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Abstract: Since December 2019, the COVID-19 pandemic has led to a dramatic loss of human lives
and caused severe economic crises worldwide. COVID-19 virus transmission generally occurs
through a small respiratory droplet ejected from the mouth or nose of an infected person to another
person. To reduce and prevent the spread of COVID-19 transmission, the World Health Organization
(WHO) advises the public to wear face masks as one of the most practical and effective prevention
methods. Early face mask detection is very important to prevent the spread of COVID-19. For
this purpose, we investigate several deep learning-based architectures such as VGG16, VGG19,
InceptionV3, ResNet-101, ResNet-50, EfficientNet, MobileNetV1, and MobileNetV2. After these
experiments, we propose an efficient and effective model for face mask detection with the potential
to be deployable over edge devices. Our proposed model is based on MobileNetV2 architecture that
extracts salient features from the input data that are then passed to an autoencoder to form more
abstract representations prior to the classification layer. The proposed model also adopts extensive
data augmentation techniques (e.g., rotation, flip, Gaussian blur, sharping, emboss, skew, and shear)
to increase the number of samples for effective training. The performance of our proposed model is
evaluated on three publicly available datasets and achieved the highest performance as compared to
other state-of-the-art models.

Keywords: COVID-19; convolution neural network; data augmentation; deep learning; face mask;
machine learning; classification; MobileNet; autoencoder

1. Introduction

The face mask-wearing trend in public is growing all over the world due to COVID-19.
Before COVID-19 the community wore masks to protect themselves from air pollution,
while some people in the community used them because of self-consciousness regarding
their looks [1]. Currently, scientists and domain experts confirm that wearing a face mask
during this pandemic reduce the transmission of COVID-19 [2]. Coronavirus, also known
as COVID-19, or the most recent epidemic virus, hit humans around the end of the year
2019 [3]. The rapid global spread of this disease forced the WHO to declare it a global
pandemic. As stated by [4], COVID-19 infected more than five million people throughout
188 countries within just six months, and currently, the number of people infected has
increased substantially. The COVID-19 virus transfers from one person to another through
close contact in crowded areas or through the sharing of multiple gadgets in a public
environment, as well as in indoor environments such as hotels, cafes, etc.
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The COVID-19 pandemic has given rise to an extraordinary degree of worldwide
scientific cooperation. Machine learning and deep learning based algorithms are very
helpful in the fight against COVID-19 in many aspects [5]. These algorithms also allow
the research community and clinicians a vast quantity of data evaluation for COVID-19
distribution forecasting. It serves as an initial warning technique for possible pandemics
and to classify the population according to vulnerably. Healthcare organizations are in
need of funding for advancing technologies with the help of the Internet of things, big data,
and artificial intelligence, which will help to predict and tackle new diseases due in the
aftermath of this pandemic. Artificial intelligence-based algorithms are explored to detect
infection rates [6], to detect the presence of COVID-19 using chest X-ray images [7,8], and
to detect and monitor social distancing [9], the wearing of face masks, etc.

Policymakers are facing several risks and challenges in reducing the spreading of
COVID-19 and managing its effects [10]. To avoid and prevent the spread of COVID-19, all
countries have adopted several rules such as a stay-at-home policies [11], social distanc-
ing [9], city lockdowns [12], travel bans [13], requiring the wearing of face masks in public
areas, etc. These government regulations are deployed as actions to reduce the transmission
of the pandemic. However, the monitoring process of a large group of people or crowded
area is very difficult using manual monitoring systems. To overcome such problems, the
introduction of efficient and effective face mask detection systems is required.

