1109/TCC.2016.2617363
http://dx.doi.org/10.1007/s12652-020-01678-9
http://dx.doi.org/10.1007/978-981-15-6353-9_43


Sensors 2022, 22, 2632 20 of 20

35. Jing, W.; Zhao, C.; Miao, Q.; Song, H.; Chen, G. QoS-DPSO: QoS-aware Task Scheduling for Cloud Computing System. J. Net. and
Syst. Manag. 2021, 29, 5. [CrossRef]

36. Motlagh, A.A.; Movaghar, A.; Rahmani, A.M. Task scheduling mechanisms in cloud computing: A systematic review. Int. J. of
Comm. Syst. 2020, 33, 155–184. [CrossRef]

37. Jing, Y.; Pavlović, V.; Rehg, J.M. Boosted Bayesian network classifiers. Mach. Learn. 2008, 73, 155–184. [CrossRef]
38. Malik, B.H.; Amir, M.; Mazhar, B.; Ali, S.; Jalil, R.; Khalid, J. Comparison of task scheduling algorithms in cloud environment. Int.

J. Adv. Comput. Sci. Appl. 2018, 9, 384–390. [CrossRef]
39. Kumar, M.; Sharma, S.C.; Goel, A.; Singh, S.P. A comprehensive survey for scheduling techniques in cloud computing. J. Netw.

Comput. Appl. 2019, 143, 1–33. [CrossRef]
40. Holt, C.C. Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecast. 2004, 20, 5–10. [CrossRef]
41. Kalman, R.E. A new approach to linear filtering and prediction problems. J. Fluids Eng. Trans. ASME 1960, 82, 35–45. [CrossRef]
42. Sholl, P.; Wolfe, R.K. The Kalman filter as an adaptive forecasting procedure for use with Box-Jenkins arima models. Comput.

Indust. Eng. 1985, 9, 247–262. [CrossRef]
43. Kim, Y.; Bang, H. Introduction to Kalman Filter and Its Applications. In Introduction and Implementations of the Kalman Filter;

Govaers, F., Ed.; IntechOpen: Rijeka, Croatia, 2019; Chapter 2. [CrossRef]
44. Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
45. Webster, B.L. Solving Combinatorial Optimization Problems Using a New Algorithm Based on Gravitational Attraction. Ph.D.

Thesis, Florida Institute of Technology, Melbourne, FL, USA, 2004.
46. Buyya, R.; Ranjan, R.; Calheiros, R.N. Modeling and simulation of scalable cloud computing environments and the cloudsim

toolkit: Challenges and opportunities. In Proceedings of the 2009 International Conference on High Performance Computing and
Simulation, HPCS 2009, Leipzig, Germany, 21–24 June 2009; pp. 1–11. [CrossRef]

47. Pandey, S.; Wu, L.; Guru, S.M.; Buyya, R. A particle swarm optimization-based heuristic for scheduling workflow applications in
cloud computing environments. In Proceedings of the International Conference on Advanced Information Networking and
Applications, AINA, Perth, WA, Australia, 20–23 April 2010; pp. 400–407. [CrossRef]

http://dx.doi.org/10.1007/s10922-020-09573-6
http://dx.doi.org/10.1002/dac.4302
http://dx.doi.org/10.1007/s10994-008-5065-7
http://dx.doi.org/10.14569/IJACSA.2018.090550
http://dx.doi.org/10.1016/j.jnca.2019.06.006
http://dx.doi.org/10.1016/j.ijforecast.2003.09.015
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1016/0360-8352(85)90005-1
http://dx.doi.org/10.5772/intechopen.80600
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1109/HPCSIM.2009.5192685
http://dx.doi.org/10.1109/AINA.2010.31

	Introduction
	Literature Review
	Methodology
	User QoS Guarantee Model
	ARIMA Prediction Model
	Kalman Filter
	User QoS Warning Decision
	QoS Guarantee Processing Flow

	Task Flow Scheduling Algorithm
	Introduction to Hybrid Particle Swarm Optimization—HPSO
	Introduction to Particle Swarm Optimization
	Introduction to Gravitational Search Algorithm

	A Hybrid Algorithm Based on PSO and GSA
	Algorithm Process

	Experimental Results
	Performance Analysis
	QoS Experimental Results

	Conclusions
	References

