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Abstract: Road speed is an important indicator of traffic congestion. Therefore, the occurrence of
traffic congestion can be reduced by predicting road speed because predicted road speed can be
provided to users to distribute traffic. Traffic congestion prediction techniques can provide alternative
routes to users in advance to help them avoid traffic jams. In this paper, we propose a machine-
learning-based road speed prediction scheme using road environment data analysis. The proposed
scheme uses not only the speed data of the target road, but also the speed data of neighboring roads
that can affect the speed of the target road. Furthermore, the proposed scheme can accurately predict
both the average road speed and rapidly changing road speeds. The proposed scheme uses historical
average speed data from the target road organized by the day of the week and hour to reflect the
average traffic flow on the road. Additionally, the proposed scheme analyzes speed changes in
sections where the road speed changes rapidly to reflect traffic flows. Road speeds may change
rapidly as a result of unexpected events such as accidents, disasters, and construction work. The
proposed scheme predicts final road speeds by applying historical road speeds and events as weights
for road speed prediction. It also considers weather conditions. The proposed scheme uses long
short-term memory (LSTM), which is suitable for sequential data learning, as a machine learning
algorithm for speed prediction. The proposed scheme can predict road speeds in 30 min by using
weather data and speed data from the target and neighboring roads as input data. We demonstrate
the capabilities of the proposed scheme through various performance evaluations.

Keywords: road speed prediction; traffic congestion; traffic incident analysis; traffic prediction; traffic
data analysis

1. Introduction

Various studies have recently been conducted to solve problems caused by traffic
congestion [1–17]. These studies have aimed to reduce the occurrence rate of traffic conges-
tion by predicting traffic congestion in advance and avoiding various problems caused by
traffic congestion by providing alternatives to drivers approaching traffic jams. Road speed
is one of the most important indicators of traffic conditions. Various factors affect road
speed, including the speed limit of a road, traffic volume that the road can accommodate,
traffic flow over time, and the effects of connected roads, accidents, weather, and special
days such as national holidays. These factors affecting road speed are defined as road
environment data. Because road environment data affect traffic congestion, it is necessary
to analyze the impact of each factor and combined factors on traffic congestion.

The degree of traffic congestion is determined by various factors such as road speed,
traffic volume, number of low-speed vehicles, and road congestion. The National Intelli-
gent Transport System (ITS) Center, which manages all traffic information in South Korea,
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uses road speed as an indicator for determining traffic conditions. Based on road speed
predictions, users can predict road congestion events to avoid congestion and find alterna-
tives in advance, allowing them to avoid various problems caused by traffic congestion.
Furthermore, predicted road speeds can be used by navigation services to predict driving
time, which is the total travel time from a departure location to a destination.

In the past, road speed prediction schemes have mainly considered speed and traffic
volume data [5,6]. Existing schemes use speed and traffic volume changes over time to
predict the normal flow on a road segment. The authors of [6] used a Bayesian network [18]
to predict traffic speed. They considered the traffic conditions of upstream/downstream
roads around the target road to improve prediction accuracy. The authors of [15] used a
long short-term memory (LSTM) [19] model to predict short-term road speeds. They used
historical speed data from neighboring roads connected to the target road as input data for
LSTM. Because the speed data on neighboring roads affect the speeds on connected target
roads, they can be used to predict the speed of the target road in the near future. The authors
of [7] used the number of low-speed vehicles to determine the degree of road congestion
because low-speed vehicles are known to be a key factor in road congestion. The authors
of [8] used a convolutional neural network (CNN) [20] model as a tool for predicting
road congestion. To predict road speed, they predicted the level of traffic congestion by
comprehensively considering the effects of connected roads, traffic accidents, traffic control,
and weather.

However, these existing schemes have several limitations. For example, schemes using
speed and traffic volume changes and schemes that predict traffic congestion using the
number of low-speed vehicles do not consider road environment data [5,7]. The authors
of [6,15] considered the effects of the connected roads, but the prediction error increased as
the prediction time moved further away from the current time. Additionally, the prediction
error gradually increased if an unexpected event occurred.

Furthermore, they did not consider road environment data such as weather and traffic
accidents. Prediction schemes using CNN models predict traffic congestion by considering
historical traffic congestion data and road environment data [8]. The authors of [8] nor-
malized road environment data to values between zero and one and used the normalized
data as inputs for a fully connected neural network to consider road environment data.
However, this approach is limited in that it does not provide a scheme for calculating the
characteristics of each type of road environment data quantitatively.

Furthermore, most related studies have not considered the impacts of weather and
accidents on road speed [4–7,9,12,13,15]. For example, on very rainy days, the speed of
most vehicles decreases significantly. Additionally, if a traffic accident occurs on a road, it
takes a certain amount of time to recover the typical road conditions. Therefore, the impacts
of weather and traffic accidents on road speed should be considered. In this paper, we
propose a machine-learning-based road speed prediction scheme using road environment
data analysis. The proposed scheme uses the road speed prediction scheme proposed
in [15] to reflect the impact of connected roads. Additionally, the proposed scheme predicts
road speed by considering the impact of weather on road speed. If an unexpected event
such as a traffic accident or road construction work that breaks the regular flow on the
target road occurs, road speed prediction error will increase significantly.

Therefore, the proposed scheme reduces prediction errors by reflecting event weights
on road segments where the traffic flow changes rapidly. When predicting the road speed
using LSTM, there is a characteristic that the data at the time of prediction have the greatest
impact on road speed prediction. Therefore, although the LSTM scheme generally predicts
road conditions accurately in the presence of unexpected events, there are cases in which
it may fail to predict the regular flow of a road. To address this problem, the proposed
scheme analyzes historical average road speed data and uses these data for road speed
prediction to reflect the regular flow of a road more accurately.

The remainder of this paper is organized as follows. Section 2 discusses related studies
and Section 3 describes the proposed machine-learning-based road speed prediction scheme
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that considers road environment data. Section 4 shows performance evaluations to verify
the capabilities of the proposed scheme. Finally, Section 5 summarizes our conclusions.

2. Related Work
2.1. Road Congestion Prediction Schemes Using CNNs

Various studies have been conducted to address the problems caused by traffic con-
gestion [3–15]. Various factors affect road congestion. Existing road congestion prediction
schemes consider historical road congestion, the effects of connected roads, weather, ac-
cidents, special days, and congestion caused by police to predict the congestion levels of
roads [8]. The authors of [8] used a CNN [20] model to consider the spatial characteristics
of roads affected by connected roads and the temporal characteristics of congestion levels
that change over time.

