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Abstract: In recent years, aviation security has become an important area of concern as foreign object
debris (FOD) on the airport pavement has a huge potential risk to aircraft during takeoff and landing.
Therefore, accurate detection of FOD is important to ensure aircraft flight safety. This paper proposes
a novel method to detect FOD based on random forest. The complexity of information in airfield
pavement images and the variability of FOD make FOD features difficult to design manually. To
overcome this challenge, this study designs the pixel visual feature (PVF), in which weight and
receptive field are determined through learning to obtain the optimal PVF. Then, the framework
of random forest employing the optimal PVF to segment FOD is proposed. The effectiveness of
the proposed method is demonstrated on the FOD dataset. The results show that compared with
the original random forest and the deep learning method of Deeplabv3+, the proposed method is
superior in precision and recall for FOD detection. This work aims to improve the accuracy of FOD
detection and provide a reference for researchers interested in FOD detection in aviation.

Keywords: foreign object debris; object detection; random forest; optical imaging sensors

1. Introduction

In the field of aviation, foreign object debris (FOD) refers to any substance that is
not part of the aircraft and is presented on the airport runways, which could potentially
cause damage and may seriously threaten flight safety [1]. FOD mainly includes metal
pieces, screws, tire debris, small stones, plastic pipe, and junk, which are hard to find.
During aircraft takeoff and landing, FOD could be sucked into the aircraft by the aircraft
engine, possibly causing aircraft engine failure. In addition, FOD may puncture the tires
of the landing gear of the aircraft. For example, in 2000, the flight crash at Charles De
Gaulle Airport in France was caused by a metal strip that fell on the airport runway.
In this accident, 113 people lost their lives. It was the most serious air disaster caused
by FOD [2]. Since then, FOD detection has been listed as a prime safety measure in the
airport. Traditional FOD detection usually adopts a manual screening method, which has
poor reliability and low efficiency, and cannot meet the high-safety and fast-throughput
requirements of airports. Therefore, many domestic and international airports are actively
studying and developing automatic FOD detection systems to reduce FOD risks.

To date, several FOD detection systems have been applied in airports. For example,
the Tarsier Radar system developed in the United Kingdom (UK) uses a 94.5 GHz FMCW
radar [3]; the FODetect system, developed in Israel, consists of a millimeter wave radar
and an optical camera [4]; the FODFinder system developed in the United States (US)
contains a millimeter wave radar, GPS, and optical cameras [5]; and the iFerret system
developed in Singapore [6] uses optical cameras. These systems are radar-based detec-
tion systems, optical-camera-based detection systems, and multi-sensor fusion detection
systems. In radar-based detection systems, FOD detection is implemented based on the
characteristics of radar returns [7]. The results of radar-based detection systems are favor-
able for detection of FOD with sizes larger than 5 cm × 5 cm, but poor for objects with

Sensors 2022, 22, 2463. https://doi.org/10.3390/s22072463 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22072463
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22072463
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22072463?type=check_update&version=1


Sensors 2022, 22, 2463 2 of 18

smaller size or weak radar returns such as nuts and rubbers [8]. Even though FOD images
could be obtained via optical cameras, these images are not employed to detect FOD. If the
characteristics of FOD in optical images are utilized to complete FOD detection, then it is of
great significance in preventing FOD damage and increasing the utilization rate of airport
runways. Although iFerret uses optical images for FOD detection, the detection results are
poor for objects smaller than 5 cm × 5 cm.

The advantages of optical-camera-based detection systems are that they can acquire
rich information about the environment and can use computer vision technology to detect
objects. In recent years, many methods detecting FOD by virtue of optical images have
been proposed, which are performed based on traditional computer vision or deep learning.
A typical traditional method is to design a segmentation model to find the possible FOD
region. For example, an improved region growth algorithm was proposed by Zheng et al. [9]
to identify the FOD region on airport runways. A FOD detection algorithm based on image
change detection was designed by Xu et al. [10] and Chen et al. [11]. Zhang et al. [12]
presented a detection algorithm based on the weighted fuzzy morphology, detecting image
edge while reducing noises. An alternative traditional method of detecting FOD focuses
on the novel feature descriptors and effective detectors. Hu et al. [13] developed a FOD
detection and classification method based on extreme learning machine and several visual
features, in which the color, the histograms of oriented gradient (HOG), and the scale-
invariant feature transform (SIFT) are extracted and integrated to represent FOD. Aiming
at FOD detection, Niu et al. [14] proposed a method combining support vector machine
(SVM) and Gabor wavelet, in which Gabor wavelet is adopted to extract effective features
to describe FOD, and then SVM is used to classify FOD. Although the above methods are
simple, easy to understand, and fast in calculation, their accuracy is limited due to the
diversity of FOD type and the interference of airport road surfaces, such as tire marks,
marker lines, splice joints, and holes.

