
����������
�������

Citation: Vaduva, B.; Pop, I.-F.;

Valean, H. One4all—A New SCADA

Approach. Sensors 2022, 22, 2415.

https://doi.org/10.3390/s22062415

Academic Editor: Rodolfo Haber

Received: 19 February 2022

Accepted: 18 March 2022

Published: 21 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

One4all—A New SCADA Approach
Bogdan Vaduva 1,*, Ionut-Flaviu Pop 1 and Honoriu Valean 2,*

1 SCADA/GIS Department, S.C. VITAL S.A., 430011 Baia Mare, Romania; ionut.pop@vitalmm.ro
2 Automation Department, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
* Correspondence: bogdan_vaduva@yahoo.com (B.V.); honoriu.valean@aut.utcluj.ro (H.V.)

Abstract: The main purpose of this paper is to introduce a new concept, named “one4all” in the
realm of SCADA (Supervisory Control and Data Acquisition) systems, used by a regional company
(particularly a water supplying company) for managing the different views of its users. As a secondary
purpose, the paper presents an integration of such an SCADA system with a GIS (Geographical
Information System) system. All the regional water supply companies in Romania manage water
and wastewater networks, many sensors and actuators, dozens of water pump plants, several water
treatment and wastewater plants, tanks and many hydrophores in different parts of their operating
range. Due to the wide geographical operating range, an SCADA system needs to be put in place,
but the management of such a system in a traditional way is hard to implement, especially when the
human resource is low. The methodology presented in this paper, involving adding helper tables and
dynamic template windows within an SCADA tool (“one4all” tool), will show how efficiently the
human resource can be used. Additionally, the paper shows that companies as described above, can
use a single SCADA system that generates different views for all the managed sub regions instead
of different systems for every sub region. Implementing only one SCADA system built with the
concept “one4all” in mind, and integrating it with a GIS system that is built on the same principle,
represents a new approach that will bring value to any organization willing to adopt it. The concept
of “one4all”, implemented as a software tool for an SCADA system, is a new concept that will help
any developer to easily build applications that generate different views for different users based on
their permissions and their operating range. Finally, the paper presents some examples of the same
concept, implemented in a different vertical (GIS) and programming language, thus presenting that a
“one4all” concept is viable and helpful, bringing value to the information technology industry.

Keywords: SCADA; supervision; sensing system; acquisition; multi view project; one4all

1. Introduction

Romanian water supply and wastewater companies are organized as regional oper-
ators serving a geographic area of one or more counties. Having such a wide operating
range from the SCADA [1,2] point of view, multiple local views, either HMIs—Human
Machine Interfaces—or local SCADA projects, must be displayed, usually being integrated
in a centralized control room. That room should be easily accessible by the management
staff, allowing them to take informed decisions. Furthermore, having such a control room
can allow operators to inform the specialized teams about items that are in error and what
kind of errors they will deal with.

The paper is focused on the SCADA system of the regional operator for the county of
Maramureş and shows what has been done there and how that work could help others.
SCADA offers the possibility of receiving information from field equipment and sending
back a limited set of instructions. SCADA is a bi-directional system that allows not only
monitoring but also taking action by sending commands to an SCADA device.

SCADA is a worldwide spread concept that is implemented in a wide range of indus-
trial processes. An SCADA system is a mix of software and hardware elements that allows
industrial organizations to control their processes locally or remotely [3].

Sensors 2022, 22, 2415. https://doi.org/10.3390/s22062415 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22062415
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22062415
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22062415?type=check_update&version=1

Sensors 2022, 22, 2415 2 of 14

All SCADA systems are crucial for industrial organizations, either public or private,
because they help to maintain efficiency. Furthermore, an SCADA system processes
historical data for smarter decisions, and communicates system issues to the intended
audience to help mitigate any downtime [3].

A basic SCADA architecture involves programmable logic controllers (PLCs) and/or
remote terminal units (RTUs). PLCs and RTUs are microcomputers that communicate with
an array of objects such as factory machines, HMIs, sensors, and end devices. SCADA
software processes, distributes, and displays the data, helping operators and other em-
ployees to analyze the current or historical data and make appropriate decisions. SCADA
systems are the backbone of many modern industries, such as: energy, food and beverage,
manufacturing, oil and gas, power, recycling, transportation, water and waste water, and
many more [4].

The regional operator began building its SCADA system by creating an SCADA project
that integrated (at the beginning) just a few elements such as: two big wastewater treatment
stations (Baia Mare wastewater treatment station and Sighetu Marmatiei wastewater treat-
ment station), one water treatment station (Baia Mare), a few tanks and many hydrophores
and pumping stations. Then, the regional operator extended this activity in other parts of
its operating range, so a new set of elements needed to be integrated, but this expansion
was set to happen on a regular basis for the next period of time. That widening of its
activity involved more people that daily had to view/follow the SCADA system, but those
people did not need to have access/view elements from other regions of the company’s
operating range [5].

On the other hand, the GIS department had a web-based application that showed
different views for different users using a concept named (by the authors) “one4all”. The
“one4all” concept states that a basic framework, smart enough to generate the needed
output, can be used to build an entire software application, without using other software
elements. Building an application in such a fashion, where all the views are generated (not
coded) through the use of the building block, will allow different users to have different
views. The authors asked themselves if that concept can be extended in the realm of
SCADA; thus, having a tool (building block) that generates different views for different
users based on their permission into the system [6,7].