Figure 1 shows the overall processing structure of the road congestion prediction
model proposed in [8]. The snapshot in the upper-left corner of Figure 1 shows the
input data used in [8]. The authors constructed a two-dimensional array containing the
congestion levels of the road to be predicted and those of the adjacent roads to reflect the
impact of adjacent roads and traffic flow over time. They considered the two-dimensional
array as a snapshot, which was used as the input for a CNN. Additionally, they normalized
data related to weather, holidays, road construction, and special days to reflect the factors
affecting congestion. These normalized data and predicted road conditions were used as
inputs for a fully connected neural network to predict the final road congestion level.
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2.2. Road Speed Prediction Scheme Using a Bayesian Network

Road speed is an important indicator for determining the degree of traffic congestion.
The authors of [6] used a Bayesian network to predict road speed. They considered the
speeds of the upstream and downstream roads around the target road as factors affecting
the speed of the target road. They designed a Bayesian network with conditional events
in which the road speed prediction for a particular node was determined by the latest
information on nearby links. Additionally, because it is difficult to obtain sufficient data
on unanticipated events for model training, they predicted final road speeds by reflecting
real-time road speeds to resolve performance degradation issues.

Figure 2 shows a road network and Bayesian network designed to predict road speeds.
A line segment represents a road and an arrow represents the flow of a road. Assuming that
the Bayesian network is constructed to predict the speed on line segment BC, the resulting
node in the Bayesian network in Figure 2 is BC(t). There are three types of links in the
network. The latest road speeds on CD, CG, and CH represent upstream links. The latest
road speeds on AB, EB, and FB represent downstream links. BC is the target link. To reflect
the effects of connected upstream/downstream links, they designed a Bayesian network
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model, as shown in Figure 2, and predicted road speeds. Additionally, when the prediction
error was large in the prediction results obtained by the real-time Bayesian network as a
result of an unexpected event, they determined that the current traffic event exhibited a
different pattern compared to the typical flow. In such cases, they predicted the final road
speed by reflecting the real-time traffic information of an unexpected event with a high
weight, rather than simply using the result predicted by the Bayesian network.
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2.3. Road Speed Prediction Scheme Using LSTM

In ref. [15], authors used an LSTM [19] model to predict road speeds five minutes into
the future. Their goal was to improve the accuracy of the predicted speed by analyzing the
factors that affect road speed. They performed prediction by independently reflecting the
historical speed data from the target road, effects of changes in the traffic volume on road
speed, and effects of the speeds of connected roads on the speed of the target road. As a
result of calculating and comparing the root-mean-squared errors (RMSEs) between the
predicted speeds and actual speeds, they determined that speed prediction considering the
effects of the speeds of connected roads yields the highest accuracy.

Figure 3 shows a graph comparing the actual speeds and predicted speeds considering
the effects of the speeds of connected roads from [15]. The red and blue lines indicate
the actual and predicted speeds, respectively. This scheme yields very high prediction
accuracy because unlike the scheme proposed in [6], it trains a prediction model based on
historical data and uses the data up to the prediction time point as input data for machine
learning. The experimental results from [15] demonstrate that speeds in the near future can
be predicted with high accuracy, even without considering road environment data such as
weather and road conditions that affect the road speed or traffic accidents that trigger the
sharpest changes in road speed. This is because this scheme considers the data up to the
time point just before prediction as inputs. When prediction is performed using data up to
the previous time point, the accuracy of prediction improves because road speeds typically
change gradually.
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2.4. Problems Faced by Existing Schemes

Ref. [8] improved the accuracy of congestion prediction by using historical road con-
gestion data and data such as weather, road construction, and special day data, which are
factors affecting road speed. They normalized each type of road environment data to values
between zero and one. Since the road environment data exhibit different characteristics,
the impact of each type of data on road congestion must be analyzed. However, they did
not provide a scheme for calculating the influence of each data type quantitatively.

Ref. [6] used historical speed data and real-time traffic information from upstream
and downstream roads around the target road based on a Bayesian network to predict
road speeds after 5 to 60 min. However, in the scheme proposed in [6], the error increased
as the prediction time moved further away from the current time. Although this scheme
reflects real-time traffic information to prepare for the impact of unanticipated events on
road speed, the error increases as the predicted time moves further into the future because
the effectiveness of real-time traffic information decreases.

Ref. [21] used a recurrent neural network (RNN) to predict road congestion. However,
RNNs face the vanishing gradient problem, where the impact of the initial data disappears
as the time gap increases.

Ref. [19] predicted road speeds in the near future by using the historical speed data
from roads connected to the target road as inputs for an LSTM model to consider the
effects of connected roads. However, when predicting the road speed in the relatively
distant future, there is a problem where the prediction error increases if an unanticipated
event occurs.

Various factors affect road speed and various road environment data should be con-
sidered to increase the accuracy of road speed prediction. Because roads are all connected
and connected roads have mutual impacts, the effects of connected roads should also be
considered. Particularly, factors such as weather and traffic accidents have a large impact
on speed. Because road environment data have different characteristics and influences, the
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characteristics of each type of road environment data should be analyzed and used for road
speed prediction to increase the accuracy of road speed prediction.

3. Proposed Road Speed Prediction Scheme
3.1. Overall Processing Approach

As the cost of traffic congestion has increased, various studies have been conducted
on the prediction of traffic congestion and road speed to address this problem [22,23].
The National ITS Center uses road speed as an indicator to identify various traffic events.
Drivers can avoid congestion by anticipating congestion events based on road speed
predictions. Additionally, they can avoid various problems caused by traffic congestion
by receiving alternative routes in advance. Existing road speed prediction schemes use
the latest road speed data to supplement the problem of a significant decline in prediction
accuracy when an unexpected event occurs. However, when the prediction time is far in
the future, there is a limitation when an unexpected event occurs between the current time
point and prediction time point, even if the latest road speed data are reflected. Therefore,
road speed prediction schemes should consider road environment data that can reflect
unexpected events. Existing road congestion prediction schemes that use CNN models
consider various road environment data, but they do not provide a scheme for calculating
the impacts of road environment data with different characteristics quantitatively.

In this paper, we propose a road speed prediction scheme that considers road environ-
ment data to resolve the problems faced by existing schemes. The proposed scheme uses
historical speed data and historical average speed data for the target road. The proposed
scheme also considers weather data and historical speed data from connected roads as road
environment data. Furthermore, it analyzes speed changes to consider unexpected events
such as accidents and construction work that cause rapid changes in road speed. Therefore,
the proposed scheme can overcome the problems of existing schemes, where the accuracy
of the predicted road speed decreases when unexpected events occur such as bad weather,
accidents, or construction.

Figure 4 shows the overall structure of the proposed road speed prediction scheme.
The processes are divided into offline processing, which is the training stage, and online
processing, which is the prediction stage. Online processing generates a dataset through the
normalization of data collected in real time. It then uses the generated prediction dataset as
input data for a trained LSTM model. The prediction dataset consists of speed data from
the target road and neighboring roads up to the current time point, as well as forecasted
precipitation data for the next 30 min.

