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Abstract: Multiple fault identification in induction motors is essential in industrial processes due to
the high costs that unexpected failures can cause. In real cases, the motor could present multiple
faults, influencing systems that classify isolated failures. This paper presents a novel methodology
for detecting multiple motor faults based on quaternion signal analysis (QSA). This method couples
the measured signals from the motor current and the triaxial accelerometer mounted on the induction
motor chassis to the quaternion coefficients. The QSA calculates the quaternion rotation and applies
statistics such as mean, variance, kurtosis, skewness, standard deviation, root mean square, and
shape factor to obtain their features. After that, four classification algorithms are applied to predict
motor states. The results of the QSA method are validated for ten classes: four single classes (healthy
condition, unbalanced pulley, bearing fault, and half-broken bar) and six combined classes. The
proposed method achieves high accuracy and performance compared to similar works in the state of
the art.

Keywords: quaternion signal analysis; machine learning comparison; motor fault detection; induc-
tion motors

1. Introduction

Induction motors are the most used electromechanical elements in the industry. Early
fault detection allows repairing and maintaining the line production with a low cost and
high reliability [1]. Mechanical and electrical stresses produce typical defects in induction
motors such as broken rotor bars, bearing faults, and rotor unbalance [2]. Fault detection
has become an important research topic due to the time and economic cost it saves in
critical industrial procedures.

Different methods have been developed for multiple faults detection through signal
monitoring such as vibration, current, temperature, voltage, power, and acoustic [3]. The
electric current has become the primary signal analyzed by researchers because many faults
affect the electromagnetic field, which induces changes in the stator current. Likewise,
vibration signals exhibit changes when a failure occurs because of the produced vibration
forces. Additionally, the methods for data acquisition of electric current and vibration
are noninvasive and are easy to perform. The use of both of these signals improves the
detection of multiple faults when the signals or their properties are analyzed using artificial
intelligence methods [2].

In the literature, the most popular methods are based on an analysis in the frequency
domain. Among these is the work presented in [4], where statistical calculations are applied
to data obtained from the application of the Fast Fourier Transform (FFT) to detect seven
faults, in which two of them are classified into two levels. The efficiency of this work ranges
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from 80% to 90%, classified by the support vector machine (SVM). FFT and independent
component analysis (ICA) methods are fused to detect a bearing fault, half, one, and two
broken rotor bars by current signals [5]. On the other hand, wavelet packet decomposition
is applied in [6] to extract coefficients and thus detect three failure modes. SVM is used to
classify failures, with 90% of assertiveness.

The authors in [7] use vibration and current signals to obtain fifteen and fourteen
statistical features in the time and frequency domain, respectively. Signals in the frequency
domain are obtained through the FFT technique. Then, the principal component analysis
(PCA) and the linear discriminant analysis (LDA) are applied to reduce features dimension.
Finally, an NN-based classifier is used to detect healthy induction motor and bearing faults
from 1 mm to 5 mm with a class ratio greater than 98.7%. Similarly, in [8], eleven statistical
features are extracted from electric current and vibration signals to diagnose six different
faults with an ANN classifier. This method is developed in the time domain, asserting
87.925% to 92.95%. In [9], a convolutional neural network (CNN) is used to detect three
motor faults through a technique based on pattern recognition from an electric current
signal, a speed measurement, and a vibration signal, achieving an efficiency from 98.8%
to 100%.

Machine learning techniques are also applied to motor fault detection, as is shown
in [10–12]. The authors in [10] developed a method using twenty-one statistical calculations
in time and frequency domain obtained from vibration signals with five thousand samples.
SVM, K-nearest neighbors (KNN), decision tree, and LDA are proven to detect healthy or
broken rotor bars and bearing faults with accuracy from 88.2% to 98.2%. In addition to
the techniques mentioned, the fuzzy Artmap network (FAM) is another machine learning
method shown in [11], which presents 74.05% of assertiveness. Variations in existing
methods are developed as in [12], where sparse deep stacking networks (SDSN) are valued
with vibration signals to detect five faults; the obtained results have effectiveness from 93.8%
to 100%.

