
����������
�������

Citation: Ying, F.; Zhao, S.; Deng, H.

Microservice Security Framework for

IoT by Mimic Defense Mechanism.

Sensors 2022, 22, 2418. https://

doi.org/10.3390/s22062418

Academic Editors: Zhiyuan (Thomas)

Tan, Ali Ismail Awad and Nour

Moustafa

Received: 10 February 2022

Accepted: 17 March 2022

Published: 21 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Microservice Security Framework for IoT by Mimic
Defense Mechanism
Fei Ying 1 , Shengjie Zhao 2,* and Hao Deng 3

1 College of Electronic and Information Engineering, Tongji University, Shanghai 201804, China;
23yingfei@tongji.edu.cn

2 Key Laboratory of Embedded System and Service Computing, School of Software Engineering,
Tongji University, Shanghai 201804, China

3 School of Software Engineering, Tongji University, Shanghai 201804, China; denghao1984@tongji.edu.cn
* Correspondence: shengjiezhao@tongji.edu.cn

Abstract: Containers and microservices have become the most popular method for hosting IoT
applications in cloud servers. However, one major security issue of this method is that if a container
image contains software with security vulnerabilities, the associated microservices also become
vulnerable at run-time. Existing works attempted to reduce this risk with vulnerability-scanning tools.
They, however, demand an up-to-date database and may not work with unpublished vulnerabilities.
In this paper, we propose a novel system to strengthen container security from unknown attack using
the mimic defense framework. Specifically, we constructed a resource pool with variant images and
observe the inconsistency in execution results, from which we can identify potential vulnerabilities. To
avoid continuous attack, we created a graph-based scheduling strategy to maximize the randomness
and heterogeneity of the images used to replace the current images. We implemented a prototype
using Kubernetes. Experimental results show that our framework makes hackers have to send 54.9%
more random requests to complete the attack and increases the defence success rate by around 8.16%
over the baseline framework to avoid the continuous unknown attacks.

Keywords: mimic defense; container-based cloud; mimic transformation

1. Introduction

Nowadays, wireless sensor networks (WSN) are developing rapidly with the support
of the artificial-intelligence-enpowered Internet of things (AIoT), as cloud computing
and AI can help WSNs overcome the challenges of real-time end-to-end data processing.
Currently, microservices and containers have become the de facto approach for deploying
IoT applications in cloud. The microservice model divides an application into a set of
loosely coupled and collaborative components. These components then can be efficiently
encapsulated and deployed using lightweight container-based virtualization. Thanks to
its high flexibility, portability, and scalability, this architecture has been widely applied in
scenarios such as IoTs, smart vehicles, and fog/edge computing [1–3].

Despite its advantages, container-based virtualization possesses a major drawback: if
a container image (We used image, container image, and Docker image inter-changeably
in this article) contains security vulnerabilities, all mircoservice components related to
this image are in a high risk state [4]. Malicious parties now frequently exploit vulnerable
images to gain control of the entire microservice architecture [5]. Moreover, with the
continuous expansion of the IoT in scale, a large number of heterogeneous sensor devices
connected to the IoT for forwarding and processing huge data. This make unknown
vulnerabilities in microservices a potential security threat to sensor networks.

Therefore, it is crucial to address the container image security issue with the utmost
urgency. State-of-the-art solutions [6,7] attempts to suppress this issue by applying vul-
nerability scanning tools on container images at build time or run-time. However, this

Sensors 2022, 22, 2418. https://doi.org/10.3390/s22062418 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22062418
https://doi.org/10.3390/s22062418
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7723-6885
https://orcid.org/0000-0002-4301-394X
https://orcid.org/0000-0002-4627-9110
https://doi.org/10.3390/s22062418
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22062418?type=check_update&version=1

Sensors 2022, 22, 2418 2 of 18

approach demands an up-to-date vulnerability database, which is not available all the time.
Moreover, this approach is ineffective to undisclosed vulnerabilities.

In this paper, we propose a mimic-defense-based framework for container image
security, which can actively defend against unknown vulnerabilities from continuous
attack without a vulnerability database. The core idea is to construct a mimic image pool,
where the images’ variants are supposed to execute the same operations and output the
same results. If any inconsistency is detected, we can then infer that there exists a security
threat in images. Afterwards, the mimic defense platform will select another equivalent
executor (e.g., image variant) from the heterogeneous resource pool to replace the current
image variants to prevent future attack. Mimic defense method can be a supplement to a
traditional static defense method; it is able to solve uncertain threats based on unknown
vulnerabilities, and backdoors in different fields of cyberspace, in order to protect sensor-
generated data and AI calculations.

Note that how we select the replacement image can be crucial to system security.
Container images are composed of multiple read-only layers; the base layer merely contains
a minimal operating system. We can add software components to the image by creating an
overlay. We can formulate the relationship of image replacement as a mimic image graph.
Each node in the graph represents a set of image variants. If there are differences between
the two image groups due to the different levels of the images, there will be edges between
nodes. Due to the fact that the greater the distance between two nodes, the more difficult it
is to break through one image variant group to the other. The optimal migration strategy
can be obtained by maximizing the randomness and migration distance, enabling the mimic
defense framework to have the optimal active defense power. In practice, our framework
can protect large-scale IoT services for governments and militaries (e.g., commands to
operate the hydropower station), and helps big companies (e.g., Amazon AWS or Azure
Cloud) to protect their most sensitive AI services. The contribution of this paper can be
summarized as follows:

1. We propose a novel container image security framework to proactively defend against
continuous attacks from unknown vulnerabilities;

2. We propose a novel graph structure to maximize the randomness and heterogeneity
for the image group transformation, which enhances the ability of our framework to
resist continuous unknown attacks;

3. A prototype is developed using Kubernetes and the experimental results show that
our framework can achieve a better active defense power to defend against random
attacks, and increases the defence success rate by around 8.16% over the baseline
framework to avoid the continuous unknown attacks.

2. Related Works

In this section, we introduce the containerized technology in Internet of Things (IoT),
existing methods for microservice security defense, and active security defense method,
which are closely related to our work.

2.1. Containerized Technology in IoT

As a core of Industry 4.0, the IoT refers to a wide variety of physical devices connected
via the Internet. IoT devices can exchange information and complete task without human
assistance. IoT may generate massive amounts of data that have to be processed and stored,
which leads to the concept of layered architecture. The “microservice architecture” has
emerged as a popular aspect as it enables the application to be developed through a bunch
of loosely coupled lightweight services, which increases the scalability of deployment.
Recently, many existing works have studied the deployment of “microservice architecture”
in IoT scenarios. In [8], the authors combined a single-board computer (SBC) running
Docker with a microcontroller to create an automated guided vehicle. Ref. [9] proposed a
smart building architecture in which sensors share data with SBC running microservices.
Ref. [10] used Docker to create a Gateway for IoT and customize the IoT platform. In

Sensors 2022, 22, 2418 3 of 18

addition, Ref. [8] compared different virtualization methods with Cloud Computing (CC)
dominated by virtual-machines (VM), and found that Docker presents minimal overhead in
terms of CPU, memory, storage and network performance. Ref. [11] also analysed Docker
in terms of fault tolerance of services and service deployment.