The proposed scheme uses the prediction dataset to predict a primary speed that
reflects the effects of weather and neighboring roads. However, because the primary
predicted speed result does not consider the effects of unexpected events, the typical flow
of the target road is sometimes not predicted accurately. This is because the latest data
have a relatively large impact on prediction. To overcome the problem of poor accuracy
caused by unexpected events, the proposed scheme also considers event weights that can
reflect rapidly changing flows on the road caused by unexpected events in the primary
predicted speed. Finally, the proposed scheme corrects the error of the primary predicted
speed based on historical average speed data to predict a final speed. Offline processing
trains a prediction model by inputting a training dataset into an LSTM model. The training
dataset consists of precipitation data and historical average speed data for the target road
and neighboring roads. The proposed scheme uses a learning model that applies optimal
weights by comparing actual and predicted speeds through the learning process.
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3.2. Normalization

Prediction schemes using neural network models are highly accurate. However,
the form of data is very important for learning schemes using neural network models.
Therefore, the proposed scheme normalizes the precipitation data from the pertinent region
and speed data of the target and neighboring roads collected in 5 min intervals as inputs for
the LSTM model. The goal of this procedure is to make the original data suitable for neural
network model training. Data sometimes contain missing values. Missing values can
significantly reduce the performance of prediction models. Missing values can be removed
or corrected using various filling schemes. In the initially collected speed data, missing
values were given values of 0.0. However, based on the nature of the road speed data, road
speed over time is a factor that cannot be ignored. Therefore, the proposed scheme uses
the fillna() function provided by the Python Pandas library [24] to fill in missing values
with the average values of the neighboring values. If consecutive values are missing, the
proposed scheme fills the missing values using the average speed values of the pertinent
road from the same day and time in the past.

The input data for the neural network model must be normalized independently
according to the characteristics of each dataset [25]. Therefore, the proposed scheme
normalizes the speed and weather data according to Equations (1) and (2), respectively.
For easy training of the neural network model, each data point is typically normalized to
a value between zero and one. This means that the characteristics of all the data should
be relatively uniform to fit within similar ranges. In Equation (1), SR denotes the overall
speed data collected from road R. St

R denotes the speed at time t collected from road R.
To reflect the general characteristics of each road, the proposed scheme divides the speed
data collected from the target road by the largest value among the speed data from each
road, resulting in normalization to a derived value between zero and one. For example,
assuming that max(SR) is 110 and St

R is 89, the normalized value of St
R is 0.81. Equation

(2) is the normalization equation for the weather data. Rain f allt
T denotes the rainfall in

the region to which the target road belongs at hour t. Similar to speed data normalization,
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the proposed scheme normalizes each rainfall value to a value between zero and one by
dividing it by the maximum value among the collected weather data.

nomalized St
R = St

R/max(SR) (1)

nomalized Rain f allt
T ≡ Rain f allt

T/max(Rain f allT) (2)

3.3. Generation of a Dataset

Road speed prediction requires a training dataset to train a prediction model, as
well as a dataset for actual prediction. Table 1 shows an example of a prediction dataset
used for data preprocessing that is computed by Equations (1) and (2). Si

T and Si
Nn

de-
note the data from the target road and a neighboring road, respectively, at time point
i. Prediction Rain f alli+6

T (hereafter PRFi+6
T ) reshows the expected rainfall at time point

i + 6. All data were recorded at 5 min intervals. When performing prediction, because the
actual road speed and rainfall after 30 min cannot be known, a prediction dataset must
be generated.

Table 1. Example prediction dataset.

PRFi+6
T Si

N1
Si

N2
Si

N3
Si

T

t 0.214334 0.870698 0.905612 0.848839 0.851250

t + 1 0.239343 0.866772 0.907388 0.855186 0.845409

t + 2 0.0 0.862847 0.909164 0.861533 0.839569

t + 3 0.0 0.906615 0.917066 0.910139 0.877798

t + 4 0.0 0.880805 0.910407 0.865375 0.829195

t + 5 0.0 0.851535 0.942584 0.845357 0.842598

t + 6 0.0 0.902145 0.920457 0.864527 0.864215

t + 7 0.0 0.894255 0.901565 0.902145 0.854112

t + 8 0.0 0.904232 0.920545 0.901565 0.945515

Table 2 shows an example training dataset. A training dataset is used to train a
prediction model by repeating the process of comparing the predicted and actual road
speeds after 30 min. Because the proposed scheme uses past data for training, the actual
speed and rainfall at time point i + 6 can be obtained. Therefore, the proposed scheme
provides the actual speed data on the target road at time points i and i + 6, and the actual
rainfall Rain f alli+6

T in the same row of the data matrix, as shown in Table 2. The process of
training a prediction model is described in detail in the following section.

Table 2. Example training dataset.

PRFi+6
T Si

N1
Si

N2
Si

N3
Si

T Si+6
T

t 0.214334 0.870698 0.905612 0.848839 0.851250 0.864215
t + 1 0.239343 0.866772 0.907388 0.855186 0.845409 0.854112
t + 2 0.0 0.862847 0.909164 0.861533 0.839569 0.945515
t + 3 0.0 0.906615 0.917066 0.910139 0.877798 0.934532
t + 4 0.0 0.880805 0.910407 0.865375 0.829195 0.928745
t + 5 0.0 0.851535 0.942584 0.845357 0.842598 0.843523
t + 6 0.0 0.902145 0.920457 0.864527 0.864215 0.874353
t + 7 0.0 0.894255 0.901565 0.902145 0.854112 0.892345
t + 8 0.0 0.904232 0.920545 0.901565 0.945515 0.902343
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3.4. Training of a Prediction Model

The proposed scheme trains an LSTM model offline to predict road speeds based on
the effects of neighboring roads and weather online. Figure 5 shows the LSTM model
training process in the proposed scheme. The LSTM model consists of LSTM, dropout, and
dense layers. In the proposed scheme, a training dataset in the format shown in Table 2 is
used as the input for the LSTM layer. St

T and St
Nn

denote the data of the current target road

and neighboring roads, respectively. Rain f all(R)t+6
T denotes the rainfall data at time point

t + 6 collected from the region in which the target road is located. The proposed scheme
uses these data to reflect the impacts of data from the target and neighboring roads 30 min
in the past and rainfall at the predicted time point on the speed of the target road in the
prediction model.
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The actual road speed (Si+6
T ) after 30 min from the training dataset is used to calculate

loss. To prevent overfitting, we incorporated a dropout layer with a dropout rate of 0.3. The
model is set to output one result through a dense layer that connects all input and output
neurons. PSt+6

T denotes the predicted speed of the target road. The proposed scheme
uses a loss function of MSE to calculate the error between PSt+6

T and St+6
T , as shown in

Equation (3). The proposed scheme uses Adam as an optimization function to perform
training quickly and stably. The proposed scheme performs a back-propagation process to
determine the optimal weights for minimizing the MSE. The proposed scheme repeats this
process to train a prediction model with optimal weights.