In the light of literature, the researchers are mainly focused on the current challenges
related to COVID-19, such as social distancing [14], face mask detection [15], COVID-19
detection using chest x-ray images [16], etc. Face mask detection is one of the challenging
areas for the research community. Regarding creating methods of face mask detection,
some attempts have already been made, as mentioned in the recent literature. For instance,
Qin et al. [17] developed a method to identify different conditions of wearing a face mask
such as a face without mask, correctly wearing a face mask, and incorrectly wearing a face
mask. In this work, the authors developed a hybrid network with the combination of image
super-resolution and classification networks. Their proposed method includes four main
steps i.e., preprocessing, face detection, image super-resolution, and face mask condition
identification. Ejaz et al. [18] developed a principal component analysis-based model for
person identification through a face mask and with no mask detection. In the literature of
face detection models, this model achieved state-of-the-art accuracy, where the detailed
reviews are found in [19–21]. Ejaz et al. [18] claim that the accuracy of face detection models
is dropped below 70% when it recognizes the face while wearing a mask. To remove mask
objects from the face, Din et al. [22] present a novel technique by utilizing the generative
adversarial network. Their proposed model includes two discriminators: the first discrim-
inator is used to extract the global face mask structure, and the second discriminator is
used to extract the face mask missing region. They evaluated their model using a paired
synthetic dataset and achieved high accuracy in the removal of the face masks. GE et al. [23]
collected a dataset and developed a deep learning-based model to recognize normal and
face masks in the general population. Their proposed model is based on Convolutional
Neural Network (CNN) architecture that includes the proposal module, the embedding
module, and the verification module. To classify face masks, Loey et al. [1] developed a
hybrid model with a combination of CNN and machine learning techniques. The CNN
models are used to extract important features from the face mask and face unmask image,
followed by the use of a decision tree, support vector machine, and ensemble classifiers.
The combination of several models makes it computationally expensive, requiring pow-
erful GPUs and TPUs for their execution. Furthermore, Teboulbi et al. [24] developed a
deep-learning based model for face mask detection and social distancing measurement
by utilizing different CNN-based architectures. In short, several articles presented in the
recent literature for face mask detection are based on CNN architectures [25–27]. In these
articles, the authors compared the performance of two or three CNN-based architectures
and proposed a model which achieved comparatively high accuracy. However, comparison
of two or three models is not sufficient for an in-depth analysis of face mask detection



Sensors 2022, 22, 2602 3 of 13

considering the accuracy and running time. Furthermore, the current models developed for
face mask detection has lower accuracy and are computationally expensive. To reduce the
transmission rate of COVID-19, early face mask detection, with high accuracy and lower
computational complexity, is very important to ensure its implementation on resource-
constrained devices. Therefore, in this work, we investigate several lightweight models
for face mask detection. After a set of extensive experiments, we introduced a lightweight,
deep learning-based model based on a MobileNet architecture for face mask detection. The
proposed model utilizes MobileNet as a backbone architecture, used to extract meaningful
information from the input data, followed by encoding layers to squeeze the information
for effective training. The main contributions of the proposed work are as follows:

• For the sake of face mask detection, a limited number of datasets are available with
a limited number of images. Therefore, we applied extensive data augmentation
techniques to increase the number of samples for effective training and validation
output.

• We developed an efficient and effective model for face mask detection. The proposed
model is based on MobileNet architecture, followed by an autoencoder to select
the best optimal feature for final classification. The proposed model is developed
after extensive experiments over several deep learning-based models with different
parameters.

• The performance of several models is evaluated in this work using benchmark datasets,
and the proposed model achieved the highest accuracy rate as compared to the state-
of-the-art models. Furthermore, the efficiency of the proposed model is also evaluated
on edge devices to ensure their implementation in real-world scenarios.

The balance of the paper is organized as follows: Section 2 briefly describes the
proposed model. The experimental results and comparison with other state-of-the-art
models are presented in Section 3, and finally, Section 4 concludes the manuscript.