Existing works show that it is feasible to deploy Docker containers in IoT devices.
Many architectures were presented but few of them consider the security issues. Default
Docker installation does not verify an image authenticity. When a user interacts with an
image for the first time through a Docker command, trust is automatically established with
the image publisher. Previously, Yao et al. [12] studied building trust in selected gaming
virtual communities. Ref. [13] proposed a blockchain-based decentralized docker trust
(DDT) solution to avoid the Denial-of-Service (DoS) attacks.

2.2. Microservice Security Defense Methods

By virtualizing physical servers and storage devices, a cloud environment can reduce
resource-sharing costs and provide multiple replicas to users around the clock from all over
the world. The greatest disadvantages of cloud systems are security- and privacy-related,
which are much more serious than traditional systems [14]. Influenced by COVID-19, cloud
enterprise solutions are becoming more widely used in education, healthcare, e-commerce
and supply chain industries. As a result, there are more cyber security attacks leading to
healthcare emergencies in this period [15].

Container-based solutions have become popular in developing cloud applications [16].
Security concerns exist irrespective of the IT industry, education, banking sector based on
recent perspectives. Recently, Docker, and container technology in general, has become
increasingly popular and offers significant benefits to developers and companies, including
the efficiency, cost savings, consistency, reliability, and scalability of the entire development
process. However, for running large-scale sensitive applications, ensuring the security of
container-based solutions is still a big challenge [17]. Multiple security risks exist when
using Docker to orchestrate the cloud environment, which include internally deployed
malicious applications, infected containers running on the cloud, and malevolence or
semihonest hosts [18]. However, among these risks, most container-based cloud attacks
are aimed at attacking container images [19]. Nowadays, more than 30% of official Docker
images contain high-severity vulnerabilities [20]. Therefore, protecting container images
from vulnerabilities is the core of container-based cloud security.

With the help of a risk library, there are many methods proposed to deal with image-
security issues on container-based clouds. The most popular methods take uses of Linux
features (i.e., CGroup and Capabilities) to isolate the hardware resource, and to divide the
privileges, respectively [21]. They provide the general security protection of the storage and
networking for containers. Brady et al. [22] use a continuous integration and continuous
deployment (CI/CD) system to protect the security of Docker images. It scans the image
when it is created, updated, and deployed, so the image is reliable throughout its life
cycle. Kritikos et al. [23] present a configuration metamodel to recognize all the vulnerable
risk from the mate-data. It performs vulnerability detection on each layer of the image,
and forms a risk analysis report by mapping the detected result to the corresponding risk
level. However, these methods still suffer from effectiveness problem. They have to scan
all container images at build time or running time by vulnerability detection tools. But
there is no guarantee that the virus database is up-to-date and that they can grasp all
attacking viruses.

2.3. Active Security Defense Method

Different from the traditional defense methods, active defense methods are used to
protect the system from several large-scale, complex, and covert attack behaviors [24–26].
The existing works can mainly be classified into three categorises: dynamic intrusion-
detection methods [27], machine-learning-based methods [28], and cyber mimic-defense
methods [29]. The dynamic intrusion-detection method was first proposed in the frame-

Sensors 2022, 22, 2418 4 of 18

work of moving-target defense (MTD), which increases the complexity of the attacker
by dynamically moving the attack surface of the protected system [30]. Based on this
technology, Alavizadeh et al. [31] further proposed the diversity MTD technology, which
improves cloud security by deploying different operating systems into various variants.
Bardas, et al. [32] introduces the MTD platform to increase the difficulty of attacks by
allowing any running component of the IT system to be replaced with the original version.

In addition, to detect attack activities before encountering an attack, a cyber mimic-
defense framework (CMD) is proposed [33] based on dynamic heterogeneous redundancy
(DHR) infrastructure [29]. As shown in Figure 1, the CMD framework mainly consists of
an input agent unit, executor pool, and voting unit. The executor pool contains a set of
equivalent variants which are dynamic heterogeneous redundancy and are functionally
equivalent. By receiving the input request from the agent unit, the voting unit generates
a relatively correct unique output by voting on the executor pool. The security of the
mimic defense framework depends on the heterogeneity of the executor pool and the
randomness of the selection scheduler of the executor set. The heterogeneous executor pool
is reconstructed when the vulnerabilities are triggered. In this way, the attacking cost and
difficulties of the microservice based on mimic defense framework can be increased [34].
Nowadays, there are several works based on this framework to protect the system’s security,
such as the mimic-defending web server [35], or the mimic defense construction router [36].
These implementations prove that the mimic defense framework is effective in defending
against unknown vulnerabilities.

Input

Input Agent Unit

 ……Executor Pool A1 A2 Am

Voting Unit

Output

Scheduler

A1

A2

A3

An

…
…

…
…

Executor Set

C
o

m
p

o
n

e
n

t
S

e
t

Figure 1. The dynamic heterogeneous redundancy architecture.

In the DHR architecture, the executor pool is consists of functionally equivalent
software or hardware developed independently by different teams with different technical
backgrounds. Therefore, there is an extremely low probability of consistency vulnerability
among them. For the attackers, even if they control a part of the executors, it is not
guaranteed that all the executors can respond to vulnerability attacks consistently [29].
Therefore, the attacks based on unknown vulnerabilities will lead to inconsistencies in
executors’ responses in some dimensions (e.g., API response, disk I/O, database operation,
etc.), which can be identified by the mimic defense mechanism. As a result, it fills in the
blind spots of traditional defense.

3. Mimic-Defense-Based Microservice Security Framework

This section presents the detailed design of the mimic-defense-based microservice
security framework, named MDSF.

3.1. MDSF Overall Architecture

As discussed earlier, IoT services are facing several security and privacy challenges.
To protect the microservice against the backdoor attacks, we propose a mimic defense
framework and use Kubernetes to manage the container and the images for the microservice.

Sensors 2022, 22, 2418 5 of 18

The framework is expected to protect the authorization of IoT devices and their data from
malicious attacks. For example, if certain manufacturing data is not expected to be collected
at certain times or places, the framework should be able to distinguish between allowed
and disallowed actions related to the specific context in which the action occurs. In the
design of MDSF, a main component is to take advantage of redundancy for the safety
improvement. This main part is called the Mimic Defender, which forwards the requests
to several equivalent executors. Therefore, if any equivalent executor outputs a result
different to others, we can identify an attack.

Considering that IoT services are moving from the cloud to the edge because of security,
latency, autonomy, and cost, running IoT services creates a new management challenge
for system administrators and developers. Kubernetes provides a common platform that
could be used for deploying IoT services at the edge. Therefore, we leverage the concepts
of Kubernetes to build our microservice security framework based on mimic defense. The
general structure of the proposed MDSF is illustrated in Figure 2. Further details on MDSF
and its supportive components are given in the subsequent sections.