Most research works present the detection of multiple isolated faults because the
identification of multiple combined failures implies the existence of conflicts among two
or more characteristic values, which is complex to classify [13]. In real rotary machines,
multiple combined faults can occur due to the efforts to which they are exposed [14]. There
are several works where the identification of multiple combined faults are presented, such
as in [15] where two single faults and three combined are classified with more than 99% of
accuracy using maximal overlap discrete wavelet transform (MODWT) in current signal
and a CNN architecture to classify. The work presented in [16] classifies healthy bearing,
healthy rotor, and four different fault combinations with an accuracy of 99.70% using CNN
based on adaptive gradient applied to vibration signals. In [13], three combined faults are
detected through the entropy analysis of one phase current. A fuzzy algorithm is applied
to classify entropy calculus with an assertiveness from 80% to 100%.

The combination of two and three faults presents difficulty in identification because
the characteristics of the faults are altered when they are joined. Therefore, few works
present this type of classification. In addition, one and two broken rotor bars are complex
to identify combined with other faults due to their similar characteristics. The contribution
of this research work is a novel methodology based on quaternion rotation and statistical
analysis to detect 10 motor faults, among which are multiple failures of broken bars. The
electric current and the three-axis vibration signals of an induction motor are analyzed to
detect four single classes: (1) healthy condition (HT), (2) unbalanced pulley (BA), (3) bearing
fault (BN), and (4) half-broken bar (HB). In addition, the combinations of single motor
fault classes generate six additional categories: (5) BN–BA, (6) HB–BA, (7) one broken
bar–bearing fault (OB–BN), (8) two broken bar–bearing fault (TB–BN), (9) OB–BN–BA, and
(10) TB–BN–BA.

The paper is organized into four sections, as follows: an introduction to fault detection
in the motor is given in Section 1; Section 2 describes the theoretical background of the
quaternion signal analysis and statistical measure methodology, and how it was adapted to
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detecting multiple faults in the motor using current and vibration. The results are presented
and discussed in Section 3; we compare our results with other common machine learning
techniques used for motor fault classification at the end of this section. Likewise, results
are correlated with works that present multiple faults. Section 4 draws some conclusions
and future works.

2. Materials and Methods

The flowchart of the method proposed in this work is shown in Figure 1; this flowchart
is divided into two parts: the QSA method formed by quaternion and statistical calculus
and the classification method.

Current and 

accelerometer

measurements

Quaternion

Delay

Rotation Modulus

μ, VA, CS, SD, 

KT, RMS, SF

I,x,y,z

q(t)
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Statistics

Figure 1. Flowchart of the proposed methodology, where current and acceleration signals are gotten
into and single and combined classes are obtained.

2.1. QSA Method

Initially, the quaternion q is formed as is shown in (1), where q0, q1, q2, and q3 are the
coefficients of complex numbers with four components (1 , i, j, and k).

q = q0 + q1i + q2 j + q3k (1)

The induction motor current I(t) and the vibration measurements x(t), y(t), and z(t)
are discrete signals with m samples which are adapted to the quaternion, as in (2).

q(t) = I(t) + x(t)i + y(t)j + z(t)k (2)

Similarly, the quaternion is delayed ∆t samples to obtain a displaced quaternion qd(t),
as in (3).

qd(t) = q(t + ∆t) (3)

Present quaternion q(t) and rotation qrot(t) describe the conduct to obtain time-
displaced quaternion qd(t), as is presented in Equation (4).

qd(t) = qrot(t)⊗ q(t)⊗ q−1
rot (t). (4)

In the same way, the equation can be presented as is shown in (4).

qd(t) = qrot(t) · q(t). (5)

Thus, the equation can be expressed as is shown in (6) to obtain a three-dimensional
model of orientations and rotations qrot, which describes the conduct of present quaternion
to obtain delayed quaternion [17].