In the SCADA realm, the “one4all” concept means that we have one tool that unifies a
set of templates that can be used to generate the views of the entire SCADA project. This
outcome means that SCADA developers will no longer need to create a screen because
they have a tool that generates that screen based on their description. Thus, an SCADA
project that uses a “one4all” style will be able to generate different views to different users
based on their permission into the system. From the “one4all” point of view, all (most of
them will be enough) the SCADA windows must not be hard coded by the developers but
generated by its “one4all” tool/framework.

For the study company, the “one4all” concept migrated from the programming realm.
The GIS department had an application built on a “one4all” framework. That framework
used helper tables for generating its views.

Furthermore, we will try to introduce the readers to the new concept. Nowadays,
programmers write source code for inserting, editing and deleting records of a relational
table. The majority of commercial relational databases include a specific management
tool that offers such possibilities, and most database programmers take this ability as
granted. When it comes to real life applications, programmers use an Object Oriented
(OO) paradigm to build user friendly windows/screens/forms for database operations.
The “one4all” concept allows users to generate application views by using a “low-code”
approach by simply setting the name of the desired table/view (to be displayed). Those
views will further be used for building application windows. Having a framework that
allows building CRUD (Create Read Update Delete) views will allow both programmers
and users to rapidly modify an application. Furthermore, if the “one4all” framework can
be integrated with user permissions and roles, more flexibility is gained [8].

Sensors 2022, 22, 2415 3 of 14

The mentioned framework started an idea of building such a tool in the real SCADA.
The future tool will need some kind of configuration repository, so a similar set of helper
tables must be used for the SCADA one4all concept also. The GIS framework is written as
a low-code framework, but such an approach is not applicable for SCADA because of the
way an SCADA system is built [8].

The current developments in the GIS field make the idea of linking the elements from
the SCADA views to the actual geographic position of those elements interesting. The
paper presents such a system, which integrates an existing SCADA with the GIS and links
the elements of the SCADA (plants, sensors) to their geographical position by providing
the user access with respect to the one4all principle.

2. Migration of Traditional SCADA Systems to “One4all” Ones
2.1. Selecting a SCADA Software

At the beginning, our company did not have an SCADA department and the man-
agement assigned to the GIS department the task of implementing the future SCADA
system. At that time, the GIS department was already using a web-based application with
a “one4all” style framework. Further to this, we looked for an SCADA software that could
allow us, in the future, to build a system in a similar manner, but making such a choice
was hard. Another important aspect was the ability to integrate an unlimited amount of
data tags.

The company ended up choosing Ignition from Inductive Automation [9], which is a
supplier of web-based industrial automation software based in Folsom, CA, USA. Ignition
is a server software that acts as the hub for all the data tags of a company.

We also looked at other companies such as Siemens and their product, called WinCC [10],
but we gave up very quickly because of licensing costs. The licensing costs of any SCADA
software also include the licensing costs of the operating system and the number of data
tags that can be added into the system. We wanted to keep those costs at a minimal value,
so we added a few restrictions for the SCADA software and one was for it to be Linux-
based. Ignition’s Inductive Automation platform allows us to build an SCADA software,
independent of the operating system, with an unlimited amount of data tags.

2.2. The First Attempt

The company’s first attempt to build an SCADA system happened in 2016 and was
conducted by an external company called ADASA (https://www.adasasystems.com, ac-
cessed on 15 February 2022), through their local branch. ADASA gave the company a small
project that integrated just a few SCADA elements. Furthermore, that SCADA project was
not integrated in any way with the GIS data and was built in a traditional fashion by the
extensive use of window templates. A template windows in an SCADA system has all its
elements in place, which means it is not dynamic. Every time a template is used, changes
to the window that uses the template are made.

The architecture of that SCADA system was as follows:

• Lower Level—which contains water pumping stations (fresh and waste), reservoirs,
monitoring sensors (water pressure, chlorine, water level for tanks), all these being
spread on the operation area of the company.

• Middle Level (local dispatch)—consisting of SCADA stations at the water treatment
plants and water sewage plants.

• Higher Level (regional dispatch)—representing the decision-making level of the
SCADA Regional System. It is responsible for implementing the communication
system in the field and local dispatch units, collecting all the data, processing it in real
time, managing databases, alarms and archiving the information.

Another issue faced by our study company was the lack of specialized personnel in
the SCADA department. At that time, the company had only one person who could work
on the SCADA system, but that person was already caught up in some other projects. After
a while, the company successfully found one person to work with the Ignition software

https://www.adasasystems.com

Sensors 2022, 22, 2415 4 of 14

and, as a result, the new SCADA department had one actual developer. Having only one
actual developer and a huge number of elements to be integrated into the SCADA system
proved to be a challenge for the company.

Developing an SCADA project in a traditional fashion was clearly not a solution for
the study company because by the time an SCADA element was integrated into the project,
at least two more were standing in the queue to be added. The use of window templating
was to help, but for a long run, templating could became a hassle. The use of a “one4all”
framework stood out as a way for the future.

3. The “One4all” Concept

In this chapter, we aim to show how the concept of “one4all” was implemented within
the SCADA realm and then how an SCADA project could easily be connected with the GIS
system, due to the use of the “one4all” concept.

The use of templating was not a solution for our study company because of the number
of elements to be included into the SCADA system and the number of developers involved.
SCADA templates are better if the elements within can be dynamically added.

The concept of “one4all” from the study company’s SCADA point of view, means
having dynamic templates gathered in a tool, able to generate the desired views. Having
the views generated rather than being built will help developers build faster, better and
easier. Furthermore, different SCADA users will have access to different views.

After the completion of that first project (roughly one year), the company’s SCADA
department sat down and reassessed the future of the SCADA system and came up with a
few requirements, such as:

• The SCADA system should be able to export some of its data tags through custom
web services [11].