MSE =
1
n

n

∑
i=1

(
St+6

T − PSt+6
T

)2
(3)

3.5. Primary Speed Prediction

For offline processing, the proposed scheme trains a model with optimal weights
based on the rainfall and speed of neighboring roads, which are road environment data
affecting the speed of the target road. In the primary speed prediction stage, the LSTM
model discussed in Section 3.4 is used to predict the road speed after 30 min. The speed
predicted at this stage is defined as the primary predicted speed (or primary speed). For
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primary speed prediction, the predicted scheme uses a prediction dataset consisting of
speed data from the target and neighboring roads, as well as the expected rainfall data
after 30 min. The proposed scheme predicts the road speed after 30 min by inputting the
prediction dataset and optimal weights into the trained LSTM model.

Figure 6 shows a graph of actual road speeds and primary predicted speeds over time.
The road speed was not affected by rainfall on 9 September 2019 because it did not rain
on that day. The scheme proposed in [15] yields high accuracy when predicting the road
speed in the near future but exhibits large errors when predicting the road speed in the
relatively distant future. As shown in Figure 6, the scheme proposed in [15] yields a similar
speed pattern to that observed 30 min in the past. The scheme proposed in [15] exhibits
large differences between the actual and predicted speeds because it uses a gentle curve to
reflect the rapidly changing flow of road speed caused by unexpected events and during
rush hour. In the primary speed prediction stage, only the effects of neighboring roads and
rainfall are considered. Factors that rapidly change road conditions should be considered
to improve accuracy. Therefore, the proposed scheme derives final predicted speeds by
analyzing historical average road speeds and road speed changes to correct the primary
predicted speed.
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3.6. Correction of Predicted Speed

The primary predicted speed obtained by the model discussed in Section 3.5 exhibits a
trend of following the actual speed with a delay because the speed data from the previous
time point have the greatest influence. As a result, the error is large in sections where rapid
changes occur in the road speed, such as rush hour, because the speed is predicted using a
gentle curve. Therefore, in this paper, we propose two schemes for correcting the predicted
speed to improve prediction accuracy. The first scheme uses historical average speed data
to correct the predicted speed. The proposed scheme considers the average flow of the
target road based on historical average speeds for speed prediction. The second scheme
corrects the predicted speed by applying event weights based on the analysis of speed
changes caused by events such as a traffic accidents or road construction. The proposed
scheme considers uncommon road flows based on the application of event weights to
perform speed prediction.

3.6.1. Application of Historical Average Speeds

Road speeds exhibit similar trends according to the day of the week and time of
day. Figure 7 shows the results of calculating the average speed of the target road for
each day of the week and time of day for approximately three months from 20 May to
25 August 2019. The green and red lines indicate the flows of average road speeds on
weekdays and weekends, respectively. On weekdays, congestion occurs when the speed
decreases sharply between 6:00 and 9:00 a.m. as a result of the effects of road congestion
during the morning rush hour. In general, low speeds can also be observed in the evening
rush hour. On weekends, there are no notable congestion sections because there are no
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effects of morning and evening rush hours, resulting in showing smoother flows on the
road compared to the weekdays. Rapid changes in flow are difficult to predict using the
scheme described in Section 3.4. Therefore, when predicting weekday speeds, the effects of
morning rush hour congestion are reflected when correcting the primary predicted speed
obtained using the scheme discussed in Section 3.4. First, the proposed scheme defines a
section in which the speed decreases based on historical average speed changes. Next, the
proposed scheme compares the historical average speed and primary predicted speed in
this section and incorporates the historical average speed into the prediction according to
the road conditions.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 26 
 

morning and evening rush hours, resulting in showing smoother flows on the road com-
pared to the weekdays. Rapid changes in flow are difficult to predict using the scheme 
described in Section 3.4. Therefore, when predicting weekday speeds, the effects of morn-
ing rush hour congestion are reflected when correcting the primary predicted speed ob-
tained using the scheme discussed in Section 3.4. First, the proposed scheme defines a 
section in which the speed decreases based on historical average speed changes. Next, the 
proposed scheme compares the historical average speed and primary predicted speed in 
this section and incorporates the historical average speed into the prediction according to 
the road conditions. 

 
Figure 7. Results of calculating the average speed of the target road. 

A section in which the speed decreases on average in the past is defined based on the 
statistics of historical average speed changes over time. Historical speed changes are cal-
culated using Equation (4). The term ∆  denotes the historical average speed change 
on a specific day of the week. The term  reshows the historical average speed 15 
min before time t on a specific day of the week. If ∆  is greater than zero, it indicates 
that the speed decreased over the 15 min interval. Conversely, if it is smaller than zero, it 
indicates that the speed increased during the 15 min interval. Figure 8 shows historical 
speed changes during the rush hours for each day of the week. On average, the average 
speed change on every day of the week increases in the positive direction starting at 5:40 
a.m. Then, starting at 6:30 a.m., the speed change decreases in the negative direction. In 
this case, the proposed scheme defines 5:40 to 6:25 a.m. on weekdays as a section in which 
the historical average speed is incorporated. ∆ 	= 	 −	  (4)

Figure 7. Results of calculating the average speed of the target road.

A section in which the speed decreases on average in the past is defined based on
the statistics of historical average speed changes over time. Historical speed changes
are calculated using Equation (4). The term ∆ASt

day denotes the historical average speed

change on a specific day of the week. The term ASt−3
day reshows the historical average

speed 15 min before time t on a specific day of the week. If ∆ASt
day is greater than zero,

it indicates that the speed decreased over the 15 min interval. Conversely, if it is smaller
than zero, it indicates that the speed increased during the 15 min interval. Figure 8 shows
historical speed changes during the rush hours for each day of the week. On average, the
average speed change on every day of the week increases in the positive direction starting
at 5:40 a.m. Then, starting at 6:30 a.m., the speed change decreases in the negative direction.
In this case, the proposed scheme defines 5:40 to 6:25 a.m. on weekdays as a section in
which the historical average speed is incorporated.

∆ASt
day = ASt−3

day − ASt
day (4)

In the above case, when the average speed decrease section is defined from 5:40 to 6:25 a.m.,
the proposed scheme determines whether the historical average speed should be applied
to the defined section using Equation (5). PSt

day denotes the primary predicted speed at a
particular time on a particular day of the week. ASt

day denotes the historical average speed
at a particular time on a particular day of the week. APSt

day denotes the predicted speed to
which the historical average speed may be applied. If the predicted PSt

day speed is greater
than ASt

day in the time band during which the speed decreases on average in the past data,
then the proposed scheme replaces the primary predicted speed with ASt

day. Otherwise,
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the proposed scheme determines that an uncommon flow is present on the target day and
uses the primary predicted speed without modification.

ASt
day < PSt

day =

{
True : APSt

day = ASt
day

False : APSt
day = PSt

day
(5)
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3.6.2. Application of Event Weights

The proposed scheme improves accuracy by applying historical average speeds to
correct primary predicted speeds. However, in the event of an accident or construction, the
road speed decreases sharply, representing an uncommon flow. To reflect such a flow, the
proposed scheme uses accident and construction work data recorded in real time. To use
accident data, the proposed scheme must read accident information recorded in real time
and reflect the accident location and accident type in its road speed predictions. However,
the time at which an accident occurs and the time at which it is recorded are different and
many accident data are inaccurate. Therefore, this paper proposes a road speed prediction
scheme that can reflect uncommon flows on a road by applying event weights to sections
in which the road speed decreases rapidly.