In recent years, for computer vision, such as image classification, image segmenta-
tion, and object detection, deep-learning-based methods have been widely used [15–17].
Inspired by this, many scholars have introduced deep-learning-based methods into FOD
detection. Deep-learning-based methods extract high-level semantic information through
continuous down-sampling operations, representing the objects more abstractly and ac-
curately. Cao et al. [18] improved the region-based convolutional neural networks for
FOD detection. Li et al. [19] and Gao et al. [20] applied YOLOv3 and DeepLabv3+ in FOD
detection, respectively. Deep-learning-based methods can automatically extract the features
of FOD to reduce human intervention, but they require a huge dataset to learn. Indeed,
the reliance on the large variety of unexpected FOD makes it extremely difficult to collect
anomalous images for training. Moreover, most neural networks used in object detection or
semantic segmentation are designed to detect typical generic objects, such as pedestrians,
and they may provide inferior results of FOD detection tasks where a small area is occupied
by FOD on the airfield pavement image.

There are also object detection methods based on random forest framework [21–24].
Typically, this kind of method firstly construct corresponding pixel-level representations
with handcraft features. Then, with the obtained features, random forest can be trained to
model the distribution of features patterns and inference the class of pixels in the feature
space. Shotton et al. [21] proposed semantic texton forests to serve as efficient texton
codebooks for image categorization and semantic segmentation. The splitting nodes in
semantic texton forests use the raw value of a single pixel, the sum, difference, and absolute
difference of a pair of pixels in d × d image patches. To improve the performance of
semantic segmentation, Schroff et al. [22] combined the global features, local features,
and context-rich information in the splitting nodes of random forest. Being applied in
human pose estimation in the depth images by Shotton et al. [23,24], random forest takes
the depth comparison between a pair of pixels as the splitting criteria. In random forest,
using the simple comparison between a pair of pixels on local image patches for a feature
representation has been one of the most popular representation learning methods. It has
constraints of using only two points in fixed-size image patches and fixed weights. This
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does not fully consider the spatial coherence between adjacent pixels, which reflects the
structure properties of the object surface and element correlation of the image, similar to
the macroscopic observation of human vision.

In this paper, we present a new FOD detection framework based on random forest to
detect small-scale FOD with complex background and noise in airfield pavement images.
In this way, the FOD detection problem is described as a pixel-wise classification problem.
There are two categories, namely foreground and background. The foreground refers to
pixels belonging to FOD and the background refers to pixels belonging to airfield pavement.
The pixel visual feature (PVF) is firstly designed to reflect the state of pixels and the spatial
coherence between pixels. Compared with using several points in fixed-size image patches
and fixed weights in random forest, PVF is able to learn weights and size of receptive field
by differential evolution algorithm. Then, the random forest employs the learned PVF
and calculates the probability of each pixel for each class. Finally, the effectiveness of the
proposed method is verified on the FOD dataset collected from airport and annotated at
the pixel level. For the capability of the generalization and robustness of random forest [25]
and the global optimization ability of differential evolution algorithm [26], FOD could be
detected accurately.

The rest of this paper is organized as follows. The overall detection framework is
described in Section 2, including the learning process of PVF using differential evolution
algorithm, and the training and testing of random forest. In Section 3, the proposed FOD
detection system used in this paper is introduced. In Section 4, the effectiveness of the
proposed detection method is verified on the FOD dataset. Comparative experiments
between this method and other methods are also introduced in this section. Sections 5
and 6 provide the discussion and conclusions of this paper, respectively.

2. Methods

The framework of the proposed method is shown in Figure 1. PVF, that could represent
any weight and size of the receptive field, is introduced in Section 2.1. PVF is proposed to
learn the optimal features for pixel-wise classification in airfield pavement images during
training. In Section 2.2, the random forest uses the PVF. The training process is depicted in
Section 2.2.1, and the test process is depicted in Section 2.2.2. In Section 2.3, the location of
FOD in airfield pavement images is calculated.

x,X
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Figure 1. The framework of the proposed foreign object debris (FOD) detection method.
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2.1. Pixel Visual Feature

Learning the optimal representation is conducive to avoiding unnecessary compu-
tations and achieving higher detection accuracy [27]. The typical convolutional neural
network (CNN) learns semantic information by filters of various sizes. The recently intro-
duced dilated convolution [28,29] with different dilated ratios can enlarge the receptive field
of filters to incorporate more contextual information. Inspired by dilated convolution, we
firstly design the dynamic filter whose weights and dilated ratios are learned, not manually
defined. Since the spatial coherence between pixels displays the structure properties of the
object, we then introduce spatial information to calculate PVF. Finally, the PVF of the pixel
x consists of two parts, as shown in Equation (1). One is the weighted sum of the pixels in
a (2r + 1)× (2r + 1) patch centered at the pixel x using the dynamic filter. The other is the
spatial information V that is the local variance computed in a (2r + 1)× (2r + 1) window.