…

O
p
e
ra

ti
o
n

S
y
s
te

m
 S

e
t

W
e
b

S
e
rv

ic
e
 S

e
t

O
th

e
r

S
e
t

M
im

ic
 L

a
y
e
r

S
e
t

Request handler

Selected
Image
Group

Ingress Controller

…

v1

M
im

ic
 I
m

a
g

e
po

ol

…

…

Request

http/https

Mimic
Image

Scheduler

v2

v3

v1

v2

v3

v1

v2

v3

…

…

Pod
Service

Pod
Service

Pod
Service

…

Mimic
Controller

…

…

…

…

Reselect

Heterogeneous
Resource Manager

Mimic Defender

Final Output

Consistent Results

A
tt

a
c
k

S
ig

n
a
l

Figure 2. MDSF overall architecture.

3.2. Heterogeneous Resource Manager

The heterogeneous resource manager (HRM) is the heart of the MDSF. It performs
the core function of generating multiple redundant virtual images as equivalent executors.
With a set of equivalent actuators performing the same operation, inconsistent outputs
can detect attacks due to image vulnerabilities, such as data shadowing, blocking access
to data, granting access to data, revoking permissions, installation control, saving state,
and disabling intents [37]. HRM consists of several components which are introduced
as follows.

3.2.1. Mimic Layer Set

This component manages a set of layers correspond to certain instructions in Docker
image’s Dockerfile. The instructions are for the components to build the image, such as the
operation system, mounted applications (e.g., Apache), etc. It is of note that there exists
equivalent candidates for each component. For example, Centos, Ubuntu, and Fedora are
equivalent candidates for building the operating system. Every layer of the Docker image
can be substituted with an equivalent candidate. In this way, we can build different docker
images with equivalent function through the Dockerfile based on the mimic layers. For
example, the mimic layer set may contain several OS candidates (e.g., Ubuntu, CentOS,

Sensors 2022, 22, 2418 6 of 18

Fedora). We can choose one from the mimic layer set, and write it in the Dockerfile to build
the image.

3.2.2. Mimic Image Pool

Images are templates from which containers are launched. We transparently overlay
these layers to create an Docker image. The mimic image pool consists of all the images
which are built from Dockerfiles with the same number of layers and each layer is selected
from the mimic layer set. The layered architecture have a couple advantages. First, they are
immutable. Once created, these layers are read-only which will never be changed. Second,
this immutability allows images to safely build and fork off of each other. This facilitates us
to organize the candidates from different layers to build an image.

3.3. Mimic Defender

Mimic defender is the main part of MDSF, which encompasses the essential functions
to protect the system’s security and the user’s privacy. In order to fulfil its purpose, this
component needs to proactively defend against attacks and can be seamlessly transplanted
to the existing container-based cloud platform. Typically, the mimic defender mainly
consists of the following components.

3.3.1. Request handler

The request handler is responsible for exposing the service and managing external ac-
cess to IoT services running in the container. We use the Ingress Controller of Kubernetes to
expose http/https routes of the running services. In this way, the outside of the Kubernetes
cluster can access the services running in the container through the APIs [38]. Typically,
Ingress Controller plays the role of input agent unit, which replicates and distributes the
same requests to the equivalent services and their corresponding pods. Pods can be analo-
gized as machine instances to a container. Each pod is allocated its own internal IP address,
and containers within pods can share their local storage and networking. A Kubernetes
Service acts as a layer above the pods, which enables network access to a set of pods. Thus,
we can regard these services as a mimic executor pool in DHR architecture.

3.3.2. Mimic Controller

The mimic controller is used to produce the output of the system and provide the safety
to the scheduler. Particularly, the mimic feedback module is responsible for comparing
the execution results from several equivalent services. The consistent execution result
from majority will be the final response of the system. Note that if there is not enough
execution results for decision making, the mimic feedback module will ask the Ingress
Controller to reconstruct the equivalent services. Most importantly, mimic feedback module
will detect the inconsistent results and report to the scheduler. The inconsistent results
indicate a vulnerability in the image. Meanwhile, the system may check whether all the
services created from the selected image is working in an abnormal state. Otherwise, the
redundancy between services is used to discover which image exists the vulnerability. In
this way, IoT microservices can work in safe mode even if the base image is vulnerable.

3.3.3. Mimic Image Scheduler

In MDSF, we propose a novel mimic image scheduler to avoid continuous attack. This
is because the service is launched from the selected image: if we replace the vulnerable
image with one not of great differentiation, the attack will easily continue. Therefore,
once receiving an attack signal, the mimic image scheduler will ask the mimic image
manager to reselect the image groups, following the MDSF scheduling strategy described in
Section 3.5.

Sensors 2022, 22, 2418 7 of 18

3.4. The Workflow of MDSF

The diagram of the MDSF working process is shown in Figure 3. In the beginning,
Ingress Controller replicates the request and passes the request to the service pods launched
from their corresponding images. As the equivalent executors, these service pods will
process the received same request and send their respective operation results to the mimic
controller. If these results are consistent, the mimic controller will let the Ingress Controller
expose the result as a system response. Otherwise, to avoid further attack from unknown
hackers, the mimic image scheduler will be triggered to replace the images which launched
the services with different results.

Ingress
Controller

Service
Pods

Mimic Image
Scheduler

Mimic
Controller

Request

Duplicate
and delivery

Return
all results

If the results are
consistent

If the results are
inconsistent

Return result

Substitute image
in the group

Mimic image group transformation

Response

Mimic Image
Manager

Figure 3. The diagram of the MDSF working process.

Afterwards, the original selected image group will be switched to another candidate
group. This process is called the mimic image group transformation. A mimic trans-
formation is used to effectively change the static nature of the images on which cyber
attacks rely. To achieve this, when we replace the images, the first step is to stop the
container and capture the state of the stopped container. Correspondingly, a checkpoint is
created for a to-be-replaced container, which includes in-memory state data of all processes
running inside the container. By transferring the container checkpoint from the original
in-memory state to the new host’s user-space, the mimic transformation can be achieved at a
lower cost.

3.5. MDSF Schedule Strategy

To better improve the security performance of active defenses, we create a schedule
strategy based on a novel graph structure to maximize randomness and heterogeneity for
the image group replacement, which will be introduced in this section. Particularly, we first
give some notations to help us formally define the studied problem. Then, we introduce
the graph-based scheduling strategy.

3.5.1. Notations and Definitions

Mimic layers are a set of layers that correspond to certain instructions in the Docker
image’s Dockerfile. Each mimic layer Li contains mi candidate choices marked as Lik , k ∈
[1, mi], for a given image, Li = Lik , k ∈ [1, mi].

Mimic images contain a set of Docker images with a same number of layers, and
each layer is selected from mimic layers defined as above. It can be denoted as a n-tuple
I = (L1, L2, L3, · · · , Ln)T , n is the number of the layers, Li presents the i-th layer of the
image, and I describes the each layer information of an individual image. Only when
two images Ia and Ib meets Lia = Lib , ∀i ∈ [i, n], we can say images Ia and Ib are same,
otherwise, they are different.

Sensors 2022, 22, 2418 8 of 18

Assuming each layer in the image can be substituted with any other equivalent layers,
we can obtain a mimic image pool with N different images related to the number of image
layers n and each layer’s candidate choice mi as follows.