Sensors 2022, 22, 2622 4 of 12

qrot =

 1− 2q2
d2 − 2q2

d3 2(qd1qd2 + qd0qd3) 2(qd1qd3 − qd0qd2)
2(qd1qd2 − qd0qd3) 1− 2q2

d1 − 2q2
d3 2(qd2qd3 + qd0qd1)

2(qd1qd3 + qd0qd2) 2(qd2qd3 − qd0qd1) 1− 2q2
d1 − 2q2

d2

 q1
q2
q3

 (6)

Each rotation model is described as is shown in (7).

qrot(t) = qr1(t)i + qr2(t)j + qr3(t)k (7)

The statistical analysis of the model describes its behavior, whereby M modulus of
qrot(t) are calculated to generate a window wm, as is shown in (8).

wm[n] = [|qrot(t)|, |qrot(t + ∆t)|, |qrot(t + 2∆t)| . . . |qrot(t + M∆t)|] (8)

Statistical values such as mean (µ), variance (VA), cluster shape (CP), standard devi-
ation (SD), kurtosis (KT), root mean square (RMS), and shape factor (SF) are calculated
from wm. Equations (9)–(15) show the statistical features, and they determine the evolution
of signals in the time–space domain [2,8].

µ = 1
N ∑ wm (9)

VA = 1
N ∑(wm − µ)2 (10)

CS = 1
N ∑(wm − µ)3 (11)

SD =
√

VA (12)

KT = ∑(wm−µ)4

SD4 (13)

RMS =
√

1
N ∑(wm)

2 (14)

SF = RMS
1
N ∑|wm |

(15)

These statistical evaluations are selected from multiple statistical calculations due to
better property separation between faults.

2.2. Classification

Finally, some classification algorithms are applied to the statistical features to detect
ten motor conditions proposed in this work. Some tools in machine learning, such as a
decision tree classifier, KNN, LDA, and LSTM, are used to compare our method efficiency
with other classifiers.

The decision tree classifier is a simple classification method that evaluates the feature
space with criteria to generate recursive partitions. The evaluation criteria in each internal
node are selected by the training set from the top node known as “the root node” to the
last nodes called “leaves”. Once the decision tree classifier is trained, new input values are
compared to the evaluation criterion in each node to select the most appropriate branch
until a leaf node is selected. The last node contains a class label assigned to the input values
classification. Leaves nodes can be eliminated to present the best classification results; this
method is known as the “pruning decision tree” [18].

The KNN classifier is based on a nonparametric method used in regression tasks.
In this classifier, neighborhoods are determined by the distance among elements of the
training data assigned to a label. A new instance is classified by selecting the “k closest
neighbors” in the training set. Lastly, the most predominant label is attached [19].

The LDA classifier is based on a classical statistical method that minimizes the within-
class distance and simultaneously minimizes the between-class distance, discriminating the
least amount of information. This method obtains the best linear combination of features
that classify a database with multiple classes [20].

The LSTM classifier is an extended architecture of a recurrent neural network (RNN),
where the nodes of an RNN are replaced with memory blocks, which contain temporal
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state in the memory cell and control the information flows in the block with special adaptive
multiplicative units called gates. The memory blocks present the input gate to determine
the information amount in the cell state, the forget gate to establish which information is
deleted, and the output gate to decide the information in the output [21].

2.3. Experimental Setup

Our approach identifies ten motor states through four signals measured from a three-
phase induction motor (WEG 00136APE48T) with a weight of 9 kg, a width of 150 mm, and
a length of 239 mm. The mentioned motor presents a power of 0.75 hp, with twenty-eight
rotor bars and two poles. The signal acquisition of the electric motor current is obtained
by a Fluke i200s current clamp measuring the power cable. The three vibration signals
are acquired by a three-axis MEMS-based accelerometer (LIS3L02AS4), which is mounted
on the induction motor chassis. The four signals are processed from sensors with a 16-bit
ADC (ADS7809) and a DAS based on an FPGA system with 4096 samples and a sampling
frequency of 1.5 kHz per test during steady-state motor operation running at 3402 rpm.
The experimental setup is shown in Figure 2.

Figure 2. Experimental setup.

The isolated faults BN, BA, HB, OB, and TB are intentionally provoked, as is shown in
Figure 3. BN is produced by a drilled hole with a diameter of 7.938 mm. BA is caused by
adding mass to the pulley. HB, OB, and TB are produced by a partially drilled hole into one
rotor bar, a total drilled hole into one rotor bar, and total drilled holes into two rotor bars.

Figure 3. Faults setup . Healthy condition (HT), half broken bar (HB), one broken bar (OB), two
broken bar (TB), unbalanced pulley (BA), and bearing fault (BN). Drilled holes in broken bars are
shown in purple boxes.