f (x) = ∑
k

wkXx+r·k + wVV (1)

where x represents both the input pixel and its spatial location in the image X; k is
the number of pixels used to calculate the PVF of the pixel x; x + r · k is the pixel in a
(2r + 1)× (2r + 1) patch centered at the input pixel x; wk and r are the dynamic filter’s
weights and dilated ratio, respectively; V = 1

k−1 ∑K(Xx+r·k − X̄)2 and X̄ is the mean value
of pixels in a (2r + 1)× (2r + 1) patch; wV is the weight for the spatial information.

The weights wk control the influence of the information of the pixel x + r · k, and the
dilated ratio controls size of the receptive field of the PVF. As one piece of information in
the airport pavement images that can intuitively distinguish different objects in the images,
grayscale is adopted to perform FOD detection. The grayscale image can be obtained
by color model transformation. Therefore, the PVF consists of 11 parameters, including
10 weights and 1 dilated ratio. All parameters would be learned in the training stage.
The learned dynamic filters are described in Figure 2. If any pixel x + r · k is beyond
the boundary of the image, then the information Xx+r·k is replaced by a constant value,
namely 0.

(a) (b) (c) (d)

Figure 2. The grid rectangles represent examples of the learned dynamic filters with different weights
and receptive fields, the red squares represent the input pixel, and green squares represent the pixels
used to calculate the pixel visual feature (PVF) . (a) r = 1. (b) r = 2. (c) r = 3. (d) r = 4.

2.2. Random Forest

Random forest combines multiple decision trees, as shown in Figure 3. Due to the
combination of multiple decision trees learned using different data and features, random
forest is robust to irregular data and noise [25]. In random forest, each decision tree consists
of a root node, splitting nodes, and leaf nodes. The spatial location of the input pixel x
and the grayscale image X are inputs of each decision tree. The input pixel is classified
into a child node according to the splitting criteria fn(x) Q τ, where fn(x) is the PVF of
the pixel x at the node n. When the input pixel reaches a leaf node, the classification is
terminated. The probability p(c|x) of being each class c at each leaf node is learned in the
training process and used in the testing process.
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x,X

Tree-1 Tree-M

Figure 3. Illustration of the random forest framework. x and X represent the input pixel and the
corresponding grayscale image, respectively. Green, black, and red circles represent root node,
splitting nodes, and leaf nodes, respectively. The blue lines indicate the traversal path of the input
pixel. The histogram is the probability distribution of the pixel being each class at a leaf node of the
decision tree.

2.2.1. Training

Splitting Criteria: The classification ability of random forest is relevant to its splitting
criteria at each node. The splitting process based on the splitting criteria fn(x) Q τ at the
node n is defined as follows: {

x ∈ Q1, if fn(x, X) 6 τ

x ∈ Q2, if fn(x, X) > τ
(2)

where Q1 and Q2 are the dataset on the left child node and the right child node of the splitting
node n, respectively. At a node n, the decision boundary is fn(·) = ∑k wkXx+r·k+wVV = τ,
which partitions the instance space into two parts. If the pixel is in region f (·) 6 τ , then it is
classified into the left child node; otherwise, it is classified into the right child node.

We combine learning the optimal PVF with finding the optimal decision boundary
through the splitting criteria. Furthermore, for the decision boundary f (·) = τ, we can
eliminate an extra parameter by dividing each side by τ, while ensuring that the data
separation remains unchanged, as shown in Equations (3)–(5).

∑
k

wkXx+r·k+wVV = τ (3)

∑
k

wk
τ

Xx+r·k+
wV
τ

V = 1 (4)

∑
k

w′kXx+r·k+w′VV = 1, where w′k =
wk
τ

, w′V =
wV
τ

(5)

Therefore, the training algorithm only needs to learn parameters of the dynamic filters
while the decision boundary is always 1. In the next section of this paper, weight w is used
to represent w′. The simplified splitting process at the node n is shown in Equation (6).{

x ∈ Q1, if fn(x, X) 6 1
x ∈ Q2, if fn(x, X) > 1

(6)

The following paragraphs present the method of learning the dynamic filters using
differential evolution algorithm, the condition for generating a leaf node, and the method
of calculating the probability of being each class.