N =
n

∏
i=1

mi, (1)

where mi represents the candidate number of layer i. N is the number of mimic images
can be generated from the mimic layers. So all these N images have the same function;
therefore, they can use them to create equivalent variants in container-based cloud with the
mimic defense framework.

Selected image group (SIG) consists of a set of images selected by mimic image
scheduler. The services launched from these images are functionally equivalent. If they
perform differently, this suggests that at least one image has vulnerabilities which are
exploited by attacker. We can denote an SIG with n mimic images as SIG = {I1, I2, . . . , Im},
where m is the number of images in the selected image group.The total number of distinct
mimic images L(Ga, Gb) in these two groups are:

L(Ga, Gb) = rank(cat(Ga, Gb)
T), (2)

where Ga and Gb are SIG, which consist of m mimic images with n mimic layers. As shown
in Figure 4, Ga and Gb are two matrices whose columns are the mimic layers in each image.
cat(Ga, Gb) concatenates the matrix Gb to the right of Ga, and rank(·) is the operation of
matrix rank.

Mimic Image

Mimic Layer

Mimic Transformation Graph

… …… … ……

Selected Image Group

n

m

Figure 4. The illustration of mimic transformation graph components.

The mimic transformation graph (MTG) represents the transformation relationship
between SIGs, denoted as W = (N, E), where N is a set of SIG defined as above, and
E ⊆ N × N is a set of edges, where each edge indicates the relationship between
mimic images.

Sensors 2022, 22, 2418 9 of 18

MTG(ni ,nj)
indicates a mimic transformation from SIG ni to SIG nj, where both ni and

nj ∈ N contain m images. The distance of this transformation denoted as Di,j is computed
by Di,j = L(ni, nj)−m, where L(ni, nj) is the total number of distinct mimic images in ni
and nj according to Equation (2). In practise, we make there exists an edge between ni and
nj if and only if Di,j = 1. Thus, the edge indicates that there exists one image migration
between node pairs (ni, nj). Therefore, the shortest hop between the node pairs (ni, nj)
indicates the number of images should be replaced in the mimic transformation process
from SIG ni to SIG nj.

The process of MTG generation is described in Algorithm 1. First, we use the equiva-
lent layers to compose the Dockerfiles (Lines 1–3). Then, we create the different images
with a same function base on these Dockerfiles and push these images to the mimic image
set (Line 4–6). Based on these images, we construct the graph based on the steps from Line
7 to Line 15. With the help of MTG, we can easily generate all the mimic states with present
resources and all the potential mimic transformations. To better improve the security
performance of active defense, we propose a schedule strategy based on our MTG, which
will be introduced in the next section.

Algorithm 1 Mimic transformation graph generation.

1: function GENERATEMIMICIMAGESET(LayerNum, layers[])
2: for each i ∈ [1, LayerNum] do /∗Traverse mimic layer set∗/
3: Insert layers[mi] information into Dockerfile
4: Create image with Dockerfile and name it imageId
5: Append imageId to images[] /∗Add image to the mimic image set∗/
6: return images[]
7: function CREATEMTG(images[], m)
8: W ← null; /∗Weighted graph W∗/
9: Select m different images from images[] as G

10: while G /∈W do
11: Append G to W.Node[]
12: for each node in W do
13: if diff(G, node) = 1 then
14: Append E(G, node) to W.Edge[]
15: return W

3.5.2. Graph-Based Scheduling Strategy

In a cyberspace environment, if any vulnerabilities in the mimic layer take effect, the
equivalent services will generate different results when running the application based on
a mimic defense framework. The MDSF will then take mimic transformation process to
protect the application, such that SIG will change to another mimic state. This process will
make sure that the attacker’s experience cannot be inherited. The mimic transformation
process will have good security performance when the following conditions are met:

1. The new SIG should be far away from the original SIG (heterogeneity).
2. Each image in SIG should be selected with equal probability from a mimic image pool

(randomness).

We define the output of the transformation scheduling as a sequence S. Each node
n selected from the MTG is added to the sequence S in chronological order. Accordingly,
we can measure the heterogeneity of the scheduling strategy by computing the shortest
number of hops between every two adjacent elements in S as follows.

M(S) = min(hop(ni, ni+1)), i ∈ [1, n− 1] (3)

where ni, ni+1 are two adjacent SIG in S, and hop(ni, ni+1) indicates the hop number
between ni and ni+1 based on MTG. A larger M(S) represents a higher heterogeneity of
the scheduling strategy, and the less the attacker’s experience can be inherited.

Sensors 2022, 22, 2418 10 of 18

We measure the randomness of the scheduling strategy by calculating the total entropy
of each element in the sequence S as follows.

H(S) = −∑
i

p(ni)log(p(ni)), (4)

where p(ni) is the probability of ni in S. A higher H(S) means more uncertainty for
attackers to implement the attack. To protect the application deployed on the container-
based cloud, the scheduling strategy S should jointly consider M(S) and H(S) parts. To
evaluate the security level of the scheduling strategy S, we calculate a weighted sum of
M(S) and H(S) as follows.

SL(S) = αM(S) + βH(S), (5)

where α and β are weight parameters determined by specific scenarios. Thus, the objective
of the scheduling strategy is to find a mimic image replacement sequence S that can
maximize the SL(S).

Typically, the M(S) part is maximized when p(ni) =
1
N , where N is the total number

of SIG in MTG. This means that our strategy should select each image equally from the
mimic images pool. In particular, if the length of the strategy sequence is the same as
the number of nodes in the MTG, each node should only appear once in the sequence S.
Meanwhile, we define a Transformation Hops Matrix (THM) to restore the shortest distance
from any two nodes in the SIG. For example, nij ∈ THM represents the shortest hops from
ni to the nj. Since all the SIG nodes total have m different images, the largest element in
THM is m. Accordingly, we can maximize the H(S) part by generating a transformation
sequence as described in Algorithm 2.

Algorithm 2 Generate the mimic transformation sequence.

Require: The Mimic Transformation Graph MTG(N, E)
Ensure: The Mimic Transformation Sequence S

1: Create an empty Transformation Hops Matrix M;
2: for i in N do
3: for j in N do
4: nij ← The number of hops for the shortest path from ni to nj
5: nij appends to M.Node[];

6: for t← m; t > 0; t← t− 1 do
7: for each element in M do
8: if element < t then
9: element← 0;

10: else
11: element← 1;
12: if There exists a Hamiltonian path in M then
13: return Hamiltonian path in sequence
14: return Null

In Algorithm 2, we first generate THM, denoted as M, according to the algorithm on
lines 1–5. Considering that the maximum number in the THM is m, we set the threshold to
m and transform the THM according to lines 6–11. More specifically, we mark the element
in THM as 1 if it is greater than m, and 0 otherwise. Next, we examine the Hamiltonian
path in M. If it exists, we output it as the result (lines 12–13). Otherwise, we reduce the
threshold to m− 1 and repeat the steps from lines 7 to 13. Finally, if we cannot find any
Hamiltonian paths when the threshold t drops to 0, we output a Null value. Thus, we
can transform the SIG from one group of different images to another group, so as to avoid
inherited attacks.