• The SCADA system users should have different views depending on their qualifica-
tions and position.

• The SCADA system users should be integrated with GIS data and users.
• The SCADA system should be able to run on mobile devices as well.
• The SCADA system would be easy to scale up in the future.

The next step was the rewrite of the project from the ground up, to be a complete func-
tional solution for the water supply company’s management. The used data transmission
protocols were set up to be OPC-UA [12–15] and Modbus TCP/IP [16]. The company’s
SCADA solution is a web thin client and the project has to be downloaded from a gateway
for every client (user) in order to be accessed. The newest Ignition version is a web-based
solution, which means that a future migration to that new version will allow SCADA
developers to be more creative.

We mentioned that we chose Ignition to be the SCADA software, but Ignition had
different repository types for its historical data (database servers’ types) and from those
database server types, the company choose PostgreSQL [17]. The PostgreSQL was chosen
because it was the same database server used by the company’s GIS department and it was
thought that it would ease any future GIS integration.

The next step was to set up a plan for the new SCADA system, which involved the
need of a “one4all” SCADA tool.

The new “one4all” tool was envisioned as having the following structure (Figure 1):

Sensors 2022, 22, 2415 5 of 14
Sensors 2022, 22, x FOR PEER REVIEW 5 of 15

Figure 1. Schema of the “one4all” tool.

The structure above shows the need for a new set of tables as somewhere to keep the

description of the future generated views.

4. Implementation

The “one4all” tool was thought to integrate a set of template windows and have as a

parameter only the name of the SCADA element that needed to be shown/generated in

the SCADA’s client window.

With that in mind, a new schema was added into Ignition’s database server. Into that

newly created schema the following tables were added: “tbl_user”, “tbl_role”,

“tbl_window”, “tbl_station”, “tbl_station_type”, “tbl_location”, “tbl_menu”,

“tbl_report”, “ “tbl_permission_role_location”, “tbl_permission_role_window”,

“tbl_permission_user_location”, “tbl_permission_user_window”,

“tbl_permission_user_menu”, “tbl_permission_user_report”,

“tbl_permission_user_station_type” and a few other helper tables that we will not

mention here because those were mainly used for custom purposes. The above tables were

a modified and stripped version of the helper tables used by the GIS “one4all” framework,

and by doing so, the authors started the migration of the “one4all” concept from the

programming realm to the SCADA’s reality.

The new proposed approach was to use Ignition as a programming tool and not only

as a design tool.

Next, we will describe each table’s purpose:

 “tbl_user”—will hold the users for the SCADA application and will be in sync or

linked to Ignition’s gateway users and GIS users.

Figure 1. Schema of the “one4all” tool.

The structure above shows the need for a new set of tables as somewhere to keep the
description of the future generated views.

4. Implementation

The “one4all” tool was thought to integrate a set of template windows and have as a
parameter only the name of the SCADA element that needed to be shown/generated in the
SCADA’s client window.

With that in mind, a new schema was added into Ignition’s database server. Into that
newly created schema the following tables were added: “tbl_user”, “tbl_role”, “tbl_window”,
“tbl_station”, “tbl_station_type”, “tbl_location”, “tbl_menu”, “tbl_report”, “ “tbl_permission_
role_location”, “tbl_permission_role_window”, “tbl_permission_user_location”, “tbl_
permission_user_window”, “tbl_permission_user_menu”, “tbl_permission_user_report”,
“tbl_permission_user_station_type” and a few other helper tables that we will not mention
here because those were mainly used for custom purposes. The above tables were a modi-
fied and stripped version of the helper tables used by the GIS “one4all” framework, and by
doing so, the authors started the migration of the “one4all” concept from the programming
realm to the SCADA’s reality.

The new proposed approach was to use Ignition as a programming tool and not only
as a design tool.

Next, we will describe each table’s purpose:

• “tbl_user”—will hold the users for the SCADA application and will be in sync or
linked to Ignition’s gateway users and GIS users.

• “tbl_role”—will hold SCADA application roles. We defined only two roles.

Sensors 2022, 22, 2415 6 of 14

• “tbl_window”—will hold the names and properties of SCADA application windows.
Usually, these windows will display a process.

• “tbl_station”—will hold the names and properties of stations/elements displayed in
the SCADA application windows. For the rest of our paper, we will refer to these
stations/elements as stations.

• “tbl_station_type”—will hold the station type. Each station has a type and for our
water company we tried to keep the number of station types to as few as possible
because having a small number of station types will mean easier maintenance. Further-
more, each station type has attached a predefined set of data tags, allowing SCADA
developer(s) to build some kind of templates.

• “tbl_location”—will hold the name and geographical reference of the station’s location.
• “tbl_menu”—will hold the elements of the menu that will be displayed in the application.
• “tbl_report”—will hold the names of the application’s reports.
• “tbl_permission_*”—are the tables for setting the user’s permissions throughout

the application.

The addition of our helper tables to Ignition’s schema gave us a few new possibilities,
one to implement a “one4all” SCADA tool and one to easily link any SCADA element to
the GIS system. One other possibility was to have different views for different users, based
on their permission and role. We will not go into the details of the helper tables because
they represent a way of building a “one4all” SCADA tool and not an industry standard.