Sensors 2022, 22, 2622 6 of 12

The central test bench is structured by one hundred and ten archives, of which HT,
BA, HB, and HB–BA each have twenty measurements. On the other hand, BN, BN–BA,
OB–BN, TB–BN, OB–BN–BA, and TB–BN–BA have five archives for each. A sample of the
entire bench is shown in Figure 4.

0 10 20 30

Samples

-1

-0.5

0

0.5

1

A
m

p
li

tu
d

e 
[A

]

(a)

HT

BA

BN

HB

0 10 20 30

Samples

-10

-5

0

5

A
m

p
li

tu
d

e 
[m

/s
2
]

(b)

0 10 20 30

Samples

-6

-4

-2

0

2

4

A
m

p
li

tu
d

e 
[m

/s
2
]

(c)

0 10 20 30

Samples

-10

-5

0

5

10

A
m

p
li

tu
d

e 
[m

/s
2
]

(d)

−

−

−

−

−

−

−

−

−

Figure 4. Signals samples. (a) Current signals. (b) x-axis vibration signals. (c) y-axis vibration signals.
(d) z-axis vibration signals.

3. Results

This section presents the results by repeating the proposed method using forty test
benches. The number of test files per bench is equalized by the random selection of five
archives per class. One archive of each class is randomly selected to train the classifiers,
and the remaining four are used for testing. The QSA is applied to the test bench with
window samples from one hundred to four thousand.

Tables 1 and 2 show the results for the accuracy, precision, recall, and F1 of each proved
classifications. The results are presented for five different window sizes: one hundred, five
hundred, one thousand, two thousand, and four thousand.

The results of QSA applied to the four single classes HT, BA, BN, and HB are presented
in Table 1: LDA, KNN, and decision tree classifications with 1.0 accuracy using five hundred
window samples. Nevertheless, KNN and decision tree presented a precision, a recall, and
an F1 less than those for LDA. These values improve in one thousand window samples.
The LSTM classifier presented a high accuracy, but it did not reach the value of 1.

In Table 2, the test bench of the four single classes mentioned above and six combined
categories (BN–BA, HB–BA, OB–BN, TB–BN, OB–BN–BA, and TB–BN–BA) is valued. The
precision, recall, and F1 of four single classes are shown to analyze the table better. The
accuracy in LDA and KNN increase from 0.80 to 0.96, and 0.76 to 0.96, respectively, as the
number of samples in the window increases. Both classifiers presented an accuracy of 0.96
in four thousand samples; however, KNN obtains a higher value in precision, recall, and F1.
The decision tree gives less efficiency than the LDA and KNN; nevertheless, the accuracy is
0.92 with a window size of one thousand. On the other hand, LSTM needs many data to
train, and the effective accuracy is 0.76.



Sensors 2022, 22, 2622 7 of 12

Table 1. Accuracy, precision, recall, and F1 of four single classes.

Clasificator Samples Accuracy
Precision Recall F1

HT BA BN HB HT BA BN HB HT BA BN HB

100 0.99 0.98 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.02 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01
500 1.00 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.02 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01

LDA 1000 1.00 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.02 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01
2000 1.00 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.02 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01
4000 1.00 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.02 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01

100 0.99 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.97 ± 0.01 0.97 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.02 0.98 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.01
500 1.00 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.02 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01

KNN 1000 1.00 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.02 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01
2000 1.00 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.02 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01
4000 1.00 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.02 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01

100 0.91 0.97 ± 0.01 0.98 ± 0.00 0.98 ± 0.00 0.80 ± 0.01 0.71 ± 0.01 0.96 ± 0.00 0.99 ± 0.00 0.99 ± 0.02 0.79 ± 0.01 0.97 ± 0.00 0.98 ± 0.00 0.88 ± 0.01
500 0.95 0.97 ± 0.01 1.00 ± 0.00 0.99 ± 0.00 0.88 ± 0.01 0.82 ± 0.01 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.02 0.88 ± 0.01 0.99 ± 0.00 1.00 ± 0.00 0.93 ± 0.01

LSTM 1000 0.97 0.97 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.93 ± 0.01 0.90 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.02 0.92 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.01
2000 0.98 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.94 ± 0.01 0.91 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.02 0.93 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.01
4000 0.99 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 0.98 ± 0.01 0.96 ± 0.01 0.99 ± 0.00 1.00 ± 0.00 0.99 ± 0.02 0.96 ± 0.01 0.99 ± 0.00 1.00 ± 0.00 0.98 ± 0.01

100 0.99 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.97 ± 0.01 0.96 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.02 0.98 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.01
500 1.00 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.02 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01

TREE 1000 1.00 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.02 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01
2000 1.00 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.02 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01
4000 1.00 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.02 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01
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Table 2. Accuracy, precision, recall, and F1 of four single classes and six combinations.