Sensors 2022, 22, 2418 11 of 18

In addition, we can prove that Algorithm 2 can always find a nonempty solution to
the sequence of mimic transformations. This is because that assuming the mimic image
pool has n different images and each SIG consists of m different images, totally there is
N = Cm

n nodes in the MTG, and the number of neighbors in each hops of a given node
is calculated as Neii = Ci

m × Ci
n−m. We can easily prove that ∀m, n ≤ 3, ∑m

i=1 Neii >
Cm

n
2 ,

according to Dirac’s theorem that was already proved [39]. This indicates that the updated
M will always exists a Hamiltonian path, in the worst case, when the threshold drops to 1.

4. Implementation and Experimental Result

Here, we describe how our proposed framework was implemented. Then, we present
the performance of our system in two real scenarios and analyze the experimental results.

4.1. Implementation

This section explains the implementation details of our framework. As shown in
Figure 5, our system is developed based on the Kubernetes architecture, where the blue
icons are Kubernetes native components, and modules in red boxes are the developed
plug-ins. Mimic Controller and services are deployed on one master node and three worker
nodes, with the configuration settings in Table 1. In this platform, each worker runs a set
of logical pods launched from the SIG. These pods perform the same service to reduce
the response time. Actually, the workflow of MDSF can be divided into two aspects.
The execution workflow indicates the deployment detail of MDSF, and the microservice
workflow presents how microservices work under MDSF deployment.

Worker C

…

Pod Pod Pod

Service

Replica Set

Master

Mimic Controller

RespChk

Worker A

…

Pod Pod Pod

Service

Replica Set

Worker B

…

Pod Pod Pod

Service

Replica Set

Kubelet

Kubelet

Kubelet

Kubectl

Ingress

MDSF workflow
Microservice workflow

Attacker

Service
Registry

Mimic Image Scheduler
SecLvlCfg

S={G1,G2,…}
α

β ingress_
controller.yaml

service.yaml

Gi

Request Handler

Figure 5. The systematic implementation of MDSF. The icons in blue are Kubernetes native compo-
nents, and modules in red boxes are the developed plug-ins.

Execution Workflow: Initially, the security level is set by α (i.e., heterogeneity weight)
and β (i.e., randomness weight) from SecLvlCfg unit in the Mimic Image Scheduler (MIS)
module, which calculates the SIG sequence. Once the RespChk unit reports an exception,
the MIS will reselect the images from the Docker private registry and write the selected
images information to service.yaml and ingress_controller.yaml. The modified service.yaml
will notify Kubectl, which tells each Kubelet on the worker nodes to create a service with
the specified image. After the services are created, ReplicaSet on each worker node adjusts
the number of pods to accommodate request pressure and reduce response time.

Sensors 2022, 22, 2418 12 of 18

Microservice Workflow: We modify the configuration of Ingress so that the request
traffic can be mirrored to the equivalent functional services on worker nodes. For example,
these services are Apache, Lighttpd, and Nginx. By modifying ingress_controller.yaml,
Ingress will expose requests from cyberspace (possibly by an attacker) and transparently
forward them to services on designated worker nodes. Afterwards, all the services will
individually handle the request and return the response to the RespChk unit for checking
through ingress. The consistent response indicates there are no attacks against backdoors
and vulnerabilities, which will be the final response of the system. Otherwise, the RespChk
unit triggers the MIS to reselect a new SIG and the Execution Workflow has to be repeated.

Table 1. Devices configuration settings.

Node CPU Memory Disk IP
Address

Master Intel Xeon E5 2687 2.70 GHz processor 256 G 1T 172.16.0.10
WorkerA Hygon C86 7159 2.0 GHz 32-core Processor 256 G 2T 172.16.0.30
WorkerB Hygon C86 7159 2.0 GHz 32-core Processor 256 G 2T 172.16.0.31
WorkerC Hygon C86 7159 2.0 GHz 32-core Processor 256 G 2T 172.16.0.32

4.2. Experimental Design

This section presents the experiments showing how MDSF effectively defends against
continuous network attacks from the unknown vulnerabilities.

We consider the stateless service IoT microservices which are deployed on a container-
based cloud with Kubernetes platform. In MDSF, the detailed information of mimic layer
sets used in the experiment is shown in Table 2. Our experiment makes these sets contain
publicly known zero-day vulnerabilities. For example, Nginx with version 1.10 is in the set,
if the current time is the year 2016, we can treat CVE-2017-7529 as a zero-day vulnerability.
When the IoT microservice is deployed using the basic image with nginx as web server,
the attack will be success through CVE-2017-7529. Based on this mimic layer set, we can
easily generate a mimic image set through Dockerfile. The relationship of the images in the
mimic image set with the mimic layer set is shown in Table 3.

Table 2. Detail information of the mimic layers.

Layer Candidate Version Vulnerability Vulnerability Description Size

1 CentOS 7.0 CVE-2020-5291 Can be used to gain root permissions 209 MB
Ubuntu 14.04 CVE-2014-1424 Allow attackers to bypass AppArmor policies 197 MB

2
Apache 2.4 CVE-2017-7679 Can read byte past the end of the buffer 54 MB
Nginx 1.10 CVE-2017-7529 Leak of information triggered by specially request 66 MB

Lighttpd 1.4.11 CVE-2018-19052 Potential path traversal of a single directory 78 MB

Table 3. Mapping relationship between mimic images and mimic layers.

Serial Number Image ID Image Tag Mimic Layer 1 Mimic Layer 2

0 1816f2528ad0 app:CentApch CentOS Apache
1 99cc511d5595 app:CentNgnx CentOS Nginx
2 0689b34165ff app:CentLght CentOS Lighttpd
3 6fa35b2ba1c5 app:UbunApch Ubuntu Apache
4 60b82fc64a88 app:UbunNgnx Ubuntu Nginx
5 9a4486e0a7a0 app:UbunLght Ubuntu Lighttpd

In our experiments, we simulate hackers trying to attack the IoT microservice by
sending requests. As shown in Figure 6, 1© the attacker embeds zero-day vulnerabilities
into a request. 2© The request is transmitted transparently through the request agent, which
copies and sends the request to several equivalent executors. Initially, these executors are

Sensors 2022, 22, 2418 13 of 18

launched from images in the selected images group. 3© The responses of these executors
are marked as 3©-x, 3©-y, 3©-z, respectively. If any of these equivalent images contain
vulnerabilities, the response will be different and the response will be 3©-a, which means
that the attack is successful. Otherwise, we can recognize the attack (3©-b). At this time,
4© Docker Orchestration & Scheduling module will be triggered, 5©the image will be
replaced by modifying the yaml file in Kubernetes. As a result, 6© the executor will
synchronously update.

Request Agent

……
Image

Executor

Executor

Executor

Voting

Agent

Docker

Orchestration

& Scheduling

① ② ③-y

④

③-x

③-z

⑤

⑥

Attacker

③-a

③-b

Figure 6. The process of hackers trying to attack the IoT microservice by sending requests.

We conduct the experiments to evaluate the active defense ability of MDSF in two
scenarios. One is to avoid the unknown attacker’s first attack on microservices at any time.
(Scenario 1). Another one is to consider how to prevent continuous unknown microservice
attacks from hackers (Scenario 2). Details of these two scenarios are presented below.