The new SCADA system was envisioned as having two base elements (as well as the
elements that Ignition software was already providing):

1. The “one4all” tool/framework that incorporates all the dynamic templates used by
the SCADA system.

2. The database server that contains the description and permission of generated SCADA
system screens/elements.

Further to this, we want to show the steps taken by the authors to build the “one4all” tool.
After setting up the above plan, the authors moved forward by creating the specified

tables in the PostgreSQL database server, thus creating the premises for the new SCADA
system to be built using a “one4all” tool. The next step of our methodology was to identify
station type templates for our displayed elements. This step involved identifying what
elements should be displayed for each station type from a SCADA point of view. In this
process of identifying station types, we found that we had, throughout the company, a set
of elements that did not fit into any station type. Those elements were sensors (pressure
and tank level sensors) that the company was using for monitoring the status of its water
network. For these sensors, we used OSH (Open Sensor Hub) [18], for which we built a
custom driver that allowed us to specify where to save the historical data. The architecture
for gathering the historical data was as follows:

• Each sensor was connected to a serial to Ethernet converter device.
• We set up an OSH server and installed our custom driver.
• We made the appropriate changes to the custom elements (sensors) added into the

OSH server. Those changes involved setting the SCADA database as the repository
for our historical data.

• The final step was to integrate those sensors into the SCADA software.

Before going further, we want to say a few words about the sensor types used by our
company. The company uses the following main sensor types: pressure sensors, tempera-
ture sensors, chlorine sensors, PH sensors, level sensors, status (open/close) sensors, and
flowmeters. We also tried to standardize each sensor type, which means for each sensor
type we chose one supplier that we thought would fit our needs and obtained the sensors
from them.

Next we consider the pressure sensors (Figure 2a,b) and discuss them. For these
types of sensors, we chose the following suppliers: NIVELCO, MEINSBERG, HUBA
CONTROL, and WIKA. Each pressure sensor converts the physical quantity “pressure”

Sensors 2022, 22, 2415 7 of 14

into an industry-standard signal (electrical current, usually 4–20 mA). That electrical current
is read by a MOXA [19] box and exposed through the Modbus TCP/IP standard into the
SCADA network.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 15

each sensor type we chose one supplier that we thought would fit our needs and obtained

the sensors from them.

Next we consider the pressure sensors (Figure 2a,b) and discuss them. For these types

of sensors, we chose the following suppliers: NIVELCO, MEINSBERG, HUBA

CONTROL, and WIKA. Each pressure sensor converts the physical quantity “pressure”

into an industry‐standard signal (electrical current, usually 4–20 mA). That electrical

current is read by a MOXA [19] box and exposed through the Modbus TCP/IP standard

into the SCADA network.

(a) (b)

Figure 2. Huba Control sensor type: (a) overview image of the used sensor ensemble; (b) detailed

view of our sensor.

If we consider another sensor type and discuss it. For this discussion, we will use

level sensors. Our study company uses two kinds of level sensors: a 2‐wire loop‐powered

ultrasonic level measurement transmitter for measuring storage vessels from SIEMENS

and a TL‐136 liquid level transmitter water level sensor detector 12–32VDC 4–20 mA

signal output (Figure 3).

(a) (b)

Figure 3. Level sensors: (a) Siemens ultrasonic level sensor; (b) TL‐136 liquid level transmitter.

Once we carried out the above steps, we were able to display those sensors in the

Ignition software in an easier manner. After a while, the company “discovered” the

MOXA devices and reassessed the way those sensors were integrated into the SCADA.

MOXA devices are serial media converters that allow devices with different serial

interfaces to communicate effortlessly.

Once the problem of the custom sensors was solved, the authors concentrated on the

station types. Each station type was using a different PLC (programmable logic controller)

type and in this step, the authors tried to conduct a standardization of the used PLC types.

Each PLC type had a set of data tags being used. On this step, we want to show an example

of standardizing the data tags; standardization that would allow in the future a PLC to be

changed without changing the SCADA project.

Figure 2. Huba Control sensor type: (a) overview image of the used sensor ensemble; (b) detailed
view of our sensor.

If we consider another sensor type and discuss it. For this discussion, we will use
level sensors. Our study company uses two kinds of level sensors: a 2-wire loop-powered
ultrasonic level measurement transmitter for measuring storage vessels from SIEMENS
and a TL-136 liquid level transmitter water level sensor detector 12–32VDC 4–20 mA signal
output (Figure 3).

Sensors 2022, 22, x FOR PEER REVIEW 7 of 15

each sensor type we chose one supplier that we thought would fit our needs and obtained

the sensors from them.

Next we consider the pressure sensors (Figure 2a,b) and discuss them. For these types

of sensors, we chose the following suppliers: NIVELCO, MEINSBERG, HUBA

CONTROL, and WIKA. Each pressure sensor converts the physical quantity “pressure”

into an industry‐standard signal (electrical current, usually 4–20 mA). That electrical

current is read by a MOXA [19] box and exposed through the Modbus TCP/IP standard

into the SCADA network.

(a) (b)

Figure 2. Huba Control sensor type: (a) overview image of the used sensor ensemble; (b) detailed

view of our sensor.

If we consider another sensor type and discuss it. For this discussion, we will use

level sensors. Our study company uses two kinds of level sensors: a 2‐wire loop‐powered

ultrasonic level measurement transmitter for measuring storage vessels from SIEMENS

and a TL‐136 liquid level transmitter water level sensor detector 12–32VDC 4–20 mA

signal output (Figure 3).

(a) (b)

Figure 3. Level sensors: (a) Siemens ultrasonic level sensor; (b) TL‐136 liquid level transmitter.

Once we carried out the above steps, we were able to display those sensors in the

Ignition software in an easier manner. After a while, the company “discovered” the

MOXA devices and reassessed the way those sensors were integrated into the SCADA.

MOXA devices are serial media converters that allow devices with different serial

interfaces to communicate effortlessly.