Clasificator Samples Accuracy
Precision Recall F1

HT BA BN HB HT BA BN HB HT BA BN HB

100 0.80 0.88 ± 0.05 0.63 ± 0.06 0.90 ± 0.07 0.99 ± 0.01 0.93 ± 0.06 0.69 ± 0.09 0.91 ± 0.08 0.98 ± 0.02 0.90 ± 0.03 0.65 ± 0.04 0.90 ± 0.03 0.99 ± 0.01
500 0.91 0.99 ± 0.05 0.82 ± 0.06 0.92 ± 0.07 1.00 ± 0.01 0.97 ± 0.06 0.92 ± 0.09 0.99 ± 0.08 1.00 ± 0.02 0.98 ± 0.03 0.86 ± 0.04 0.95 ± 0.03 1.00 ± 0.01

LDA 1000 0.93 1.00 ± 0.05 0.83 ± 0.06 0.93 ± 0.07 1.00 ± 0.01 0.98 ± 0.06 0.93 ± 0.09 0.99 ± 0.08 1.00 ± 0.02 0.99 ± 0.03 0.87 ± 0.04 0.96 ± 0.03 1.00 ± 0.01
2000 0.94 1.00 ± 0.05 0.85 ± 0.06 0.94 ± 0.07 1.00 ± 0.01 0.97 ± 0.06 0.93 ± 0.09 1.00 ± 0.08 1.00 ± 0.02 0.98 ± 0.03 0.87 ± 0.04 0.97 ± 0.03 1.00 ± 0.01
4000 0.96 1.00 ± 0.05 0.91 ± 0.06 0.94 ± 0.07 1.00 ± 0.01 0.98 ± 0.06 0.99 ± 0.09 1.00 ± 0.08 1.00 ± 0.02 0.99 ± 0.03 0.94 ± 0.04 0.97 ± 0.03 1.00 ± 0.01

100 0.76 0.89 ± 0.05 0.56 ± 0.06 0.88 ± 0.07 0.97 ± 0.01 0.81 ± 0.06 0.60 ± 0.09 0.93 ± 0.08 0.98 ± 0.02 0.85 ± 0.03 0.58 ± 0.04 0.90 ± 0.03 0.98 ± 0.01
500 0.91 0.99 ± 0.05 0.84 ± 0.06 0.92 ± 0.07 1.00 ± 0.01 0.97 ± 0.06 0.92 ± 0.09 0.99 ± 0.08 1.00 ± 0.02 0.98 ± 0.03 0.87 ± 0.04 0.95 ± 0.03 1.00 ± 0.01

KNN 1000 0.94 1.00 ± 0.05 0.86 ± 0.06 0.92 ± 0.07 1.00 ± 0.01 0.99 ± 0.06 0.97 ± 0.09 0.99 ± 0.08 1.00 ± 0.02 0.99 ± 0.03 0.91 ± 0.04 0.95 ± 0.03 1.00 ± 0.01
2000 0.95 1.00 ± 0.05 0.89 ± 0.06 0.92 ± 0.07 1.00 ± 0.01 1.00 ± 0.06 0.97 ± 0.09 1.00 ± 0.08 1.00 ± 0.02 1.00 ± 0.03 0.92 ± 0.04 0.96 ± 0.03 1.00 ± 0.01
4000 0.96 1.00 ± 0.05 0.92 ± 0.06 0.90 ± 0.07 1.00 ± 0.01 1.00 ± 0.06 0.99 ± 0.09 1.00 ± 0.08 1.00 ± 0.02 1.00 ± 0.03 0.95 ± 0.04 0.94 ± 0.03 1.00 ± 0.01