Scenario 1. We generate six requests to attack the mimic image set containing six images with
zero-day vulnerabilities, as shown in Table 3. When an IoT microservice launched from these images
receives an attack request, the microservice will be attacked by hackers. As a result, it will output
wrong results and disclose private information to the outside.

Scenario 2. To check whether a continuous attack can success, we generate the same harmful
requests continuously to attack the mimic image set containing six images, one of which has a
zero-day vulnerability. When an attack is detected, Mimic Image Scheduler will ask Mimic Image
Manager to update the members of the Selected Image Group, which can prevent attackers from
successfully attacking the microservices again.

To evaluate the capabilities of our framework on these scenarios by taking different
MDSF scheduling strategies, we set α and β in Equation (5) to different values, as shown
in Table 4. In particular, S1 and S3 are the strategies that give priority to generating
heterogeneity- and randomness-replacement sequences, respectively. S2 is a strategy which
tries to balance the heterogeneity and randomness of the generated sequence. In addition,
we take the traditional moving target framework [33] as baseline, noted as S0.

4.3. Experimental Results

To evaluate the security performance of different strategies under the abovementioned
two scenarios, we report the experiment results in this section.

4.3.1. Study of the Randomness Attack

In this experiment, we count the average number of random requests sent by hackers
that cause exceptions in the microservices. The experiment has been conducted 20 times
and the averaged results are reported in Figure 7. One can see that all the strategies used

Sensors 2022, 22, 2418 14 of 18

by the MDSF force hackers to send more requests to succeed. Typically, the heterogeneity-
preferred strategy, balanced strategy and randomness strategy make hackers have to send
82.9%, 46.7%, and 35.2% more requests to complete the attack than the baseline, respectively.
This is because MDSF selects the replacement image with heterogeneity. Thus, attackers
need more attempts, which demonstrates that MDSF can have better active defense power
to defend against random attacks.

Table 4. The image replacement sequence generated from the MDSF scheduling strategies.

α β Sequences S

S0 - -
G(0,1,2) 1©→ G(0,2,3) 1©→ G(2,3,5) 2©→ G(1,3,4) 2©→ G(0,2,4) 1©→ G(2,4,5) 1©→ G(2,3,4) 1©→
G(3,4,5) 1©→ G(1,4,5) 1©→ G(1,2,4) 1©→ G(1,2,3) 3©→ G(0,4,5) 1©→ G(3,4,5) 1©→ G(0,3,4) 2©→
G(0,2,5) 2©→ G(1,4,5) 1©→ G(0,1,4) 3©→ G(2,3,5) 1©→ G(1,2,5) 2©→ G(0,3,5)

S1 10 1
G(0,2,4) 3©→ G(1,3,5) 3©→ G(0,2,4) 3©→ G(1,3,5) 3©→ G(0,2,4) 3©→ G(1,3,5) 3©→ G(0,2,4) 3©→
G(1,3,5) 3©→ G(0,2,4) 3©→ G(1,3,5) 3©→ G(0,2,4) 3©→ G(1,3,5) 3©→ G(0,2,4) 3©→ G(1,3,5) 3©→
G(0,2,4) 3©→ G(1,3,5) 3©→ G(0,2,4) 3©→ G(1,3,5) 3©→ G(0,2,4) 3©→ G(1,3,5)

S2 1 1
G(0,1,2) 2©→ G(0,4,5) 2©→ G(2,3,5) 2©→ G(0,3,4) 2©→ G(1,2,3) 3©→ G(0,4,5) 2©→ G(1,3,5) 2©→
G(0,1,4) 2©→ G(0,2,3) 2©→ G(0,1,4) 2©→ G(0,2,3) 2©→ G(1,3,5) 3©→ G(0,2,4) 2©→ G(1,4,5) 2©→
G(1,2,3) 2©→ G(1,4,5) 2©→ G(0,1,2) 2©→ G(0,3,4) 2©→ G(2,3,5) 2©→ G(0,2,4)

S3 1 10
G(0,1,3) 2©→ G(2,3,5) 2©→ G(0,1,2) 2©→ G(2,4,5) 2©→ G(0,3,5) 2©→ G(1,2,3) 2©→ G(0,1,5) 2©→
G(0,2,3) 2©→ G(1,2,5) 2©→ G(0,2,4) 2©→ G(1,3,4) 2©→ G(0,4,5) 2©→ G(1,2,4) 2©→ G(1,3,5) 2©→
G(2,3,4) 2©→ G(0,1,4) 2©→ G(3,4,5) 2©→ G(0,2,5) 2©→ G(0,3,4) 2©→ G(1,4,5)

0

5

10

15

20

Traditional Strategy Heterogeneity-
preferred Strategy

Balanced Strategy Randomness-
preferred Strategy

Th
e a

ve
ra

ge
 n

um
be

r o
f a

tta
ck

s
re

qu
ire

d
fo

r a
 su

cc
es

sfu
l a

tta
ck

Figure 7. The average number of attacks required under the random attack scenario.

4.3.2. Study of the Continuous Attack

In this experiment, we let the hacker continuously send the same request 500 times
to attack microservices with unknown vulnerabilities. We evaluated the performance
of each strategy based on the defence success rate. The successful defence depends on
whether all equivalent services can output the same response. As shown in Figure 8, one
can see that all the strategies proposed by MDSF can achieve higher defence success rate
than the traditional moving-target active defense framework. Typically, the randomness-
preferred strategy reaches the best performance, as it can increase the defence success
rate by 9.41%, 9.18%, 8.49%, 8.43%, 7.65%, 7.43%, under 50, 100, 200, 300, 400, 500 attacking
requests, respectively, over the traditional strategy in the moving target framework. This is
because the more randomness the mimic images selected in the SIG, the more difficulty the
attackers had in finding the regular pattern and carrying out the continuous attacks. Thus,
one can see that MDSF with randomness-preferred sequence can always perform a stable
defence success rate against continuous attacks.

Sensors 2022, 22, 2418 15 of 18

60

65

70

75

80

85

90

95

100

0 100 200 300 400 500

De
fe

nc
e s

uc
ce

ss
 ra

te
(%

)

Number of attacking requests

Traditional Strategy
Heterogeneity-preferred Strategy
Balanced Strategy
Randomness-preferred Strategy

Figure 8. Defence success rate under the continuous attack scenario.

4.3.3. Study of the System Performance

To study the impact of MDSF on system performance, we analyze the response time
of microservices deployed in a Kubernetes environment. During performance testing,
we evaluate this response time by measuring the average time to complete the same API
request from a single client. By adjusting the concurrency of requests, we record the average
response time of microservices with and without MDSF under different CPU usage, as
shown in the Figure 9. It can be seen that the response time of the microservice becomes
longer as the CPU usage of the Kubernetes cluster increases. It also shows that services
using MDSF always take longer response time than the original microservices without
MDSF. The difference is about 30–70 ms, which is mainly due to the delay caused by mimic
controller processing, which can be reduced in further research. Overall, the performance
degradation brought from MDSF vulnerability protection is acceptable.