Once the problem of the custom sensors was solved, the authors concentrated on the

station types. Each station type was using a different PLC (programmable logic controller)

type and in this step, the authors tried to conduct a standardization of the used PLC types.

Each PLC type had a set of data tags being used. On this step, we want to show an example

of standardizing the data tags; standardization that would allow in the future a PLC to be

changed without changing the SCADA project.

Figure 3. Level sensors: (a) Siemens ultrasonic level sensor; (b) TL-136 liquid level transmitter.

Once we carried out the above steps, we were able to display those sensors in the
Ignition software in an easier manner. After a while, the company “discovered” the MOXA
devices and reassessed the way those sensors were integrated into the SCADA. MOXA
devices are serial media converters that allow devices with different serial interfaces to
communicate effortlessly.

Once the problem of the custom sensors was solved, the authors concentrated on the
station types. Each station type was using a different PLC (programmable logic controller)
type and in this step, the authors tried to conduct a standardization of the used PLC types.
Each PLC type had a set of data tags being used. On this step, we want to show an example
of standardizing the data tags; standardization that would allow in the future a PLC to be
changed without changing the SCADA project.

In Table 1 we show an example of data tags for a PLC type.

Sensors 2022, 22, 2415 8 of 14

Table 1. Data tag standardization. (An example for a pumping station).

Data Tag Addresses—SPAU

Station Parameters–Applicable Function Code: 03H–Read Holding Registers, 06H-Write Single
Register; 10H-

Address BIT Description Access Type Data Type

0 SCADA Communication Read UINT16
1 Level Read UINT16
2 Pump work level (0–100%) Read UINT16
3 Pump no (2 pumps; 0 = P1/P2, 1 = P1 + P2) Read UINT16
4 Minimum value for converter frequency Read UINT16
5 Maximum value for converter frequency Read UINT16
6 Pump working hours Read UINT16
7 Signal for shutting the station off/on Read/Write UINT16
8 Minimum level to stop the pumps Read/Write UINT16
9 Maximum level to start the pumps Read/Write UINT16

For each station type, the authors built a dynamic template that had its elements
dynamically turned on/off depending on a set of parameters. All the dynamic templates
were further gathered in a tool that helped with developing the SCADA system.

As result, integrating a station was as easy as follows:

• it must be declared in the gateway page with its IP address and the required data tags
(which can be copied from another station of the same type),

• then it must be registered in the “tbl_station” table with all the required properties. At
the same time as the station is registered into the “tbl_station”, a new Ignition folder is
created within the gateway. Furthermore, the data tags are taken from a template.

• Finally, the new station windows will be generated into the SCADA client using the
internal templates of the “one4all” tool.

We stated in our paper that we wanted different views for different users, but what
does this mean? Our water supply company has a wide geographic operating range, which
means it has stations all over the region, but one or more stations were managed by at least
one person who was different from the central dispatcher of the company. Moreover, each
sub region has a manager that manages that sub region. By sub region we usually refer to a
city/town. Each manager should be able to see only its region’s stations/elements but not
the others (Figures 4 and 5). Here, the concept of “one4all” could give us the output needed
by our SCADA software. A “one4all” implementation will generate a station window
by simply setting the name of that station into the tool and the result will be different
depending on the user. Moreover, the same “one4all” tool was extended to integrate other
window types and not only the station’s windows.

The “One4all” concept was thought to allow different users to have different views. In
order to achieve this, we linked each user to a specific view/window, and if the user did
not have a view set up, a default view/window would be displayed. Doing so allowed the
company to have different views for different users; but what about the reports? To have
the reports linked to a user/role, the custom tables “tbl_permission_*” were used.

One other question that can be raised here is related to the fact that user management
could became a hassle. To answer such a question, the user management windows had a
feature called “Duplication”, which allowed the SCADA manager to duplicate a user or an
SCADA element. How does an SCADA element work? If a new station needs to be put in
place, the SCADA manager goes into the station managing window and selects a station to
duplicate and then does it. By doing so, the new station is created with all the properties of
its parent and is available for the SCADA client at the same time.

Sensors 2022, 22, 2415 9 of 14
Sensors 2022, 22, x FOR PEER REVIEW 9 of 15

Figure 4. Default view for a user with Administrator role (green dots represents the status of the

current operated locations/cities)

Figure 5. Custom view for a user with Operator role. (green means that the value shown it’s

within normal limits, red means otherwise)

The “One4all” concept was thought to allow different users to have different views.

In order to achieve this, we linked each user to a specific view/window, and if the user

did not have a view set up, a default view/window would be displayed. Doing so allowed

the company to have different views for different users; but what about the reports? To

have the reports linked to a user/role, the custom tables “tbl_permission_*” were used.

One other question that can be raised here is related to the fact that user management

could became a hassle. To answer such a question, the user management windows had a

Figure 4. Default view for a user with Administrator role (green dots represents the status of the
current operated locations/cities).

Sensors 2022, 22, x FOR PEER REVIEW 9 of 15

Figure 4. Default view for a user with Administrator role (green dots represents the status of the

current operated locations/cities)

Figure 5. Custom view for a user with Operator role. (green means that the value shown it’s

within normal limits, red means otherwise)

The “One4all” concept was thought to allow different users to have different views.

In order to achieve this, we linked each user to a specific view/window, and if the user

did not have a view set up, a default view/window would be displayed. Doing so allowed

the company to have different views for different users; but what about the reports? To

have the reports linked to a user/role, the custom tables “tbl_permission_*” were used.