2. Proposed Model

In this work, we developed an effective and efficient model for face mask detection
based on the Convolutional Neural Network (CNN). Motivated by the high performance
of CNN in several domains such as video analysis [28], classification [29], time-series data
analysis [30], electricity prediction [31], and many others, in this work, we developed a
CNN-based model for face mask detection. The visual representation of the proposed
work is given in Figure 1, which includes two main phases of data augmentation and the
proposed model. These phases of the proposed work are briefly described in the following
subsequent sections.
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2.1. Data Augmentation

The data augmentation process is briefly described in this section. Abundant and high-
quality data is the main requirement for the effective training of deep learning models [32].
The proposed model for face mask detection is evaluated using the different datasets, as
mentioned in Section 3, where these datasets have a limited number of training samples and
the deep learning-based models require a large amount of data for effective training. Thus,
to achieve high accuracy and increase the number of samples in the datasets for effective
deployment of the model, we applied several data augmentation techniques to increase
the number of samples in the datasets. The details about data augmentation techniques
and their corresponding values are given in Table 1. These techniques include flipping,
rotation, shearing, skewing, sharpening, emboss, and blurring. We include a total number
of 7 techniques and 20 parameters. By utilizing these techniques, we increase the number
of samples in the datasets to achieve high accuracy for face mask detection. Each value
of the parameters is selected based on the nature of the data, for example, the possible
degree of face rotation in the general scenario is between −15 and 15, where the details are
given in [33]; another possible rotation for faces is right and left flipping, while the other
parameters such as Gaussian blur, sharpness, shear, etc. are initialized based on the nature
of the data.

Table 1. The data augmentation with a range of parameters.

S. No Technique Parameter

1 Rotation (degree angle) −15–15
2 Flip Right, left
3 Gaussian Blur (value of sigma) 0.25, 0.50, 0.75, 1.0
4 Sharping (value of lightness) 0.50, 1.00, 1.50, 2.00
5 Emboss (value of strength) 0.50, 1.00, 1.50, 2.0
6 Skew (Tilt) Right, left
7 Shear x-axis and y-axis, 10 degrees

2.2. Backbone Architecture

In this section, we briefly describe the internal architecture of the proposed model
for face mask detection. Before selecting the proposed model, we conducted an extensive
ablation study to select the best optimal model for face mask detection. We perform experi-
ments on different deep learning-based architectures such as VGG16, VGG19, InceptionV3,
NasNetMobile, MobileNetV1, MobileNetV2, ResNet-101, ResNet-50, EfficientNet, and the
proposed MobileNetV2 autoencoder model. These models are tested with several sets of
configurations, such as a number of epochs, learning rate, etc., to improve the detection ac-
curacy and develop an appropriate model for face mask detection. After a detailed ablation
study as given in the results section, we found that MobileNetV2 provides high accuracy as
compared to other models, and this model is also computationally inexpensive. The main
blocks of the MobileNetV2 architecture are the residual connection in the bottlenecks. These
bottlenecks with residual connection included convolutional blocks, where the start and
end of each convolutional block are connected with each other through a skip connection
mechanism. Based on the skip connection mechanism, the MobileNetV2 can retrieve earlier
activations that are not updated in each convolutional block. The internal architecture of
MobileNetV2 includes a convolutional layer, followed by residual bottlenecks. A total
number of 19 residual blocks are used in MobileNetV2 architecture. Further convolutional
and pooling layers are incorporated with MobileNetV2 architecture after the bottlenecks.
The detail about the internal architecture of MobileNetV2 is given in Table 2. This archi-
tecture is trained on the ImageNet dataset, which includes 1000 classes. We finetuned
the internal architecture of MobileNetV2 and used it as the backbone architecture in the
proposed model.
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Table 2. The internal architecture of MobileNetV2.