Differential Evolution: As a population-based adaptive global optimization method,
differential evolution algorithm uses the rule of survival of the fittest to guide the direction
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of population update for obtaining the optimal solution. As is depicted in Section 2.1, the pa-
rameters to calculate the PVF consists of ten weights and one dilated ratio. The parameters
can be regarded as an individual in the population P, denoted as pi, where 1 6 i 6 N (N is
the population size). The population can be denoted as P = {p1, p2, · · · , pN}. The initial
values of the population P are generated by a random number generator. The parame-
ters affecting the evolutionary process include the scaling factor F, the crossover rate Cr,
and the maximum number of iterations gmax. When the loss L in Equation (7) no longer
decreases at each iteration, or the number of iterations reaches the maximum, and the
differential evolution algorithm stops iterating. Differential evolution is implemented to
make loss decrease as the iterative number increases, and select the individual with the
least loss as the optimal dynamic filter of this iteration. Following this method, the PVF
can be evaluated and continuously improved, and the optimal decision boundary is finally
identified, achieving the optimal splitting effect.

The training loss L is a weighted summation of two losses:

L = Lc + λLR (7)

where Lc and LR are classification loss and regularization, respectively, λ the weight for the
regularization. Regularization makes the weights w evolve in the direction of smaller values.

The classification loss makes the pixels at the nodes belong to the same class. Specifi-
cally, we apply the information entropy to measure the purity of the dataset at the nodes.
The classification loss is shown below:

Lc = −∑
s

∑
c

Qs

∑s Qs
p(c|s) lg p(c|s) (8)

where c is an index for a class, s an index for a child node, including the right child node and
the left child node, Qs the number of pixels at the child node s, and p(c|s) the proportion of
the pixels belonging to the class c at the child node s.

At each iteration, the update of individual is achieved by sequentially performing three
genetic steps, namely mutation, crossover, and selection, as shown in Equations (9)–(11).
Mutation refers to sudden and random perturbations added to the genes of the individuals,
changing the product of the genes in evolutionary biology. In crossover, the trial individual
inherits both the genotype of the target individual and that of the mutant individual,
ensuring gene variety and possibly producing high fitness. The selection process ensures that
the population evolves in terms of the maximization of the fitness, and never deteriorates.

vg
i = pg

r0 + F(pg
r1 − pg

r2), r0 6= r1 6= r2 6= i (9)

ug
i,j =

{
vg

i,j, if randi,j(0, 1) ≤ Cr or j = jrand

pg
i,j, otherwise

(10)

pg+1
i =

{
ug

i , if L
(

pg
i

)
≥ L

(
ug

i

)
pg

i , otherwise
(11)

where vg
i is a mutant individual in the g-th iteration; r0, r1, and r2 are three randomly

generated individual indices; ug
i is the trial individual in the g-th iteration; rand(0, 1) is a

uniform random number generator; jrand is a randomly generated parameter index.
After learning the optimal dynamic filter, the pixels at the current node are classified

into child nodes. If the conditions for generating a leaf node are not satisfied, then the child
node continues to learn the dynamic filter calculating the PVF and generate child nodes;
otherwise, the child node will not continue to split and will serve as a leaf node.

Leaf Node: The conditions for generating a leaf node are as follows: (1) the number of
training pixels at the node; (2) the probability distribution p(c|x); (3) the maximum depth
of the decision tree. In detail, if the number of remaining training pixels at the node is too
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small or the probability for a certain class is considerably high, or the current depth of the
decision tree reaches the maximum, then the node serves as a leaf node.

When a node is marked as a leaf node, the probability p(c|x) is calculated according
to the number of the pixels belonging to the class c at the node, as shown in Equation (12).

p(c|x) = QL,c

∑c QL,c
(12)

where QL,c is the number of the pixels belonging to the class c at the leaf node L.

2.2.2. Testing

The trained random forest is defined as T = {t1, t2, · · · , tm, · · · , tM}. Each pixel x in a
given image X starts from the root node and enters the corresponding child node based
on the splitting criteria until it reaches a leaf node using each tree. When it reaches a leaf
node L using each tree tm, the probability ptm ,L(c|x) is loaded. Then, the probability from
all decision trees are averaged and the class with the highest probability is taken as the
final predicted result, as shown in Equation (13).

Ŷ(x) = arg max
c

1
M

M

∑
m=1

ptm ,L(c|x) (13)

where M is the number of decision trees in the random forest T.

2.3. FOD Location

After identification, the connected domains containing all the FOD-like pixels in the
binary image are defined as the predicted FOD. Through marking of the connected domains,
the pixels of each disconnected object domain are marked with the same number. After the
connected domains are marked, the center coordinates (x0, y0) and the size of each FOD
could be calculated. The number of the pixels z in the connected domain is used as the size
of FOD. The center coordinates of each target are defined as follows:

x0 =
1
z ∑
(x,y)∈o

x, y0 =
1
z ∑
(x,y)∈o

y (14)

where o is a FOD region in the binary image. Finally, the information of the detected FOD
are obtained.