When an unexpected event occurs, the road speed exhibits a pattern in which the
speed drops rapidly and then recovers. The proposed scheme applies a reduced weight
and recovery weight to the speed decrease section and recovery section, respectively, to
reduce the error in the primary predicted speed. First, the proposed scheme defines the
decrease and recovery sections through the analysis of the relationship between the speed
change and error rate. The proposed scheme uses the actual speed change and predicted
speed change to define the criteria for identifying the decrease section. Furthermore, the
proposed scheme uses the predicted speed change and actual historical speed change to
apply event weights. The predicted speed change, historical actual speed change, and
actual speed change are calculated using Equations (6)–(8), respectively. The term ∆PSt

T ,
which is the primary predicted speed change on the target road, refers to the difference
between the predicted speed 15 min ago and that at the current time t. In this example, t
is defined in 5 min intervals. When predicting the target road speed ∆HSt

T at time t, the
actual speeds that can be obtained are the data from 30 min in the past. Therefore, to predict
∆HSt

T , the proposed scheme calculates the difference in the actual speed between time t
and a time 45 min in the past, as shown in Equation (7). Finally, the actual speed change
∆St

T indicates the difference between the actual speeds at time t and 15 min in the past.

∆PSt
T = PSt−3

T − PSt
T (6)
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∆HSt
T = St−9

T − St−6
T (7)

∆St
T = St−3

T − St
T (8)

The proposed scheme defines the reference value of the speed decrease section using
the error rate statistics of the predicted speed according to the speed change. The error rate
of the predicted speed is calculated using Equation (9). When the error rate is close to one,
the accuracy is high. The term et

T denotes the error rate of the predicted speed on the target
road at time t. A value greater than one indicates that the predicted speed is lower than the
actual speed and a value less than one indicates that the predicted speed is higher than the
actual speed.

Error Rate (e)t
T = St

T/PSt
T

{
e > 1 : St

T > PSt
T

e < 1 : St
T < PSt

T
(9)

The proposed scheme analyzes the effects of road speed changes on the prediction error
rate based on events that occurred in the past to identify the speed decrease and recovery
sections. The proposed scheme analyzes the speed decline trend based on changes in the
primary predicted speed. However, the predicted speed follows the flow of the road speed
in the future, as discussed in Section 3.4. Because it exhibits a gentler trend compared to the
actual speed, we cannot determine the declining trend accurately. Therefore, the proposed
scheme uses historical actual speed changes to identify rapid speed decrease sections.

Figure 9 shows error rate statistics according to the predicted speed changes analyzed
using historical data. The orange bar graph indicates the predicted change in speed. When
the predicted speed change is less than or equal to five, high accuracy is achieved with an
error rate close to one. In contrast, when the predicted speed change increases to six or
more, the error rate decreases. Furthermore, when the predicted speed change increases
to 14 or more, the error rate increases to a value greater than one. This is because the
road speed recovers immediately after a sharp decrease. Therefore, the proposed scheme
uses a predicted speed change of six or more to define the first criterion for identifying a
speed decrease section based on statistical analysis. However, because the predicted speed
exhibits a gentler flow than the actual speed, the declining trend cannot be determined
accurately. Therefore, the proposed scheme considers the actual speed changes to define
the criteria for identifying speed decrease sections. The blue bar graph reshows the actual
speed changes. The accuracy decreases when the actual speed change is between 4 and 10
and then increases and decreases repeatedly. Therefore, the proposed scheme defines the
criterion for the second speed decrease section as an actual speed change of 10 or more.
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The proposed scheme defines two criteria for identifying speed decrease sections
based on error rate analysis according to the predicted speed and actual speed changes. If
these criteria are met, the proposed scheme corrects the speed by considering the weight
of the primary predicted speed. The weight is defined as 0.8, which is the average error
rate of the two changes that represent the criteria for a rapid speed decrease section.
Therefore, a 20% reduced speed is reflected in the predicted speed. The proposed scheme
increases this weight after 30 min. The orange bar graph in Figure 9 demonstrates that
the error rate increases in the recovery section. However, the blue graph of actual speed
changes demonstrates that the prediction error rate decreases as the speed change increases.
This indicates that the greater the speed decrease, the higher the predicted speed, which
increases the difference. Therefore, the proposed scheme defines the decrease in weight
(dω) differently according to the predicted speed change, as shown in Table 3.

Table 3. Decrease in weight differently defined according to the predicted speed change.

∆PSt
T dω

6 0.8

7 0.7

8 0.6

9 0.5

10 0.4

11 0.3

12 0.2

13 0.1

Algorithm 1 shows the algorithm for applying weights to decrease the speed of
sections. If the two criteria for identifying a speed decrease section are satisfied, then the
proposed scheme changes the weight decrease, as shown in Table 3. Next, the proposed
scheme modifies the primary predicted speed by reducing the weight and increases the
count. A count of one reshows five minutes. After 30 min, the reduction in weight increases
because the trend of the speed flow can be reflected accurately. Because a weight decrease of
one is a meaningless value, the proposed scheme cannot reflect the decrease in weight when
the weight decreases to one. Therefore, the proposed scheme stops reflecting the decrease
in weight and executes the recovery weight application algorithm when the criteria for
identifying a recovery section are satisfied, even if the criteria for identifying a decrease
section are still satisfied.

The proposed scheme analyzes the relationship between the predicted speed change
and actual speed to identify a speed recovery section. Figure 10 shows the relationship
between the predicted speed change and actual speed. The red bar graph reveals that
despite the fact that the primary predicted speed change increases sharply by more than
10, the predicted speed decreases in a gentle curve. The blue bar graph reveals that before
the predicted speed change increases to 11, the actual speed has already transitioned from
the negative direction to the positive direction and formed a recovery section. This means
that the actual speed change, ∆HSt

T , changes from a positive number to a negative number.
Therefore, when an event occurs, the road speed exhibits a sharp decrease and then recovers.
In a section where the speed decreases, the historical actual speed change is a positive
number, whereas in a section where the speed increases, the historical actual speed change
is negative. Therefore, the proposed scheme identifies a recovery section by using the
time point at which the historical actual speed change, ∆HSt

T , changes from a positive to a
negative number.
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Algorithm 1: Event Weighting Algorithm (Decrease Section)

Notation:
Speed Decrease Criteria1 = 6; Speed Decrease Criteria2 = 10;
Decrease Weight (dw) = 0.8; Count = 1;
Input: PSt

T , ∆PSt
T , ∆HSt

T
Output: PSt

T
′

if ∆PSt
T > Speed Decrease Criteria1 and ∆HSt

T > Speed Decrease Criteria2 then
check_recovery_criterial;
if ∆PSt

T > ∆PSt−1
T then

switch(int(∆PSt
T))


case 7 : dω = 0.7
case 8 : dω = 0.6
case 9 : dω = 0.5

case 10 : dω = 0.4
Count = 1;
end if
PSt

T
′ = PSt

T ∗ dω;
Count++;
end if

if Count = 6 then
dω = dω + 0.1;
Count = 1;
end if
if dω = 1 then
break;
end if
return PSt

T
′

Sensors 2021, 21, x FOR PEER REVIEW 16 of 26 
 

  
Figure 10. Relationship between the predicted speed change and actual speed. 