100 0.71 0.87 ± 0.05 0.61 ± 0.06 0.80 ± 0.07 0.95 ± 0.01 0.76 ± 0.06 0.64 ± 0.09 0.86 ± 0.08 0.93 ± 0.02 0.78 ± 0.03 0.59 ± 0.04 0.81 ± 0.03 0.92 ± 0.01
500 0.76 0.96 ± 0.05 0.62 ± 0.06 0.90 ± 0.07 0.98 ± 0.01 0.83 ± 0.06 0.66 ± 0.09 0.86 ± 0.08 0.98 ± 0.02 0.85 ± 0.03 0.61 ± 0.04 0.85 ± 0.03 0.98 ± 0.01

LSTM 1000 0.75 0.95 ± 0.05 0.64 ± 0.06 0.86 ± 0.07 1.00 ± 0.01 0.91 ± 0.06 0.61 ± 0.09 0.83 ± 0.08 0.94 ± 0.02 0.92 ± 0.03 0.57 ± 0.04 0.79 ± 0.03 0.96 ± 0.01
2000 0.73 0.95 ± 0.05 0.55 ± 0.06 0.70 ± 0.07 0.98 ± 0.01 0.87 ± 0.06 0.64 ± 0.09 0.82 ± 0.08 0.96 ± 0.02 0.89 ± 0.03 0.54 ± 0.04 0.72 ± 0.03 0.96 ± 0.01
4000 0.48 0.76 ± 0.05 0.32 ± 0.06 0.32 ± 0.07 0.84 ± 0.01 0.92 ± 0.06 0.29 ± 0.09 0.25 ± 0.08 0.56 ± 0.02 0.80 ± 0.03 0.28 ± 0.04 0.26 ± 0.03 0.60 ± 0.01

100 0.76 0.90 ± 0.05 0.57 ± 0.06 0.87 ± 0.07 0.97 ± 0.01 0.79 ± 0.06 0.61 ± 0.09 0.93 ± 0.08 0.99 ± 0.02 0.84 ± 0.03 0.58 ± 0.04 0.89 ± 0.03 0.98 ± 0.01
500 0.88 0.98 ± 0.05 0.80 ± 0.06 0.86 ± 0.07 1.00 ± 0.01 0.95 ± 0.06 0.89 ± 0.09 0.98 ± 0.08 1.00 ± 0.02 0.96 ± 0.03 0.83 ± 0.04 0.91 ± 0.03 1.00 ± 0.01

TREE 1000 0.92 1.00 ± 0.05 0.84 ± 0.06 0.87 ± 0.07 1.00 ± 0.01 0.99 ± 0.06 0.93 ± 0.09 0.97 ± 0.08 1.00 ± 0.02 1.00 ± 0.03 0.87 ± 0.04 0.91 ± 0.03 1.00 ± 0.01
2000 0.91 0.99 ± 0.05 0.87 ± 0.06 0.90 ± 0.07 1.00 ± 0.01 0.96 ± 0.06 0.95 ± 0.09 0.99 ± 0.08 1.00 ± 0.02 0.98 ± 0.03 0.90 ± 0.04 0.94 ± 0.03 1.00 ± 0.01
4000 0.90 1.00 ± 0.05 0.92 ± 0.06 0.93 ± 0.07 1.00 ± 0.01 1.00 ± 0.06 0.95 ± 0.09 1.00 ± 0.08 1.00 ± 0.02 1.00 ± 0.03 0.92 ± 0.04 0.96 ± 0.03 1.00 ± 0.01
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Figures 5 and 6 show the previously analyzed results using polar graphs where the
correct classes are displayed around the graph, where the valued classes are shown around
the graphics, and levels present their percentages. In Figure 5, precision, recall, and F1
results are shown when the QSA is applied with four thousand window samples to four
individual classes. The method is evaluated with the classifiers mentioned above. The
results in graphs show that the four classifiers are optimal to obtain high-precision testing
for four individual classes with low variations of recall and F1, as is described in the
analysis of Table 1.
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Figure 5. The resulting graphs of four single classes: (a) precision, (b) recall, and (c) F1.