3. FOD Detection System

The FOD detection system in this work is a solution for cost-effective and simple
detection of FOD (Figure 4). The system could be installed along both sides of the airport
runway. The system is composed of two modules, the FOD-detecting sensors and data
processing center. In detail, the FOD-detecting sensors consist of several optical cameras
fixed on the pan-tilt, which can provide up, down, left, right, and other azimuth control.
The installation cost could be acceptable because the FOD detection sensors can use the
power of the runway edge lights. The data processing center receives the optical images
captured by the optical cameras, and FOD detection is conducted in this module by
the proposed method, providing the information of the detected FOD (such as image
and location). According to the information of FOD, the procedures of alarm and clear
processing are performed.

Referring to the runway standard of Shahe Airport, the length and width of the runway
are 1800 m and 45 m, respectively. The area of the airport runway covered by an optical
camera is approximately (200 × 23) m2. Therefore, to cover 1800 m of the runway distance,
9 cameras need to be installed. Because one image cannot cover this area, the runway is
divided into multiple circular regions. The optical camera focuses on the ring and captures
the pavement images along the route. The rotation angle of pan-tilt contains the vertical
and horizontal angle. For the same circular region, the vertical angle and the focal length
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remain unchanged. With the horizontal angle continuing to change, the circular region is
scanned by the optical camera. For different circular regions, the vertical angle and the
focal length are different. In order to detect nuts with 5 mm in diameter (the smallest FOD
sample), the minimum physical size of a pixel is 1 mm.

Detection 

System

Display

System

Alarm

System
Database

Data Processing Center

Camera
Auxiliary 

Light

FOD Detecting Sensors

Data Transmission

Figure 4. Illustration of FOD detection system.

4. Experiments and Analysis

The Section 4.1 introduces the FOD dataset. The evaluation criteria are presented in
Section 4.2, and the influence of different parameters is studied in Section 4.3. The effective-
ness of the proposed PVF and the differential evolution algorithm is verified in Section 4.4.
The comparative experiments of the proposed method with the original random forest [16]
and other deep learning methods (Faster R-CNN [30] and Deeplabv3+) [31] are described in
Section 4.5.

4.1. Dataset

The Federal Aviation Administration (FAA) of the United States and the Civil Aviation
Administration of China (CDDC) published their advisory circulars, Technical Standards
for Airport Foreign Object Debris (FOD) Detection Equipment [1] and the Information
Announcement of Airport Runway Foreign Object Debris Equipment [32], respectively,
formulating the standards of FOD detection system. Based on the two documents, FOD
samples were prepared, including real FOD collected from the airfield pavement and
standard samples made by factories. Real FOD samples include nuts, screws, steel balls,
gaskets, rubber blocks, and stones, which are major targets for FOD detection, as shown in
Figure 5a–f. Standard samples contain spheres and cylinders made of metal, marble, glass,
and plastic, as shown in Figure 5g,h. The size of FOD samples is smaller than 5 cm × 5 cm.

The FOD dataset was collected by our research group at Shahe Airport in Beijing,
China. These images only include the runway pavement, not the sky, grass, or other
regions. The FOD dataset contains 1800 RGB images (with a resolution of 1920 × 1080).
The dataset is made up of 14 different object categories. Six categories consist of real FOD
samples, including nuts, screws, steel balls, gaskets, rubber blocks, and stones. The other
8 categories contain standard FOD samples, including metal spheres, marble spheres, glass
spheres, plastic spheres, metal cylinders, marble cylinders, glass cylinders, and plastic
cylinders. A single image contains 0 or multiple FODs and there are a 4375 annotation
instances. The number of different FOD in the dataset varies from 250 to 350. The area
of the FOD samples in the images is less than 15 × 15 pixels on average. Here 70% of
the FOD dataset is used as training data, and the other 30% the testing data. To achieve
the diversity of FOD dataset, different runway surface disturbances and FOD samples
are collected. Runway surface disturbances include tire marks, marker lines, splice joints,
holes, and others (Figure 6). The original images were labeled as FOD and ground by
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labelme software, as shown in Figure 7. The RGB images were used for visual interpretation.
The pixel-precise ground truths were manually checked by 5 operators, who would vote
for determination in terms of controversial image region.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Examples of the FOD samples considered in the FOD dataset: (a) nuts; (b) screws; (c) steel
balls; (d) gaskets; (e) rubber blocks; (f) stones; (g) cylinders; (h) spheres.

(a) (b) (c) (d)

Figure 6. Examples of airfield pavement disturbances: (a) tire marks; (b) marker lines; (c) splice joints;
(d) holes.

(a) (b)

Figure 7. Examples of labeled FOD images: (a) original RGB images; (b) ground truths.