One other question that can be raised here is related to the fact that user management

could became a hassle. To answer such a question, the user management windows had a

Figure 5. Custom view for a user with Operator role. (green means that the value shown it’s within
normal limits, red means otherwise).

Another goal stated in our paper was related to the fact that the SCADA project should
be able to run on mobile devices; but what happens if a station window is open on a mobile
device? The answer is that the station window will either be very small or the display is
unreadable. To handle this new request, the “one4all” tool’s template windows were set

Sensors 2022, 22, 2415 10 of 14

up with two views depending on where that window would be displayed (computer or
mobile device (Figure 6).

Sensors 2022, 22, x FOR PEER REVIEW 10 of 15

feature called “Duplication”, which allowed the SCADA manager to duplicate a user or

an SCADA element. How does an SCADA element work? If a new station needs to be put

in place, the SCADA manager goes into the station managing window and selects a station

to duplicate and then does it. By doing so, the new station is created with all the properties

of its parent and is available for the SCADA client at the same time.

Another goal stated in our paper was related to the fact that the SCADA project

should be able to run on mobile devices; but what happens if a station window is open on

a mobile device? The answer is that the station window will either be very small or the

display is unreadable. To handle this new request, the “one4all” tool’s template windows

were set up with two views depending on where that window would be displayed

(computer or mobile device (Figure 6).

Figure 6. Default mobile view for both Administrator and Operator role.

The default reading interval for SCADA’s historical data is 1 s, but for a better

storage, management was set to 10 s. In order to achieve a stable SCADA system, the

functions and methods from the backend were distributed between Ignition’s scripts and

the PostgreSQL stored procedures/functions. The application obtains its data from the

PostgreSQL database, asynchronously, in order to populate the graphical templates and,

thus, not slowing down the user interface.

The presented SCADA solution was later integrated with the web‐based GIS

application allowing the company to easily pinpoint an SCADA element. For example,

the water network map within the GIS application contains the water pumping stations’

geographical position. The GIS application can extract for each pumping station the total

invoiced water over a period of time, but from SCADA, the pumped volume of water for

the same period can be extracted, creating a comparison, similar to the one in Figure 7.

Figure 6. Default mobile view for both Administrator and Operator role.

The default reading interval for SCADA’s historical data is 1 s, but for a better storage,
management was set to 10 s. In order to achieve a stable SCADA system, the functions
and methods from the backend were distributed between Ignition’s scripts and the Post-
greSQL stored procedures/functions. The application obtains its data from the PostgreSQL
database, asynchronously, in order to populate the graphical templates and, thus, not
slowing down the user interface.

The presented SCADA solution was later integrated with the web-based GIS applica-
tion allowing the company to easily pinpoint an SCADA element. For example, the water
network map within the GIS application contains the water pumping stations’ geographical
position. The GIS application can extract for each pumping station the total invoiced water
over a period of time, but from SCADA, the pumped volume of water for the same period
can be extracted, creating a comparison, similar to the one in Figure 7.

Regarding the user’s security, several layers were put in place. That means, if a new
user is created in the gateway administration page, that user cannot log into the SCADA
application if the Administrator did not grant him access from the SCADA security module.

As well as the user’s security, the presented SCADA system is now on a separate
VLAN with no Internet allowed. Of course, there are some entrance points within that
VLAN, but those are monitored by the company’s IT team, which makes the SCADA
system as secure as it can be. The company also evaluated proprietary SCADA security
software but the costs were too high, so those were postponed for the time being.

Sensors 2022, 22, 2415 11 of 14Sensors 2022, 22, x FOR PEER REVIEW 11 of 15

Figure 7. Comparison between invoiced and actual consumption. (The highlighted pipe network

has the red color; the clients are the green dots)

Regarding the user’s security, several layers were put in place. That means, if a new

user is created in the gateway administration page, that user cannot log into the SCADA

application if the Administrator did not grant him access from the SCADA security

module.

As well as the user’s security, the presented SCADA system is now on a separate

VLAN with no Internet allowed. Of course, there are some entrance points within that

VLAN, but those are monitored by the company’s IT team, which makes the SCADA

system as secure as it can be. The company also evaluated proprietary SCADA security

software but the costs were too high, so those were postponed for the time being.

5. Results

The “one4all” SCADA tool was created and the “one4all” term could be attributed to

the tool because it was the only tool used to build the entire SCADA project. The majority

of SCADA windows were generated by the “one4all” tool, allowing different views for

different users (Figures 4–6). In the following figure (Figure 8), an example of a pumping

station’s dynamic template is presented. Beneath the dynamic template is an example for

the regional operator in the county of Maramureş. Within the dynamic template there is

a property that allows developers to specify the name of the pumping station and the view

is generated (elements turned on and off).

Figure 7. Comparison between invoiced and actual consumption. (The highlighted pipe network has
the red color; the clients are the green dots).

5. Results

The “one4all” SCADA tool was created and the “one4all” term could be attributed to
the tool because it was the only tool used to build the entire SCADA project. The majority
of SCADA windows were generated by the “one4all” tool, allowing different views for
different users (Figures 4–6). In the following figure (Figure 8), an example of a pumping
station’s dynamic template is presented. Beneath the dynamic template is an example for
the regional operator in the county of Maramureş. Within the dynamic template there is a
property that allows developers to specify the name of the pumping station and the view is
generated (elements turned on and off).

The “one4all” tool allowed the regional operator to rewrite the entire project within
the timeline of 3 months, even though the regional operator was expanding its activity,
which meant adding new elements to the SCADA project. The expansion of the regional
operator involved also adding new template windows to the “one4all” tool, based on
new requirements. It must be shown that even though the paper presents the results for
the regional operator in the county of Maramureş, the “one4all” concept can easily be
translated to other industries and even to other verticals such as programming.