Layer Repetition Size of Stride

Convolution 3 × 3 1 2

Bottleneck

1 1
2 2
3 2
4 2
3 1
3 2
1 1

Convolution 1 × 1 1 1
Pooling 7 × 7 1 -

Convolution 1 × 1 1 -

2.3. Proposed Architecture

In this work, we used MobileNetV2 architecture, followed by autoencoders. The
MobileNetV2 is an efficient and effective deep learning-based architecture among several
available choices, i.e., VGG16, AlexNet, EfficientNet, etc. In the proposed model, Mo-
bileNetV2 is used as the backbone architecture for features extraction, followed by an
encoded layer to select optimal features. The autoencoder includes two main models, an
encoder and decoder, which are commonly used for unlabeled data. The encoder is used
to encode the input feature map, followed by a decoder module to reconstruct the feature
map. In this work, we utilized the encoder module of the autoencoder to squeeze the
output feature vector from the MobileNetV2 architecture for a more abstract representation
of the features. The output dimensions of the MobileNetV2 architecture are 7 × 7 × 1280,
which are reduced to 1280 dimensions by applying global average pooling. The output
of the global average pooling is then forwarded to the proposed encoding mechanism to
further extract more representative features for final classification. The 1280 dimensions
of the features vector are first encoded to 640 dimensions, and then 320 dimensions. The
main reason behind the feature encoding using their halves is to reduce the complexity of
the autoencoder [34]. In this work, we used stacked encoding layers to transform the high
dimensional output feature vector of MobileNetV2 into low dimensions, with an abstract
representation of all features maps. In the encoding module of the autoencoder, the weights
are multiplied with the data, including a bias term and an activation function such as ReLU
or Sigmoid. In the proposed stacked encoded layers, the first encoding layer takes the
output feature vector of MobileNetV2, while the second layer uses previous layer features
in a stacked mechanism. The output of the encoding layers is then forwarded to two fully
connected (Dense) layers to learn the encoded features prior to the classification layer. The
proposed architecture is developed after extensive experiments over different combinations
of encoding layers, finally achieving the highest performance with the aforementioned
configuration. The internal architecture of the proposed model, such as layers information,
the output shape of each layer, and their parameters, are given in Table 3. The proposed
model is trained for 40 epochs, and the training loss and accuracy graphs over both datasets
are given in Figure 2.
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Table 3. The internal architecture of the proposed model.

Type of Layer Output Shape Params.

MobileNetV2 7 × 7 × 1280 2,257,984
Global average pooling 1280 -

Encoder1 640 819,840
Encoder1 320 205,120

Dense 64 20,544
Dense 32 2080
Dense 2 66

Total params. 3,305,634
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3. Results and Discussion

In this section, the experimental results are described in detail. The performance of
several models is tested before selecting the proposed model. All the experiments are
carried out on GeForce RTX 2070 GPU, with 8 GB memory using the Keras framework with
backend TensorFlow. This section describes the datasets used for the evaluation of each
model, evaluation metrics, a detailed ablation study, and a comparison with state-of-the-
art models developed for face mask detection. Furthermore, the time complexity of the
proposed model is also tested using several hardware specifications such as GPU, CPU,
and edge devices. All these sections are briefly described in the subsequent sections.



Sensors 2022, 22, 2602 7 of 13

3.1. Evaluation Metrics

For performance evaluation, we used several evaluation metrics such as accuracy,
precision, recall, False Positive (FP), False Negative (FN), True Positive (TP), True Negative
(TN), and F1-scores. Accuracy is a metric used in classification tasks to evaluate model
performance and how the model performs among all the classes. The mathematical repre-
sentation of accuracy is given in Equation (1). Precision is the ratio between the number
of samples classified as positive and all samples where the mathematical representation
is given in Equation (2). The recall is the ratio between positive samples classified as
positive and the total number of samples as shown in Equation (3). The F1-score is the
harmonic mean of recall and precision. The mathematics behind the F1-score are given in
Equation (4).

Accuracy =
TP + TN

TP + FN + TN + FP
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 − score = 2 · Precision × Recall
Precision + Recall

(4)

3.2. Datasets

In this work, we used three datasets as Face Mask Detection (FMD) [35], Face Mask
(FM) [36], and Real-World Mask Face Recognition (RMFR). In the FMD dataset, there is
a total number of 7553 images in which 3725 images belong to the face mask while the
remaining images are from the without face mask class. In this dataset, around 700 images
simulate face mask images while the remaining show real-world face mask images. In the
FM dataset, there are a total number of 1376 images, of which 690 images belong to the face
mask class, while the rest belong to the without face mask class. The RMFR dataset includes
5000 face mask images and 90,000 images without masks. There is a limited number of
samples in two datasets, and the deep learning-based models require a huge amount of data
for effective training. Considering the limited numbers of samples in this work, we apply
extensive data augmentation techniques to increase the number of samples in each dataset.
The RMFR dataset includes a huge number of samples without masks; however, deep
learning-based models require a balanced amount of data for effective training. Therefore,
we balance the dataset before training the model. Table 4 represents the number of samples
in the original dataset and the augmented dataset.