When a speed recovery section is identified, the proposed scheme corrects the speed 
by applying the recovery weight. In contrast to a decrease in weight, the recovery weight 
is defined as 1.2 to correct the predicted speed with a 20% increase. Algorithm 2 shows 
the algorithm for applying the recovery section weight. If the historical speed change be-
comes a negative number, then the proposed scheme identifies a recovery section. If the 
recovery weight is greater than one, it applies the recovery weight to the primary pre-
dicted speed to correct the speed. In the recovery section, the speed is recovered with a 
relatively gentle curve. Because the primary predicted speed can reflect the trend of the 
recovery section after 30 min, the proposed scheme reduces the weight by 0.1 in each iter-
ation after 30 min. 

Algorithm 2: Event Weighting Algorithm (Recovery Section) 

Notation: 
Recovery Weight (rw) = 0.2; 
Count = 0; 
Input:  
Output: ′ 
if  Count == 6 then 	 = − 0.1; 
Count = 0; 
end if 
 
if  	< 0 and 	 > 1.0 then =	 ∗ ; 
Count++;  
end if     
return   

Figure 10. Relationship between the predicted speed change and actual speed.

When a speed recovery section is identified, the proposed scheme corrects the speed
by applying the recovery weight. In contrast to a decrease in weight, the recovery weight is
defined as 1.2 to correct the predicted speed with a 20% increase. Algorithm 2 shows the
algorithm for applying the recovery section weight. If the historical speed change becomes
a negative number, then the proposed scheme identifies a recovery section. If the recovery
weight is greater than one, it applies the recovery weight to the primary predicted speed to
correct the speed. In the recovery section, the speed is recovered with a relatively gentle
curve. Because the primary predicted speed can reflect the trend of the recovery section
after 30 min, the proposed scheme reduces the weight by 0.1 in each iteration after 30 min.



Sensors 2022, 22, 2606 16 of 24

Algorithm 2: Event Weighting Algorithm (Recovery Section)

Notation:
Recovery Weight (rw) = 0.2;
Count = 0;
Input: PSt

T
Output: PSt

T
′

if Count = 6 then
rω = rω− 0.1;

Count = 0;
end if

ifHSt
T < 0 and rω > 1.0 then

PSt
T
′ = PSt

T ∗ rω;
Count++;
end if
return PSt

T
′

4. Performance Evaluation
4.1. Performance Evaluation Environment

In this paper, we demonstrate the excellent performance of the proposed road speed
prediction scheme by comparing its performance to that of existing schemes. Table 4
shows performance evaluation environments. We conducted performance evaluations
on a PC with an Intel Core i5-4440 at 3.10 GHz CPU, 8.00 GB of RAM, and Windows 10
operating system. The proposed scheme was implemented using the Python language and
Keras library [26] in the Python Anaconda custom environment. Table 5 shows datasets
that are used for performance evaluation. For the speed data used in our performance
evaluations, we collected sectional travel speed data from the collection system of the
vehicle detection system provided on the open expressway data portal site by the Korea
Expressway Corporation. For weather data, we collected rainfall data from the disaster
prevention and weather observation data provided on the Open MET Data Portal of the
Korea Metrological Administration. For performance evaluations, we used speed data
and rainfall data collected from 24 June to 1 September 2020 as the training dataset and
used speed data and rainfall data collected from 2 September to 6 October 2020 as the
prediction dataset.

Table 4. Evaluation environments.

Category Description

Processor Intel(R) Core(TM) i5-4440K 3.10 GHz 4 Core

Memory 8.0 GB

Operating system Windows 10

Language used Python 3

Platform used Python 3.5.6 Anaconda custom

Table 5. Datasets.

Category Collection Period Size

Training dataset 24 June 202–1 September 2020 20,160 cases

Prediction dataset 2 September 2020–6 October 2020 10,080 cases

The performance evaluation of the proposed road speed prediction scheme mainly
consisted of a standalone performance evaluation and a comparative performance evalu-
ation considering existing schemes. The standalone performance evaluation verified the
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validity of each type of road environment data considered in the proposed scheme by
comparing the results of applying and not applying the following data types: rainfall data,
historical average speed data used to reflect the normal flow of the road, and event weights
used to predict sharp or unusual changes in road flow.

We selected two schemes for comparative performance evaluations. The first scheme is
that proposed in [15], which predicts the near-future speed on the target road by considering
the effects of the speeds of neighboring roads on the speed of the target road. We denote the
scheme from [15] as the TN-P scheme. The second scheme is that proposed in [21], which
predicts road congestion using an RNN. We denote the scheme from [21] as the RNN-P
scheme. To evaluate prediction accuracy in this study, we calculated the RMSEs between
the predicted and actual speeds. As the RMSE decreases, prediction accuracy increases.

4.2. Standalone Performance Evaluation
4.2.1. Results Obtained by Reflecting Weather

The proposed scheme uses weather data to reflect weather effects. The proposed
scheme trains a prediction model with optimal weights to reflect the effects of rainfall
and the speed of the neighboring roads on the speed of the target road. A prediction
model is used to estimate the primary speed. In this study, we conducted performance
evaluations by comparing the results between cases when rainfall data were reflected
(Prediction Speed A) and when they were not reflected (Prediction Speed B). The case that
did not reflect rainfall data corresponds to the scheme proposed in [15]. In our performance
evaluations, we used the predicted speed results for a rainy day from 12:00 to 8:00 p.m. on
5 September 2020.

Figure 11 shows the speed predicted considering the effects of rainfall, actual speed,
and RMSE. Because the prediction model considering rainfall data was used, the predicted
speed is similar to the actual speed as a result of considering the effects of rainfall using
expected rainfall data. Figure 12 shows the speed predicted considering the effects of
neighboring roads only, the actual speed, and RMSE. In a section where the speed decreases
as a result of effects of rainfall, this effect is reflected according to a decreasing trend in the
speed, but because the effects of rainfall are not reflected, the RMSE is higher than that in
Figure 11. In Figures 11 and 12, we provide the results on a specific date. However, we
confirmed that similar results are shown when performing experiments on different dates.