The same concept of “one4all” in the programming realm (JavaScript/Angular 2+),
has the following usage:

<homerp-dynamic-form
[tableName] = “‘tbluser’”
[insertCollapsed] = “true”
(insert) = “insert($event);”
(edit) = “edit($event);”> </homerp-dynamic-form>, and two of the resulting

views are in Figures 9 and 10.
This company’s SCADA project was initially intended to be used in read-only mode,

which means no PLC commands were implemented. After a while, the necessity to send
commands to different PLCs arose and was added. Sending commands to PLCs can be
easily implemented using the Modbus TCP/IP standard, thus making it just a click away
from any user. Of course, all the commands have to have a higher security level, which
means that a command can only be sent after user retype their own password.

Sensors 2022, 22, 2415 12 of 14

Talking about the performance of the SCADA project built using the “one4all” tool,
we must mention the total number of data tags that are in use. That number was, at the
time this article was written, around 27,000 data tags and the application’s loading time
for a computer view was about 7 s and that for a mobile device was about 10 s, but those
numbers differ based on the computer’s and mobile device’s hardware specifications.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 15

Figure 8. Dynamic template window for pumping stations.

The “one4all” tool allowed the regional operator to rewrite the entire project within

the timeline of 3 months, even though the regional operator was expanding its activity,

which meant adding new elements to the SCADA project. The expansion of the regional

operator involved also adding new template windows to the “one4all” tool, based on new

requirements. It must be shown that even though the paper presents the results for the

regional operator in the county of Maramureş, the “one4all” concept can easily be

translated to other industries and even to other verticals such as programming.

The same concept of “one4all” in the programming realm (JavaScript/Angular 2+),

has the following usage:

<homerp‐dynamic‐form

[tableName]=“‘tbluser’”

[insertCollapsed]=“true”

(insert)=“insert($event);”

(edit)=“edit($event);”> </homerp‐dynamic‐form>, and two of the resulting

views are in Figures 9 and 10.

Name of the pumping

station

Figure 8. Dynamic template window for pumping stations.
Sensors 2022, 22, x FOR PEER REVIEW 13 of 15

Figure 9. JavaScript/Angular 2+ “one4all” framework example—default view.

Figure 10. JavaScript/Angular 2+ “one4all” framework example—edit view.

This company’s SCADA project was initially intended to be used in read‐only mode,

which means no PLC commands were implemented. After a while, the necessity to send

commands to different PLCs arose and was added. Sending commands to PLCs can be

easily implemented using the Modbus TCP/IP standard, thus making it just a click away

from any user. Of course, all the commands have to have a higher security level, which

means that a command can only be sent after user retype their own password.

Talking about the performance of the SCADA project built using the “one4all” tool,

we must mention the total number of data tags that are in use. That number was, at the

time this article was written, around 27,000 data tags and the application’s loading time

for a computer view was about 7 s and that for a mobile device was about 10 s, but those

numbers differ based on the computer’s and mobile device’s hardware specifications.

6. Conclusions/Future Works

The SCADA project was built using a “one4all” tool, so it can be easily implemented

to other companies such as electrical, gas or any type of production. This will mean that

Figure 9. JavaScript/Angular 2+ “one4all” framework example—default view.

Sensors 2022, 22, 2415 13 of 14

Sensors 2022, 22, x FOR PEER REVIEW 13 of 15

Figure 9. JavaScript/Angular 2+ “one4all” framework example—default view.

Figure 10. JavaScript/Angular 2+ “one4all” framework example—edit view.

This company’s SCADA project was initially intended to be used in read‐only mode,

which means no PLC commands were implemented. After a while, the necessity to send

commands to different PLCs arose and was added. Sending commands to PLCs can be

easily implemented using the Modbus TCP/IP standard, thus making it just a click away

from any user. Of course, all the commands have to have a higher security level, which

means that a command can only be sent after user retype their own password.

Talking about the performance of the SCADA project built using the “one4all” tool,

we must mention the total number of data tags that are in use. That number was, at the

time this article was written, around 27,000 data tags and the application’s loading time

for a computer view was about 7 s and that for a mobile device was about 10 s, but those

numbers differ based on the computer’s and mobile device’s hardware specifications.

6. Conclusions/Future Works

The SCADA project was built using a “one4all” tool, so it can be easily implemented

to other companies such as electrical, gas or any type of production. This will mean that

Figure 10. JavaScript/Angular 2+ “one4all” framework example—edit view.

6. Conclusions/Future Works

The SCADA project was built using a “one4all” tool, so it can be easily implemented
to other companies such as electrical, gas or any type of production. This will mean
that we can use the entire SCADA project in a different vertical by adding new template
windows into the “one4all” tool or use it as a module in a different SCADA project (user
administration module, report module). The only current restrictions are related to the
fact that the presented “one4all” tool was implemented onto the Ignition platform. One
improvement that could be performed here is to switch to Ignition’s custom objects. Doing
so means to obtain the appropriate licensing rights from Inductive Automation.

Building projects with a “one4all” concept in mind will allow any SCADA developer
or programmer to build quickly and efficiently without quality loss. Moreover, using
the new Ignition version, which is pure web-based, will allow developers to merge the
presented “one4all” tool with other similar frameworks.

Throughout our paper we have shown that the concept of “one4all” can be applied
in different verticals (water and wastewater management, programming), and the use
of it brings added value to any company willing to try it. Furthermore, the presented
results, which are specific for a regional operator in Romania, can be extrapolated to
other companies.