0

200

400

600

800

1000

1200

10 20 30 40 50 60 70 80 90 100

Re
sp

on
se

 Ti
m

e (
m

s)

CPU Usage(%)

Without MDSF

With MDSF

Figure 9. Microservice response time under different CPU usage.

5. Limitation Discussion

From the above discussions, MDSF can defend against attacks that exploit unknown
vulnerabilities. However, there are some limitations in protecting microservices from
some specific attacks. First, MDSF cannot deal with denial-of-service attacks such as
denial of service (DoS) and distributed denial of service (DDoS). This is because such
attacks attempt to exhaust the target’s resources, making application services unavailable,
rather than causing the target to generate abnormal output. Second, MDSF cannot protect
microservices that produce inconsistent results (e.g., generate random results). Note that

Sensors 2022, 22, 2418 16 of 18

equivalent variants of such services can not guarantee the consistent output results for the
same input, so MDSF cannot detect attacks by comparing the output results. Third, MDSF
cannot defend against attacks that exploit inherent flaws in sensor networks (e.g., replay
attacks, etc.). This is because all the equivalent variants have identical inherent defects,
which will generate the same type of error outputs.

6. Conclusions

In this paper, we propose a novel system to strengthen container security using the
mimic defense framework from unknown continues attack. Our proposed method can
not only identify unknown vulnerabilities in images, but can also avoid continuous attack.
By constructing the resource pool with image variant, the consistency of execution results
from group of images can identify vulnerabilities in images. Moreover, we created a graph-
based schedule strategy to maximize randomness and heterogeneity of the image group
transformation. Finally, We use Kubernetes to realize the proposed system. Experimental
results show that MDSF can make hackers have to send 54.9% more random requests to
complete the attack and increase the defence success rate by around 8.16% compared to the
traditional strategy to avoid the continuous unknown attacks. Further research directions
include theoretical study on the optimal value of defense strategies to meet different levels
of security requirements for microservices in the IoT field. Additionally, the theoretical
defense efficiency of the mimic defense framework will be further explored.

Author Contributions: Conceptualization, F.Y. and S.Z.; methodology, F.Y. and S.Z.; software, F.Y.;
validation, F.Y.; formal analysis, F.Y.; investigation, F.Y.; resources, F.Y. and S.Z.; writing—original
draft preparation, F.Y.; writing—review and editing, F.Y., S.Z. and H.D.; supervision, S.Z. and H.D.;
funding acquisition, S.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Key Research and Development Project
under Grant 2019YFB2102300, in part by the National Natural Science Foundation of China under
Grant 61936014, in part by Fundamental Research Funds for the Central Universities, in part by
Shanghai Municipal Science and Technology Major Project No. 2021SHZDZX0100.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bhowmik, S.; Bhanu, S.M.S.; Rajendran, B. Container Based On-Premises Cloud Security Framework. In Proceedings of the2020

International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 26–28 February 2020; pp. 773–778.
2. Wang, J.; Cao, J.; Wang, S.; Yao, Z.; Li, W. IRDA: Incremental reinforcement learning for dynamic resource allocation. IEEE Trans.

Big Data 2020. [CrossRef]
3. Wang, J.; Cao, J.; Stojmenovic, M.; Zhao, M.; Chen, J.; Jiang, S. Pattern-rl: Multi-robot cooperative pattern formation via deep

reinforcement learning. In Proceedings of the 2019 18th IEEE International Conference On Machine Learning And Applications
(ICMLA), Boca Raton, Florida, USA, 16–19 December 2019; pp. 210–215.

4. Kehrer, S.; Riebandt, F.; Blochinger, W. Container-based module isolation for cloud services. In Proceedings of the 2019 IEEE
International Conference on Service-Oriented System Engineering (SOSE), San Francisco, CA, USA, 4–9 April 2019; pp. 177–17709.

5. Driss, M.; Hasan, D.; Boulila, W.; Ahmad, J. Microservices in IoT Security: Current Solutions, Research Challenges, and Future
Directions. arXiv 2021, arXiv:2105.07722

6. Hosseinzadeh, S.; Laurén, S.; Leppänen, V. Security in container-based virtualization through vTPM. In Proceedings of the 9th
International Conference on Utility and Cloud Computing, Shanghai, China, 6–9 December 2016; pp. 214–219.

7. Xie, X.; Huang, T.; Guo, Z. Research on the security protection scheme for container-based cloud platform node based on
blockchain technology. In Proceedings of the 2018 International Conference of Pioneering Computer Scientists, Engineers and
Educators, Zhengzhou, China, 21–23 September 2018; Springer: Singapore; pp. 24–32.

8. Rufino, J.; Alam, M.; Ferreira, J.; Rehman, A.; Tsang, K.F. Orchestration of containerized microservices for IIoT using Docker. In
Proceedings of the 2017 IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, Canada, 22–25 March 2017;
pp. 1532–1536.

http://doi.org/10.1109/TBDATA.2020.2988273

Sensors 2022, 22, 2418 17 of 18

9. Khanda, K.; Salikhov, D.; Gusmanov, K.; Mazzara, M.; Mavridis, N. Microservice-based iot for smart buildings. In Proceedings
of the 2017 31st International Conference on Advanced Information Networking and Applications Workshops (WAINA),
New Taipei City, Tawan, 27–29 March 2017; pp. 302–308.

10. Morabito, R.; Petrolo, R.; Loscrí, V.; Mitton, N. Enabling a lightweight Edge Gateway-as-a-Service for the Internet of Things. In
Proceedings of the 2016 7th International Conference on the Network of the Future (NOF), Buzios, Brazil, 16–18 November 2016;
pp. 1–5.

11. Ismail, B.I.; Goortani, E.M.; Ab Karim, M.B.; Tat, W.M.; Setapa, S.; Luke, J.Y.; Hoe, O.H. Evaluation of docker as edge computing
platform. In Proceedings of the 2015 IEEE Conference on Open Systems (ICOS), Melaka, Malaysia, 24–26 August 2015;
pp. 130–135.

12. Yao, Y.; Chang, V. Towards trust and trust building in a selected cloud gaming virtual community. Int. J. Organ. Collect. Intell.
(IJOCI) 2014, 4, 64–86. [CrossRef]

13. Xu, Q.; Jin, C.; Rasid, M.F.B.M.; Veeravalli, B.; Aung, K.M.M. Blockchain-based decentralized content trust for docker images.
Multimed. Tools Appl. 2018, 77, 18223–18248. [CrossRef]

14. Al Nafea, R.; Almaiah, M.A. Cyber security threats in cloud: Literature review. In Proceedings of the 2021 International
Conference on Information Technology (ICIT), Amman, Jordan, 14–15 July 2021; pp. 779–786.

15. Mandal, S.; Khan, D.A. A Study of security threats in cloud: Passive impact of COVID-19 pandemic. In Proceedings of the 2020
International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 10–12 September 2020; pp. 837–842.

16. Combe, T.; Martin, A.; Di Pietro, R. To docker or not to docker: A security perspective. IEEE Cloud Comput. 2016, 3, 54–62.
[CrossRef]

17. Bui, T. Analysis of docker security. arXiv 2015, arXiv:1501.02967.
18. Sultan, S.; Ahmad, I.; Dimitriou, T. Container security: Issues, challenges, and the road ahead. IEEE Access 2019, 7, 52976–52996.