Table 4. The number of samples in the original and augmented datasets.

Dataset Original Augmented

Mask Normal Mask Normal

FMD 3725 3828 7450 7656
FM 690 686 6900 6860

3.3. Ablation Study

Before selecting the proposed model, the extensive ablation study of the deep learning-
based models is conducted to develop an efficient and effective model for face mask detec-
tion. These models include VGG16 [37], VGG19 [37], InceptionV3 [38], NasNetMobile [39],
MobileNetV1 [40], MobileNetV2 [41], ResNet-101 [42], ResNet-50, EfficientNet [43], and the
proposed MobileNetV2 autoencoder model. The performance of these models is evaluated
on three benchmark datasets. The performance of each model in terms of TP, TN, FP, and
FN is given in Figures 3 and 4, whereas the detailed performance of the proposed and other
models in terms of accuracy, precision, recall, and F1-score are given in Tables 5 and 6.
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The performance of each model is lower in terms of accuracy over the original dataset
as compared to the augmented and unbalanced dataset. In an overall comparison, the
proposed model achieved the highest precision, recall, F1-score, and accuracy in both
scenarios over all datasets. For instance, the proposed model achieved 0.9098, 0.9076,
0.9087, and 0.9098 precision, recall, F1-score, and accuracy, respectively, over the original
FMD dataset, while these values are 0.9997, 1.0, 0.9999, and 0.9999, respectively, over
the FMD augmented dataset. For the original FM dataset, the proposed model achieved
0.9348, 0.9499, 0.9423, and 0.9426 precision, recall, F1-score, and accuracy, respectively,
and 0.9993, 0.9994, 0.9994, and 0.9994 precision, recall, F1-score, and accuracy, respectively.
Compared to other methods the proposed model achieved better accuracy for ensuring its
implementation for face mask detection. Comparatively, the second-highest performance is
achieved by MobileNetV2 in terms of accuracy, precision, recall, and F1-score. For instance,
MobileNetV2 achieved 0.8792 precision, 0.8948 recall, 0.8869 F1-score, and 0.8894 accuracy
over the original FMD dataset, while it achieved 0.9699, 0.9895, 0.9796, and 0.9801 preci-
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sion, recall, F1-score, accuracy, respectively, over the augmented FMD dataset. Similarly,
MobileNetV2 also achieved the second-highest performance of the FD original and the FD
augmented dataset, where the details are given in Figure 3, and Table 5. Furthermore, the
proposed model also achieved the highest performance over the RMFR dataset, and the
detailed results over the balanced and unbalanced data is given in Figure 4 and Table 6. For
instance, the proposed model achieved 0.9498, 0.5134, 0.6665, and 0.9516 precision, recall,
F1-score, and accuracy, respectively, over the unbalanced RMFR dataset, while these values
are 0.9998, 0.9998, 0.9998, and 1, respectively, over the RMFR balanced dataset.

Table 5. The detailed comparative analysis of different models for face mask detection.

Dataset Data Type Model Precision Recall F1-Score Accuracy

FMD

Original data

VGG16 0.8295 0.8431 0.8363 0.8397
VGG19 0.8389 0.8527 0.8457 0.849

InceptionV3 0.7893 0.8011 0.7951 0.7993
ResNet-101 0.8698 0.884 0.8769 0.8795
ResNet-50 0.8792 0.8585 0.8687 0.8689

EfficientNet 0.8094 0.9178 0.8602 0.8702
MobileNetV1 0.8698 0.8493 0.8594 0.8596
MobileNetV2 0.8792 0.8948 0.8869 0.8894