Regarding scalability, the authors think that the presented SCADA system is a scalable
one because even ordinary SCADA users can add SCADA elements/screens within the
SCADA system. That is possible because SCADA elements/screens are generated and not
built by SCADA developers. Furthermore, the system can be easily updated with new
models (within the “one4all” tool), models that are instantly available to ordinary users.

One other note that can be made here is about the sensor network. At the current time,
the “one4all” framework is used to display the sensor network of the water company in
the Maramureş county, but it has not received any business intelligence, mostly because
the company did not have resources to go in that direction. Adding business intelligence to
a sensor network or other elements could be something to be carried out in the future.

As a final conclusion, the main contribution of this paper is the presentation of a
concept named “one4all” (derived from dynamic templates), used to generate SCADA
views to different users based on their permissions and roles.

Author Contributions: Conceptualization, B.V., I.-F.P. and H.V.; methodology, B.V., I.-F.P. and H.V.;
software, B.V. and I.-F.P.; validation, B.V., I.-F.P. and H.V.; formal analysis, B.V., I.-F.P. and H.V.;
investigation, B.V. and I.-F.P.; resources, B.V. and I.-F.P.; data curation, B.V., I.-F.P. and H.V.; writing—
original draft preparation, B.V., I.-F.P. and H.V.; writing—review and editing, B.V., I.-F.P. and H.V. All
authors have read and agreed to the published version of the manuscript.

Sensors 2022, 22, 2415 14 of 14

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Boyer, S.A. SCADA: Supervisory Control and Data Acquisition; Instruments Society of America: Pittsburgh, PA, USA, 1993.
2. Chen, Q.; Ghenniwa, H.; Shen, W. Architecture of a Web-Based Power SCADA System Using J2EE Technology. In Information

Technology for Balanced Manufacturing Systems; Springer Series in Computer Science; Shen, W., Ed.; Springer: New York, NY, USA,
2006; pp. 377–384.

3. Manoj, K.S. Industrial Automation with SCADA: Concepts, Communications and Security; Notion Press: Chennai, India, 2019.
4. Automation IT. Available online: https://www.automationit.com/blog/59-what-makes-up-a-scada-control-system (accessed on

1 January 2022).
5. Juniper Networks. White Paper, “Architecture for Secure SCADA and Distributed Control System Networks”. 2009. Available

online: www.juniper.net (accessed on 1 January 2022).
6. Shamsi, U.M. GIS Applications for Water, Wastewater and Stormwater Systems; Taylor & Francis Group: London, UK, 2005.
7. Marian, R.A.; Văduva, B.; Crăciu, A.I. Development of GIS Portal for Management in Rural and Urban Space of Romania. In

Proceedings of the Rural Space and Local Development Conference, Sighetul Marmatiei, Romania, 18–22 July 2012.
8. Văduva, B.; Vălean, H. Designing a Low-Code CRUD framework. Carpathian J. Electron. Comput. Eng. 2021, 14, 11–19. [CrossRef]
9. Inductive Automation. Available online: https://inductiveautomation.com (accessed on 1 January 2022).
10. Siemens. Available online: https://new.siemens.com/global/en/products/automation/industry-software/automation-

software/scada/simatic-wincc-v7.html (accessed on 1 January 2022).
11. Kelapure, S.M.; Sastry Akella, S.S.K.; Gopala Rao, J. Application of Web Services in SCADA Systems. Int. J. Emerg. Electr. Power

Syst. 2006, 6, 1–15. [CrossRef]
12. OPC Unified Architecture—Part 5: Information Model. Available online: https://webstore.iec.ch/publication/61114 (accessed

on 1 January 2022).
13. Mahnke, W.; Leitner, S.-H.; Damm, M. OPC Unified Architecture; Springer: Berlin/Heidelberg, Germany, 2009; p. 29.
14. Lee, X.; Hu, J. Design and Research of Remote Monitoring System based on OPC XML-DA. In Proceedings of the 2008 International

Pre-Olympic Congress on Computer Science, Nanjing, China, 4–7 August 2008; pp. 147–151.
15. Yao, Y.; Yao, Y.; Song, H. The Remote Monitoring System Based on the OPC Technology. In Proceedings of the 2009 International

Workshop on Intelligent Systems and Applications, Wuhan, China, 23–24 May 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–3.
16. Modbus Protocol. Available online: https://modbus.org/specs.php (accessed on 1 January 2022).
17. Riggs, S.; Ciolli, G.; Kumar Meesala, S. PostgreSQL 11 Administration Cookbook; Packt: Birmingham, UK, 2019.
18. Open Sensor Hub. Available online: https://opensensorhub.org/ (accessed on 1 January 2022).
19. MOXA. Available online: https://www.moxa.com/en (accessed on 1 January 2022).

https://www.automationit.com/blog/59-what-makes-up-a-scada-control-system
www.juniper.net
http://doi.org/10.2478/cjece-2021-0003
https://inductiveautomation.com
https://new.siemens.com/global/en/products/automation/industry-software/automation-software/scada/simatic-wincc-v7.html
https://new.siemens.com/global/en/products/automation/industry-software/automation-software/scada/simatic-wincc-v7.html
http://doi.org/10.2202/1553-779X.1059
https://webstore.iec.ch/publication/61114
https://modbus.org/specs.php
https://opensensorhub.org/
https://www.moxa.com/en

	Introduction
	Migration of Traditional SCADA Systems to “One4all” Ones
	Selecting a SCADA Software
	The First Attempt

	The “One4all” Concept
	Implementation
	Results
	Conclusions/Future Works
	References