In this paper, for introducing real-world variations and increasing the number of FOD
in dataset, the dataset is augmented using two strategies. First of all, we use generative
adversarial networks (GANs) [33] to generate high-quality airfield pavement images.
The generated images drawn from the generator net after training are shown in Figure 8a.
Second, inspired by recent success of synthetic object detection datasets [34] and the fact that
many airfield pavement images do not have FOD, a cut-and-paste strategy to synthetically
insert FOD into airfield pavement images for data augmentation is employed. As shown in
Figure 8b, we first cut numerous FOD objects from the original FOD dataset, and generate
synthetic airfield pavement images by inserting FOD in the original images. In this paper,
OFOD is used to represent the original FOD dataset and SFOD is used to represent the set
of the synthetic FOD dataset and the original FOD dataset.
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Original Dataset
Extracted FOD

Synthetic Images

(b) generated images by cut-and-paste

(a) generated images by generative adversarial networks (GANs)

Figure 8. Examples of generated airfield pavement images .

4.2. Evaluation Criteria

To evaluate the performance of the proposed FOD detection method, two benchmark
metrics, i.e., precision and recall, are employed. In this study, the proposed FOD detection
method acts directly on pixels and infers the category of each pixel. There are mainly
two results, FOD and background, of which FOD is denoted by 1 and background by
0. To illustrate the calculation methods of the 2 metrics, 3 types of detection results are
defined: (1) n11 is the number of pixels correctly detected as FOD; (2) n01 is the number of
pixels incorrectly detected as FOD; and (3) n10 is the number of pixels incorrectly detected
as background.

According to n11, n01, and n10, precision and recall are calculated by Equations (15) and (16).
Precision indicates the proportion of real FOD pixels in the FOD pixels predicted by the detection
method. Recall indicates the proportion of FOD pixels predicted correctly by the detection method
in the real FOD pixels.

Precision =
n11

n11 + n01
(15)

Recall =
n11

n11 + n10
(16)

4.3. Experimental Setup

The influence of different parameters of the proposed method on FOD detection results
is demonstrated in this section. According to the experimental results, the experimental
setup is described. The parameters come from two parts, differential evolution algorithm
and decision trees. The parameters affecting the evolutionary process include the popu-
lation size, the maximum number of iterations, the scaling factor, and the crossover rate.
The parameters of the decision trees include the number of decision trees and the maximum
depth of decision trees.

The detection process including training and testing is repeated five times and the
training and testing dataset are reselected for each detection process. All the reported
results are averaged over the five experiments. The experimental method is control variable
method. First, all parameters are set to their default value, indicated by green marks in
Figures 9 and 10, respectively. Then, in each experiment, only a parameter value is changed
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while fixing the remaining five parameters’ values. Using the method, we compared and
analyzed the impact of the main parameters on the performance of the proposed method.
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Figure 9. Precision vs. parameters in differential evolution algorithm.
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Figure 10. Precision vs. parameters of decision trees.

Figure 9a shows the performance of the proposed method when the population size
changes. The performance is improved with respect to the population size. However,
when the population size is greater than 50, its impact on the detection performance
becomes negligible and can even be ignored. Figure 9b uncovers the influence of the
maximum number of iterations. When the maximum number of iterations is less than 200,
the performance is significantly improved, yet when the number of iterations is more than
200, the improvement of the performance is not obvious. Figure 9c presents influence of
the scaling factor. It can be observed that the detection performance deteriorates with the
enlargement of scaling factor. Figure 9d displays the influence of the crossover rate. It can
be seen that the procedure is sensitive to the crossover rate, and the crossover rate with
0.6 performs the best.

Figure 10a shows the relations between detection performance and the maximum
depth of decision trees. It can be observed that the maximum depth of decision trees is
nearly proportional to the performance when the maximum depth is less than 22. The
improvement is not obvious when the maximum depth is greater than 22. The possible
explanations that a large number of the maximum depth leads to over-fitting. Figure 10b
shows the relations between detection performance and the number of decision trees.
It can be observed that the performance becomes better when the number of decision
trees increases, though eventually they would level out. In detail, when the number of
decision trees is less than 7, precision can be increased by about 7% by adding a decision
tree. However, when the number of decision trees is greater than 7, precision can only be
increased by about 1% by adding a decision tree. This proves that when the number of
decision trees exceeds a certain value, increase in the number of decision trees only has a
limited improvement effect on the performance.

The experimental results reveal that compared with the number of decision trees,
the maximum depth of decision trees has a greater impact on the performance of the
proposed method. The reason may be that the depth of decision trees directly affects the
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classification ability of the proposed method, while the number of decision trees merely
affects the robustness of the proposed method to the noise of the data.