Proposed 0.9098 0.9076 0.9087 0.9098

Augmented data

VGG16 0.9099 0.8985 0.9042 0.9048
VGG19 0.9199 0.9371 0.9284 0.93

InceptionV3 0.8599 0.8838 0.8717 0.8751
ResNet-101 0.9499 0.9584 0.9542 0.955
ResNet-50 0.9399 0.958 0.9488 0.95

EfficientNet 0.9799 0.9596 0.9696 0.9697
MobileNetV1 0.9299 0.9476 0.9387 0.9401
MobileNetV2 0.9699 0.9895 0.9796 0.9801

Proposed 0.9997 1.0 0.9999 0.9999

FM

Original data

VGG16 0.8087 0.8267 0.8176 0.819
VGG19 0.8493 0.8669 0.858 0.859

InceptionV3 0.829 0.8137 0.8212 0.819
ResNet-101 0.7797 0.8042 0.7918 0.7943
ResNet-50 0.7797 0.8127 0.7959 0.7994

EfficientNet 0.8493 0.8254 0.8371 0.8343
MobileNetV1 0.829 0.8827 0.855 0.859
MobileNetV2 0.8493 0.8852 0.8669 0.8692

Proposed 0.9348 0.9499 0.9423 0.9426

Augmented data

VGG16 0.8799 0.8983 0.889 0.8898
VGG19 0.9199 0.9296 0.9247 0.9249

InceptionV3 0.8899 0.9086 0.8991 0.8999
ResNet-101 0.8699 0.8535 0.8616 0.8599
ResNet-50 0.8699 0.8973 0.8834 0.8848

EfficientNet 0.9299 0.9033 0.9164 0.9149
MobileNetV1 0.9299 0.9589 0.9442 0.9448
MobileNetV2 0.9899 0.9707 0.9802 0.9799

Proposed 0.9993 0.9994 0.9994 0.9994
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Table 6. The detailed comparative analysis of different models over the RMFR balanced and unbal-
anced dataset.

Data Type Model Precision Recall F1-Score Accuracy

Original data

VGG16 0.8798 0.2894 0.4355 0.8884
VGG19 0.8998 0.3333 0.4864 0.9071

InceptionV3 0.9198 0.3897 0.5475 0.9221
ResNet-101 0.8898 0.31 0.4598 0.8965
ResNet-50 0.9298 0.4246 0.5829 0.9394

EfficientNet 0.9098 0.3596 0.5155 0.9173
MobileNetV1 0.9198 0.3897 0.5475 0.9245
MobileNetV2 0.9298 0.4246 0.5829 0.9328

Proposed 0.9498 0.5134 0.6665 0.9516

Balanced data

VGG16 0.9298 0.4246 0.5829 0.9334
VGG19 0.9498 0.5134 0.6665 0.9529

InceptionV3 0.9398 0.4652 0.6224 0.9422
ResNet-101 0.9898 0.846 0.9123 0.9934
ResNet-50 0.9798 0.7312 0.8374 0.9881

EfficientNet 0.9898 0.846 0.9123 0.9935
MobileNetV1 0.9798 0.7312 0.8374 0.9874
MobileNetV2 0.9993 0.9973 0.9983 0.9998

Proposed 0.9998 0.9998 0.9998 1

3.4. Comparison with Baselines

In the literature, some studies have been done for face mask detection technology.
However, the detection accuracy needs to be improved to protect the transmission of
COVID-19. In the light of the literature, several detection methodologies are developed
to recognize faces with masks and faces without masks. In this section, we compare the
performance of the proposed model with other models. For instance, the performance of
our model is compared with Militante et al. [44], Chen et al. [45], Hariri et al. [46], Oumina
et al. [36], and Loey et al. [1]. Militante et al. [44] developed a deep learning-based model for
face mask detection and achieved 0.975 precision, 0.945 recall, 0.955 F1-score, and 0.96 accu-
racy. Chen et al. [45] achieved 0.9480 accuracy, Hariri et al. [46] achieved 0.913 accuracy,
and Oumina et al. [36] achieved 0.9184 precision, 0.9508 recall, and 0.9711 accuracy. The
average precision, recall, F1-score, and accuracy results of Loey et al. [1] are 97.4, 97.3,
97.3, and 97.4, respectively. Compared to these studies, on average, the proposed model
achieved 0.9996 precision, 0.9997 recall, 0.9997 F1-score, and 0.9998 accuracy. A detailed
comparative analysis of the above-mentioned models with the proposed model is shown
in Table 7.