Figure 13 shows the (A) RMSE value considering the effects of rainfall and the
(B) RMSE value that does not consider the effects of rainfall. We calculated the RMSEs
using data from 12:00 to 8:00 p.m. on 5 September 2020. When the RMSE is close to zero,
the accuracy is high. The value in A is 3.66, which is 0.29 less than that in B, in which the
value is 3.95. Therefore, it is confirmed that higher accuracy is achieved when rainfall data
are reflected. In addition, we confirmed that the experimental results using rainfall data
for different dates showed higher accuracy than the experimental results without using
rainfall data.
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4.2.2. Results Obtained by Reflecting Historical Average Speeds

Long-term road speed prediction using an LSTM model does not predict sections
in which the flow on a road decreases on average because the data from the previous
time point just before the prediction time point have the largest influence. Therefore, the
proposed scheme defines the average speed section by performing statistical analysis on
historical average speed changes to reflect the normal flow of the target road. Furthermore,
the proposed scheme reflects historical average speeds in road speed predictions through
comparisons to the primary predicted speed. In this study, we conducted standalone per-
formance evaluations by comparing the results between when the historical average speed
was reflected (Prediction Speed A) and when it was not reflected (Prediction Speed B). For
the case of not reflecting the historical average speed, we used the proposed scheme up to
the primary speed prediction stage.

Figure 14 shows the actual speed, prediction result considering the historical average
speed (Prediction Speed A), and RMSE from 5:30 to 7:30 a.m. on 9 September 2020. Because
Prediction Speed A reflects the historical average speed between 5:40 and 6:25 a.m., the
RMSE value decreases significantly, meaning the predicted speed moves closer to the
actual speed. Figure 15 shows the actual speed, prediction result without considering the
historical average speed (Prediction Speed B), and RMSE. Figure 15 exhibits a relatively
higher RMSE than A because B does not consider the average flow of the morning rush
hour and follows the decreasing trend of the speed at a later time. In Figures 14 and 15, we
provide the results on a specific date. However, we confirmed that the similar results are
shown when performing experiments on different dates.
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Figure 16 shows the (A) average RMSE considering the historical average speed
and the (B) average RMSE without considering the historical average speed. The RMSE
was calculated using the data from the section in which the historical average speed was
reflected between 5:40 and 6:25 a.m. on 9 September 2020. Prediction Speed A is 7.76 with an
RMSE value reduced by 4.34 compared to Prediction Speed B, which is 12.10. Therefore, it is
confirmed that higher accuracy is obtained when the historical average speed is considered.
In addition, we confirmed that the experimental results using historical average speed data
for different dates showed higher accuracy than the experimental results without using
historical average speed data.
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4.2.3. Results Obtained by Reflecting Event Weights

The proposed scheme applies event weights to sections in which the speed changes
rapidly to reflect an uncommon flow on the road. The proposed scheme defines the criteria
for identifying a decrease–recovery pattern, which occurs when the speed changes rapidly,
by statistically analyzing speed changes. Based on this analysis, the decrease in weight and
recovery weight are defined. Therefore, the proposed scheme improves prediction accuracy
in sections where the speed changes rapidly in response to an event such as a traffic accident
or construction work. In this study, we conducted standalone performance evaluations by
comparing the results between when the event weight was applied and when it was not
applied. For the case of not applying the event weight, we used the proposed scheme up to
the primary speed prediction stage. For this performance evaluation, we used the speed
prediction results from 7:00 a.m. to 7:00 p.m. on 9 September 2020.

Figure 17 shows the predicted speed considering the event weight (Prediction Speed A),
actual speed, and RMSE. Because the decrease in weight is applied by identifying the speed
decrease section, the accuracy of Prediction Speed A is high in the road speed section where
the speed decreases rapidly. Furthermore, Prediction Speed A also exhibits high accuracy
in the speed recovery section because the recovery weight is applied. Figure 18 shows the
predicted speed without considering the event weight (prediction speed B), actual speed,
and RMSE. Prediction Speed B exhibits a trend of following the sections in which the road
speed decreases rapidly and recovers because the speed data from 30 min ago have the
greatest influence. Additionally, Prediction Speed B exhibits low accuracy because the
speed in the rapidly decreasing section is predicted with a gentle flow, which does not
match the actual speed flow. In Figures 17 and 18, we provide the results on a specific date.
However, we confirmed that similar results are found when performing experiments on
different dates.
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Figure 19 shows the (A) average RMSE value considering the event weight and
(B) average RMSE value without considering the event weight. For this performance
evaluation, we classified two sections in which the road speed decreased sharply and
calculated the average RMSE values. Section 1 refers to the section in which the speed
change occurred in the morning. Section 2 refers to the section in which the speed change
occurred in the afternoon. The RMSE in A in the morning section is 11.80 with an RMSE
reduction of 60.31 compared to B, which is 72.11. Overall, the prediction error decreases
significantly when applying the event weight. The RMSE in A in the afternoon section is
14.67 with an RMSE reduction of 8.33 compared to B, in which the RMSE value is 23.00.
These performance evaluation results confirm that a higher accuracy is obtained when the
event weight is considered. In addition, we confirmed that the experimental results using
the event weight for different dates showed higher accuracy than the experimental results
without using event weight.
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4.3. Performance Comparison
4.3.1. Performance Comparison between the TN-P Scheme and Proposed Scheme

The TN-P scheme predicts the near-future speed on the target road with higher
accuracy compared to the case of considering only the speed of the target road because it
considers the effects of the speeds of neighboring roads on the speed of the target road. For
performance comparisons, we used the TN-P scheme to predict the road speed 30 min in
the future on 9 September 2019.

Figure 20 shows the results of predicting the road speed after 30 min using the TN-P
scheme, actual speed, and RMSE. In the TN-P scheme, because the road speed data from
30 min ago have the largest influence, the flow is predicted with a delay, increasing the
overall error. In particular, the RMSE value increases significantly in the section where the
road speed changes rapidly. Figure 21 shows the results of using the proposed scheme
to predict the road speed after 30 min, actual speed, and RMSE. The proposed scheme
considers all of the following factors: the effects of neighboring roads, effects of weather,
typical flow of the target road based on historical average speeds, and event weights
based on rapidly changing flows on the road. Because it did not rain on 9 September,
weather had no effect. When the performance evaluation results were compared between
the proposed scheme and TN-P scheme, we found that the accuracy was higher for the
proposed scheme that considers the typical flow in which the road speed decreases rapidly
during the morning rush hour. Furthermore, the proposed scheme exhibits higher accuracy
than the TN-P scheme because it applies event weights to sections in which the road speed
decreases rapidly between 8:00 and 11:00 a.m., and between 3:00 and 6:00 p.m., after which
the speed recovers. The RMSE value in Figure 21 is lower than that in Figure 20 overall.