Based on the above experiments, the following parameters are used unless stated
otherwise. The population size is set as 50, the maximum number of iterations 200, the scal-
ing factor 0.1, and the crossover rate 0.6. In consideration of the increased computational
complexity and memory usage resulted from the increased maximum depth and number of
decision trees, the maximum depth of decision trees is set as 20 and the number of decision
trees 10. The conditions for generating leaf nodes are that the probability of being a class is
0.99% and the amount of the remaining data is 0.01% of the total training data.

4.4. Validity of the Proposed Method

This section demonstrates the effectiveness of the proposed PVF and the differential
evolution algorithm compared with the typical convolution kernel and random generation
in Table 1. The performance of the random forest based on PVF outperforms the random
forest based on 3 × 3 convolution kernel and the former has smaller number of nodes.
The analysis shows that the PVF, learned by differential evolution algorithm, outperforms
that learned through random generation. In terms of the spatial information, the detection
result with PVF integrating the spatial information is better than that of without integrating
the spatial information. It can be concluded that the random forest based on the proposed
PVF and the differential evolution algorithm can learn more optimal representations.

Table 1. Analysis of the proposed representation PVF.

Method
Number of Nodes Precision Recall

Representation Optimization

Convolution
Kernel (3 × 3)

Differential
Evolution 36,585 78.58% 79.20%

PVF Random
Generation 26,749 84.68% 84.98%

PVF Differential
Evolution 23,998 93.08% 94.21%

PVF (+Spatial
Information)

Differential
Evolution 22,635 93.87% 95.01%

4.5. Comparative Experiments

This section compares the proposed method with the original random forest and deep
learning methods (Deeplabv3+ and Faster R-CNN) on FOD dataset using a machine with
Intel i9-9940 CPU with 3.30 GHz, 32 GB RAM, and NVIDIA GeForce RTX 2080 Ti GPU.

The proposed method and the original random forest were trained on the OFOD
dataset, which includes only the original FOD data and is defined in Section 4.1. The pre-
cision and recall of the original random forest are about 76.18% and 92.93%, respectively.
The detection precision of the proposed method is about 17.69% higher than that of the
original random forest. Figure 11 present the qualitative results of the proposed method
and the original random forest. In Figure 11, the image in the first row contains a piece of
rubber block, the second row a gravel, and the third row a white cylinder made of plastic.
According to Figure 11, the original random forest raised many false alarms in the regions
with airfield pavement disturbances, such as tire marks and holes. This proves that the
proposed method can better suppress the interference and noise on the airfield pavement
and segment foreign objects from the airfield pavement than the original random forest.
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(a) (b) (c) (d)

Figure 11. Qualitative comparison between the proposed method and the original random forest:
(a) original RGB images; (b) ground truths; (c) results of the original random forest; (d) results of
the proposed method. The white region indicates the pixels that are correctly detected as FOD,
the black indicates the pixels that are correctly detected as background, the yellow indicates the pixels
that are incorrectly detected as FOD, and the green indicates the pixels that are incorrectly detected
as background.

Table 2 and Figure 12 show the comparison of the proposed method with Deeplabv3+,
trained on the SFOD dataset. In Figure 12, there is a nut in the first row, a gasket in the
second row, and a screw and a steel ball in the third row. Compared with Deeplabv3+,
the precision of the proposed method is increased by 0.91% and the recall 3.06%. The results
in Table 2 demonstrate that the proposed method has a better detection effect on small-scale
FOD than Deeplabv3+. The Precision-Recall (PR) curves of the two methods are shown in
Figure 13. The results in Figure 12 demonstrate that the proposed method and Deeplabv3+
are all robust to the interference and noise of airfield pavement. The detailed images in
Figure 12 show the FOD edge detection results of the two methods. Deeplabv3+ records
many omission errors and false alarms in FOD edge detection. In conclusion, compared
with Deeplabv3+, the proposed method performs better in control of omission errors and
false alarms, and in the display of FOD edge details.

We discuss the possible explanations for why the precision of the deep learning
method is limited compared with the proposed method. Some FOD is quite small, such
as screws, nuts, and steel balls that fall from the aircraft. Additionally, since cameras are
generally installed with a large view from a long distance, the pixels of FOD in image are
less than 15 × 15 pixels on average. Therefore, the task of FOD detection is essentially
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small objects detection. Although deep learning methods are widely used, the problem
of small-scale FOD detection is still not fully resolved [35]. First, small objects often
reveal extremely limited appearance information, which increases difficulty in learning
discriminative features. Second, with the continuous decline of the resolution of feature
map in deep neural networks, the area of small objects is also gradually decreasing and
even the spatial information on the feature map is lost. Finally, since deep learning methods
often predict pixel-level labels on a low-resolution feature map, e.g., 1/16-th of the input
for Deeplabv3+, or 28 × 28 mask for Mask-RCNN [36], boundary recovery has been a
challenge for deep neural networks in image segmentation [37].