Table 7. A comparative analysis of the proposed model with other state-of-the-art models.

Model Precision Recall F1-Score Accuracy

Militante et al. [44] 0.975 0.945 0.955 0.96
Chen et al. [45] - - - 0.9480
Hariri et al. [46] - - - 0.913

Oumina et al. [36] 0.9484 0.9508 - 0.9711
Loey et al. [1] 0.9963 0.9963 0.9945 0.9964

Proposed 0.9996 0.9997 0.9997 0.9998

3.5. Evaluation Using Edge Devices

The current surveillance systems have limited computational capabilities and cannot
run deep learning-based computationally expensive models. For this purpose, the re-
searchers and domain experts transmit these videos to the cloud or local servers to process
them and then extract meaningful information such as face mask detection. The transmis-
sion of data to these servers utilizes a huge amount of bandwidth, sometimes causing a
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delay, and these servers are costly. Besides this, the processing of surveillance data over
edge devices is very important for providing fast and inexpensive processing. However,
the current surveillance sensors have limited memory and processing capabilities; therefore,
in this work, we used resource-constrained devices to process these videos for efficient face
mask detection. For this purpose, we evaluated the efficiency of the proposed model using
three types of settings as a resource-constrained device (Raspberry Pi), a CPU, and a GPU
with an input size of 224 × 224 × 3. The details regarding the hardware specifications of
each device are given in Table 8. The time complexity of the proposed model is evaluated
on Frame Per Second (FPS), which shows how many samples the proposed model processes
in a second. The lightweight architecture of the proposed model achieved 199.01 FPS over
GPU, 44.06 FPS over CPU, and 18.07 FPS over the Raspberry Pi resource-constrained device.
The FPS of the proposed model over the resource-constrained device is lower than over
the other devices; however, the processing of a model with 18.07 FPS is enough for the
real-time implementation of a system that ensures its adaptability over edge devices.

Table 8. The hardware specification of each setting.

Setting Memory Model

Raspberry Pi 4 GB Raspberry Pi 4 B+
CPU 32 GB AMD Ryzen 5 5600X 6-Core Processor
GPU 8 GB RTX 2070

4. Conclusions

Due to the COVID-19 pandemic, each country in the world is facing huge health
crises and the governments are struggling to control and prevent the transmission of the
Coronavirus. In the light of literature, wearing a face mask is the most efficient way to
control the spread of the virus. Governments have instituted the mandatory wearing
of face masks in public areas, which is difficult to monitor manually. Therefore, in this
work, we developed an automatic face mask detection model with high accuracy that is
also computationally inexpensive. The proposed model is based on the use of MobileNet,
followed by an autoencoder. The MobileNet architecture is used to extract meaningful
features from the input data, which are then forwarded to the encoding layers to select
the optimal features. These optimal features are then used for the final classification. The
performance of the proposed model is evaluated on benchmark datasets, and the results
reveal significant improvements in accuracy, ensuring the implementation of the proposed
model for face mask detection. Furthermore, the performance of the proposed model is
also evaluated on resource-constrained devices to ensure their implementation over edge
devices. The proposed model achieved the highest accuracy and the lowest running time
as compared to other state-of-the-art techniques. In the future, we will extend this work to
include the positioning of face masks, such as a face with no mask, a face with a mask, and
a face with an incorrect mask. For this purpose, we will investigate emerging technologies
such as explainable artificial intelligence, reinforcement learning, active learning, and
lifelong learning techniques for face mask positioning and detection.
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