Sensors 2022, 22, 2606 22 of 24

In particular, the RMSE is significantly lower in Figure 20 in the sections where the speed
changes rapidly. When we calculated the average RMSE values of the section in which the
proposed scheme was applied for 9 September 2019, the average RMSE was 30.81 with a
reduction of 76.4 compared to the average RMSE of the TN-P scheme, which was 107.21.
These performance evaluation results confirm that the proposed scheme performs better
than the TN-P scheme. In Figures 20 and 21, we provide the results on a specific date.
However, we confirmed that the similar results are shown when performing experiments
on different dates.
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4.3.2. Performance Comparison between the RNN-P Scheme and Proposed Scheme

We compared the performance of the proposed scheme to that of road congestion
prediction using an RNN [21] to evaluate the performance of the LSTM as a learning tool
for primary speed prediction in the proposed scheme. The RNN is a machine learning
scheme that is widely used for time series predictions because it considers the connectivity
of time. However, RNN then faces the vanishing gradient problem, where the effects of
initial data disappear as the time gap increases. Therefore, the proposed scheme adopts
LSTM, which is designed to overcome the vanishing gradient problem, as a learning tool
for primary speed prediction.

Figure 22 shows the RMSE (RNN-P) value of the speed predicted using the RNN
and the RMSE (LSTM-P) value of the speed predicted using the LSTM. We calculated the
average RMSE of the predicted speeds on a daily basis from 8 September to 14 September
2020. In the results for all days excluding Monday and Tuesday, the RMSE of the speed
predicted using the LSTM-P is low, resulting in high average accuracy. This confirms
the superiority of the proposed scheme. In addition, we confirmed that the experimental
results using LSTM for different dates showed higher accuracy than the experimental
results using RNN.
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5. Conclusions

This paper proposed a road speed prediction scheme based on the analysis of various
factors affecting road speed. The proposed scheme uses rainfall data from the target
area and speed data collected from connected roads to reflect the effects of weather and
connected roads. The proposed scheme trains an LSTM prediction model with optimal
weights through an iterative training process. The proposed scheme uses a prediction
model to predict primary speeds by reflecting the effects of rainfall and connected roads.
The proposed scheme then applies historical average speed data by analyzing average
speed changes to reflect the typical flow of the target road. Finally, the proposed scheme
analyzes speed changes to predict traffic flows that change rapidly when an event occurs.
Based on the analyzed results, criteria for identifying speed decrease and recovery sections
are defined, and an event weight was defined. Finally, the effects of events are reflected in
the predictions of road speeds. The proposed scheme improves accuracy by approximately
7% compared to existing schemes that consider only the effects of connected roads. In
areas with rain, although the accuracy increase rate is relatively small because the impact
is calculated not only during a specific rain period, but also over a wide range of time, a
comparison between the graphs in Figures 11–13 revealed a significant decrease in the error
rate. The performance evaluation results on non-rainy days revealed that the accuracy is
approximately 83% higher for the proposed scheme compared to existing schemes. The
proposed scheme exhibits high accuracy because it reflects the rapidly changing flows of
the target road by analyzing data that affect road speeds.

In our future works, we will conduct performance evaluations by applying various
road speed prediction schemes that use speed change as input and directly predict the speed
change. We will also conduct additional performance evaluations between deep-learning-
based models and statistical baseline models to show the superiority of the proposed
scheme. Furthermore, we will investigate additional factors that affect road speed to apply
them to services that provide real-time road situation information. Finally, we will develop
case studies using the proposed scheme.
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16. Mikolov, T.; Karafiát, M.; Burget, L.; Černocký, J.; Khudanpur, S. Recurrent neural network based language model. In Proceedings

of the Eleventh Annual Conference of the International Speech Communication Association, Makuhari, Chiba, Japan, 26–30
September 2010.

17. Svozil, D.; Kvasnicka, V.; Pospichal, J. Introduction to multi-layer feed-forward neural networks. Chemom. Intell. Lab. Syst. 1997,
39, 43–62. [CrossRef]

18. Jensen, F.V. An Introduction to Bayesian Networks; UCL Press: London, UK, 1996.
19. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
20. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

Processing Syst. 2012, 25, 1097–1105. [CrossRef]
21. Zhou, C.; Nelson, P.C. Predicting traffic congestion using recurrent neural networks. In Proceedings of the 9th World Congress on

Intelligent Transport Systems ITS America, ITS Japan, ERTICO (Intelligent Transport Systems and Services-Europe), Washington,
DC, USA, 14–17 October 2002.

22. Chen, X.; Chen, H.; Yang, Y.; Wu, H.; Zhang, W.; Zhao, J.; Xiong, Y. Traffic flow prediction by an ensemble framework with data
denoising and deep learning model. Phys. A Stat. Mech. Appl. 2021, 565, 125574. [CrossRef]

23. Xing, Y.; Lv, C.; Cao, D. Personalized Vehicle Trajectory Prediction Based on Joint Time-Series Modeling for Connected Vehicles.
IEEE Trans. Veh. Technol. 2019, 69, 1341–1352. [CrossRef]

24. Pandas Documentation. Available online: https://pandas.pydata.org/pandas-docs/stable/ (accessed on 24 August 2021).
25. Zaremba, W.; Sutskever, I.; Vinyals, O. Recurrent neural network regularization. arXiv 2014, arXiv:1409.2329.
26. Keras. Available online: https://keras.io/ (accessed on 24 August 2021).

http://doi.org/10.5626/KTCP.2019.25.8.402
http://doi.org/10.5659/JAIK_PD.2016.32.12.91
http://doi.org/10.14257/AJMAHS.2017.02.05
http://doi.org/10.1109/JIOT.2017.2716114
http://doi.org/10.1109/IJCNN.2017.7966128
http://doi.org/10.1109/MNET.2018.1700411
http://doi.org/10.1109/ACCESS.2018.2873569
http://doi.org/10.1109/ACCESS.2018.2845863
http://doi.org/10.1061/(ASCE)0733-947X(2003)129:2(161)
http://doi.org/10.1016/S0169-7439(97)00061-0
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.1145/3065386
http://doi.org/10.1016/j.physa.2020.125574
http://doi.org/10.1109/TVT.2019.2960110
https://pandas.pydata.org/pandas-docs/stable/
https://keras.io/

	Introduction 
	Related Work 
	Road Congestion Prediction Schemes Using CNNs 
	Road Speed Prediction Scheme Using a Bayesian Network 
	Road Speed Prediction Scheme Using LSTM 
	Problems Faced by Existing Schemes 

	Proposed Road Speed Prediction Scheme 
	Overall Processing Approach 
	Normalization 
	Generation of a Dataset 
	Training of a Prediction Model 
	Primary Speed Prediction 
	Correction of Predicted Speed 
	Application of Historical Average Speeds 
	Application of Event Weights 


	Performance Evaluation 
	Performance Evaluation Environment 
	Standalone Performance Evaluation 
	Results Obtained by Reflecting Weather 
	Results Obtained by Reflecting Historical Average Speeds 
	Results Obtained by Reflecting Event Weights 

	Performance Comparison 
	Performance Comparison between the TN-P Scheme and Proposed Scheme 
	Performance Comparison between the RNN-P Scheme and Proposed Scheme 


	Conclusions 
	References