In the same way, Figure 6 presents the QSA method applied to four single classes
and six combined classes with four thousand window samples using the same classifiers.
In this case, the results of the QSA method obtained from LDA and KNN show similar
precision in individual and combined faults, while LSTM presents low precision as recall
and F1. The decision tree classifier has low precision in two combined faults. Therefore, it
is a good option when applying the other faults.
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Figure 6. Resulting graph of four single classes and six combinations: (a) precision, (b) recall, and
(c) F1.

Table 3 shows the comparison of the QSA results presented. The table includes the
applied method and its classification. Parentheses separate the number of single and
combined classes, and the total number of classes results from the sum of both values. In
addition, the accuracy of the method is presented. The neural-network-based classifiers
tend to perform well in the attributes classification, using sophisticated and straightforward
methods. KNN is the method that presents the best results in this work, classifying four
single classes and ten multiple classes (four single and six combined). In the analyzed works,
the total amounts of classes range from four to eight with high accuracy values from 0.73
to 1.0. Most of the presented papers use high samples amount; our approach is evaluated
with four single classes and five hundred samples, which presents 1.0 accuracy and a range
of recall and specificity from 0.995 to 1.0 (0.995–1.0 recall and 0.997–1.0 specificity). The
QSA evaluation with combined class shows a 0.96 accuracy in four thousand samples, and
recall and specificity range from 0.81 to 1.0 (0.81–1.0 recall and 0.84–1.0 specificity).
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Table 3. Methods comparison table involving the proposed method.

Method Classification Single (Comb) Samples Accuracy

Statistical Method [22] SVM 3 (1) 500 0.85–1.00

MultirowMP and DWT [3] SVM, KNN and 3 (3) 3000 0.97–1.00Ensemble 5 (1)

Time vibration signal [16] ADG-dCNN 3 (3) 2100 0.98–0.99

Time and frequency OAA-MCSVM 3 (4) 1,250,000 0.73–1.00analyses [23]

Homogeneity and ANN 5 11,059 1.00kurtosis analysis [24]

Frequency and time features, NN 4 (4) 375,000 0.96–0.98GA-PCA, LDA [25] −500,000

SDAE [26] NMEC-DNN 4 250–500 0.91–1.00
4(4) 0.88–0.95

QSA KNN 4 500 1.00
(Our approach) 4 (6) 4000 0.96

4. Conclusions

The QSA is a simple method because the signals are processed in the time domain
without any space transformation. This method has been proved to isolate faults in an
induction motor using a window with few samples, and the results presented high accuracy
with narrow ranges of variation. Besides, the QSA was applied to multiple failures, among
which are signals of single and combined faults with a total of ten classes to classify. The
analyzed signals presented a high accuracy when the appropriate classifier was used.
Although the accuracy was not perfect, it remained among the best values that other works
gave. In addition, our work is limited in the number of combined failures due to statistical
values. A more robust classification algorithm with more statistics could present better
results and increase the number of classifications in the combined failures.

The results from the computer simulations clearly show that the QSA is a powerful
method to detect isolated and combined faults in induction motors. Our approach presents
high accuracy and precision using a window with only a few samples, resulting in short
processing time. Because of its characteristics, our approach could be implemented in
portable systems and mounted on induction motors of the actual manufacturing process to
detect early single and multiple faults without stopping the process involved. As future
work, we are interested in increasing the statistics amount and improving the classification
method to classify more combined faults supported by an algorithm to select the best
features. On the other hand, we want to use the QSA method and regression models to
estimate the degree of bar faults.
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Abbreviations
The following abbreviations are used in this manuscript:

QSA Quaternion Signal Analysis
FFT Fast Fourier Transform
SVM Support Vector Machine
ICA Independent Component Analysis
ANN Artificial Neural Network
CNN Convolutional Neural Network
MLP Multilayer Perceptron
KNN k-Nearest Neighbors
SMO Sequential Minimal Optimization
FAM Fuzzy ArtMap Network
SDSN Sparse Deep Stacking Network
HT Healthy Condition
BA Unbalanced Pulley
BN Bearing Fault
HB Half Broken Bar
OB One Broken Bar
TB Two Broken Bar
µ Mean
VA Variance
CS Cluster Shape
SD Standard Deviation
KT Kurtosis
RMS Root Mean Square
SF Shape Factor
LDA Linear Discriminant Analysis
LSTM Long Short-Term Memory
RNN Recurrent Neural Network
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