(a) (b) (c) (d)

Figure 12. Qualitative comparison between the proposed method and Deeplabv3+: (a) original RGB
images; (b) ground truths; (c) results of Deeplabv3+; (d) results of the proposed method. The white
region indicates the pixels that are correctly detected as FOD, the black indicates the pixels that are
correctly detected as background, the yellow indicates the pixels that are incorrectly detected as FOD,
and the green indicates the pixels that are incorrectly detected as background .

Table 2. Comparison between the proposed method and Deeplabv3+.

Method Precision Recall

Deeplabv3+ 93.97% 92.37%
The proposed method 94.88% 95.43%
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Figure 13. Comparison of Precision-Recall (PR) curves of different methods.

Table 3 and Figure 14 show the comparison of the proposed method with Faster
R-CNN, trained on the SFOD dataset. In Figure 14, there is a nut and a rubber block in
the first column, a copper pillar in the second column, and a metal sphere in the third
column. To compare the performance of two methods, the mean average precision (mAP)
is calculated. The proposed method achieves 93.47% mAP and is higher 3.3% than Faster
R-CNN, which means that the proposed method is effective and robust for small-scale FOD
detection. This is because the proposed method classifies pixels by learning their optimal
representations without down-sampling, which retains all information of FOD. However,
Faster R-CNN extracts high-level feature representations by continuous down-sampling
operations, damaging the information of small-scale FOD, whose poor-quality appearance
and structure also increase the difficulty of learning rich features [38].

Table 3. Comparison between the proposed method and Faster R-CNN.

Method mAP

Faster R-CNN 90.17%
The proposed method 93.47%
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Figure 14. Qualitative comparison between the proposed method and Faster R-CNN. The green solid
boxes indicate the ground truths while the red solid boxes refer to the detected objects.



Sensors 2022, 22, 2463 16 of 18

5. Discussion

In this study, the current research on FOD detection method is investigated. It can be
found that there are shortcomings in existing detection algorithms based on optical images,
i.e., the poor result on small FOD and not considering interference of airport road surface.
Consequently, an object detection method for small FOD under complex background is
proposed. Random forest and differential evolution are introduced into FOD detection
tasks. The concept of PVF is proposed, which learns the optimal feature to replace the
manual design process. The process of learning the optimal PVF is combined with finding
the optimal decision boundary to split data in nodes, which are divided into two classes:
FOD pixel data and non-FOD pixel data. In this way, the problem of FOD detection is
transformed into the problem of pixel classification, achieving pixel-level FOD detection.
In the process of decision tree construction, the optimal splitting results are scored by the
information entropy and the differential evolution.

For random forest, it is necessary to provide features of the data to use for segmentation
in the process of decision tree construction. Inspired by the use of convolutional kernels
to learn features in deep neural networks, the convolutional kernels are introduced to
learn the state and spatial correlation of pixels. According to the experimental results in
Section 4.4, due to the diversity of FOD type and the interference of airport road surface,
the PVF of pixels cannot be calculated by 3× 3 convolution filters with random weights and
fixed receptive field. In the proposed method, the weights and the size of receptive field are
able to learned using differential evolution at the same time, so as to distinguish between
FOD pixels and background pixels accurately. By comparison, the detection accuracy of
the proposed method for FOD is better than that of other methods.

The FOD dataset is collected to verify the effectiveness of the method. Although the
types of FOD are unknown in advance, we selected many object categories based on
guidance from related research by FAA and CDDC. Currently, the FOD dataset has included
14 object categories and 4375 annotation instances. Varying object categories ensures the
complexity of the FOD dataset. However, there is still a limitation. The FOD dataset does
not consider the variability of the real world, which includes different light and weather
conditions. In future research, we will continue to expand the FOD dataset from two
aspects: collecting different FOD samples and collecting images under different light and
weather conditions to ensure accurate simulation of airport environments.

6. Conclusions

To improve the detection accuracy of small-scale FOD in a complex background,
this study proposes a novel FOD detection framework based on random forest, which
employs representation PVF to accurately segment FOD regions and effectively suppresses
background interference in airfield pavement images. PVF is designed to learn the optimal
representation to achieve better detection performance. The random forest is chosen to
achieve higher accuracy for small-scale FOD detection. The deep combination of random
forest and PVF endows the proposed method with higher robustness and generalization
for FOD detection. In the experiment section, compared with the original random forest,
the proposed method remains undisturbed by airfield pavement disturbances. Compared
with Deeplabv3+, the proposed method exhibits a better performance in recall and precision.

Future research will employ image pyramids in feature representation to promote
the performance of FOD detection. Furthermore, an enlarged FOD dataset will be built,
covering different lighting conditions, such as full sunlight and cloudy weather, to evaluate
our proposed detection algorithm in future research.
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