[CrossRef]
19. Shu, R.; Gu, X.; Enck, W. A study of security vulnerabilities on docker hub. In Proceedings of the Seventh ACM on Conference

on Data and Application Security and Privacy, Scottsdale, AZ, USA, 22–24 March 2017; pp. 269–280.
20. Grandison, T.; Sloman, M. Trust management tools for internet applications. In Proceedings of the 2003 1st International

Conference on Trust Management, Heraklion, Crete, Greece, 28–30 May 2003; Springer: Berlin/Heidelberg, Germany, 2003;
pp. 91–107.

21. Flauzac, O.; Mauhourat, F.; Nolot, F. A review of native container security for running applications. Procedia Comput. Sci. 2020,
175, 157–164. [CrossRef]

22. Brady, K.; Moon, S.; Nguyen, T.; Coffman, J. Docker container security in cloud computing. In Proceedings of the 2020
10th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 6–8 January 2020;
pp. 975–980.

23. Kritikos, K.; Papoutsakis, M.; Ioannidis, S.; Magoutis, K. Towards Configurable Vulnerability Assessment in the Cloud. In
Proceedings of the 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links
and Networks (CAMAD), Limassol, Cyprus, 11–13 September 2019; pp. 1–6.

24. Akashe, V.; Neupane, R.L.; Alarcon, M.L.; Wang, S.; Calyam, P. Network-based Active Defense for Securing Cloud-based
Healthcare Data Processing Pipelines. In Proceedings of the 2021 International Conference on Computer Communications and
Networks (ICCCN), Athens, Greece, 19–22 July 2021; pp. 1–9.

25. Duncan, A.; Creese, S.; Goldsmith, M. An overview of insider attacks in cloud computing. Concurr. Comput. Pract. Exp. 2015,
27, 2964–2981. [CrossRef]

26. Jingbo, Z. Research on Application of Network Active Defense Technology in Database Security Service. Value Eng. 2017,
36, 178–179.

27. Jie, H. Research on key technologies of short-range wireless access for internet of things applications. Electron. Des. Eng. 2019,
27, 88–91. [CrossRef]

28. Li, F.; Zhang, K.; Chen, S.; Yang, H.; Wang, B. Research on Key Technologies of Active Defense for Distribution Internet of Things
Service Security. In Proceedings of the 2020 IEEE International Conference on Information Technology, Big Data and Artificial
Intelligence (ICIBA), Chongqing, China, 6–8 November 2020; Volume 1, pp. 676–679. [CrossRef]

29. Wu, J. Cyberspace Mimic Defense; Springer Nature: Cham, Switzerland, 2020.
30. Chong, F.; Lee, R.; Acquisti, A.; Horne, W.; Palmer, C.; Ghosh, A.; Pendarakis, D.; Sanders, W.; Fleischman, E.; Teufel, H., III; et al.

National Cyber Leap Year Summit 2009: Co-Chairs’ Report. In Proceedings of the NITRD Program, Arlington, VA, USA, 17–19
August 2009.

31. Alavizadeh, H.; Hong, J.B.; Jang-Jaccard, J.; Kim, D.S. Comprehensive Security Assessment of Combined MTD Techniques for the
Cloud. In Proceedings of the 5th ACM Workshop on Moving Target Defense, Toronto, Canada, 15 October 2018; Association for
Computing Machinery: New York, NY, USA, 2018; pp. 11–20.

32. Bardas, A.G.; Sundaramurthy, S.C.; Ou, X.; DeLoach, S.A. MTD CBITS: Moving target defense for cloud-based IT systems. In
Proceedings of the 2017 22nd European Symposium on Research in Computer Security, Oslo, Norway, 11–15 September 2017;
Springer: Cham, Switzerland, 2017; pp. 167–186.

33. Guo, W.; Wu, Z.; Zhang, F.; Wu, J. Scheduling sequence control method based on sliding window in cyberspace mimic defense.
IEEE Access 2019, 8, 1517–1533. [CrossRef]

http://dx.doi.org/10.4018/ijoci.2014040104
http://dx.doi.org/10.1007/s11042-017-5224-6
http://dx.doi.org/10.1109/MCC.2016.100
http://dx.doi.org/10.1109/ACCESS.2019.2911732
http://dx.doi.org/10.1016/j.procs.2020.07.025
http://dx.doi.org/10.1002/cpe.3243
http://dx.doi.org/10.14022/j.cnki.dzsjgc.2019.09.020
http://dx.doi.org/10.1109/ICIBA50161.2020.9277037
http://dx.doi.org/10.1109/ACCESS.2019.2961644

Sensors 2022, 22, 2418 18 of 18

34. Ma, B.; Zhang, Z. Security research of redundancy in mimic defense system. In Proceedings of the 2017 3rd IEEE International
Conference on Computer and Communications (ICCC), Chengdu, China, 13–16 December 2017; pp. 2910–2914. [CrossRef]

35. Tong, Q.; Zhang, Z.; Zhang, W.; Wu, J. Design and implementation of mimic defense Web server. J. Softw. 2017, 28, 883–897.
36. Hailong, M.; Peng, Y.; Yiming, J.; Lei, H. Dynamic heterogeneous redundancy based router architecture with mimic defenses.

J. Cyber Secur. 2017, 2, 29–42.
37. Conrad, E.; Misenar, S.; Feldman, J. (Eds.) Chapter 4—Domain 3: Security Engineering (Engineering and Management of

Security). In CISSP Study Guide, 3rd ed.; Syngress: Boston, MA, USA, 2016; pp. 103–217. [CrossRef]
38. Medel, V.; Rana, O.; Bañares, J.Á.; Arronategui, U. Modelling performance & resource management in kubernetes. In Proceedings

of the 9th International Conference on Utility and Cloud Computing, Shanghai, China, 6–9 December 2016; pp. 257–262.
39. Dirac, G.A. Some theorems on abstract graphs. Proc. Lond. Math. Soc. 1952, 3, 69–81. [CrossRef]

http://dx.doi.org/10.1109/CompComm.2017.8323064
http://dx.doi.org/10.1016/B978-0-12-802437-9.00004-7
http://dx.doi.org/10.1112/plms/s3-2.1.69

	Introduction
	Related Works
	Containerized Technology in IoT
	Microservice Security Defense Methods
	Active Security Defense Method

	Mimic-Defense-Based Microservice Security Framework
	MDSF Overall Architecture
	Heterogeneous Resource Manager
	Mimic Layer Set
	Mimic Image Pool

	Mimic Defender
	Request handler
	Mimic Controller
	Mimic Image Scheduler

	The Workflow of MDSF
	MDSF Schedule Strategy
	Notations and Definitions
	Graph-Based Scheduling Strategy

	Implementation and Experimental Result
	Implementation
	Experimental Design
	Experimental Results
	Study of the Randomness Attack
	Study of the Continuous Attack
	Study of the System Performance

	Limitation Discussion
	Conclusions
	References

