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Abstract: Finding a low-cost and highly efficient method for identifying subway tunnel damage
can greatly reduce catastrophic accidents. At present, tunnel health monitoring is mainly based on
the observation of apparent diseases and vibration monitoring, which is combined with a manual
inspection to perceive the tunnel health status. However, these methods have disadvantages such
as high cost, short working time, and low identification efficiency. Thus, in this study, a tunnel
damage identification algorithm based on the vibration response of in-service train and WPE-CVAE
is proposed, which can automatically identify tunnel damage and give the damage location. The
method is an unsupervised novelty detection that requires only sufficient normal data on healthy
structure for training. This study introduces the theory and implementation process of this method in
detail. Through laboratory model tests, the damage of the void behind the tunnel wall is designed to
verify the performance of the algorithm. In the test case, the proposed method achieves the damage
identification performance with a 96.25% recall rate, 86.75% hit rate, and 91.5% accuracy. Furthermore,
compared with the other unsupervised methods, the method performance and noise immunity are
better than others, so it has a certain practical value.

Keywords: in-service train; dynamic response; subway tunnel; damage detection; CVAE; relative
entropy; wavelet packet energy; laboratory test

1. Introduction

Subway tunnels are the lifeblood of urban rail transit and are essential for residents
to travel. Finding a low-cost and efficient method for identifying structural damage is the
key to maintaining the safety of subway tunnels and the premise of ensuring normal urban
traffic [1,2]. Therefore, this study proposes a new unsupervised novelty detection method
to identify tunnel damage using the dynamic responses of in-service trains collected by
onboard sensors.

At present, tunnel health monitoring is mainly based on the observation of apparent
diseases such as water leakage, settlement, and deformation, such as high-definition pho-
tography, laser scanning, radar, and other technologies, and combined with the inspection
to grasp the health status of the tunnel [3]. However, these methods generally have high
costs and short operating time (only 3 to 4 h in the morning), making it difficult to meet
the increasingly stringent requirements of subway tunnel operation and maintenance [4].
The damage identification method based on structural vibration monitoring can identify
non-apparent diseases such as structural stiffness degradation and the void behind the
tunnel, but, generally, fixed sensors can only be arranged in the vulnerable part of the
tunnel to realize automatic monitoring of the tunnel [5]. Because the subway tunnel is
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deeply buried underground and the stratum parameters are complex, this method lacks
effective damage indicators and is expensive. Therefore, there are still many difficulties
in application [4].

Given the limitations of the existing health monitoring technology, Yang et al. [6–8]
proposed a method to obtain the bridge vibration mode and identify the structural damage
by using the dynamic response of the vehicle when driving on the bridge, which provides
a new idea for structural health monitoring. This method has significant advantages such
as high mobility, high efficiency, low cost, and continuous testing, and does not require
road closures and standstill operations [9]. Hence, vehicle-mounted vibration-based track
condition monitoring is widely used in railway track and track bed detection, tunnel health
monitoring, and other fields [10–12]. Sweden has developed a Rolling Stiffness Measuring
Vehicle (RSMV) that can measure the dynamic stiffness of railway tracks [10]. Germany
has also developed high-speed ICE-S measuring trains that measure track geometry and
vehicle dynamic response [11,12]. Xie [13] and Li et al. [4] proposed a novel method
to identify the tunnel damage by using the dynamic response of the subway trains in
service and proposed a damage indicator based on the wavelet packet energy change rate
and the damage indicator based on the spectral kurtosis change rate. They established
a simplified one-dimensional numerical model, refined three-dimensional numerical model,
and simple laboratory model tests to verify the damage indicators, and discussed the
influence of vehicle speed and load. The results show that the proposed damage indicators
can effectively locate the damage of the tunnel structure and has good robustness.

Although the damage identification method based on the dynamic response of the
moving vehicle can solve the difficulties of the traditional monitoring method, the method
is still in the experimental research stage and is not mature. A large amount of the dynamic
response data of in-service trains has a low signal-to-noise ratio and strong randomness.
In addition, there is also a lack of effective damage indicators. It is difficult to effectively
identify tunnel damage using conventional signal processing methods [13].

With the improvement of computer technology on software and hardware, the in-
crease in data storage capacity, and the reduction in cost, data-driven structural health
monitoring (SHM) has attracted more and more attention in the engineering field [14,15].
Compared with traditional methods, SHM based on deep learning and data-driven has
the following advantages: (1) Automatic damage identification; (2) Joint training of all
parameters with high accuracy; (3) It is suitable for large datasets with high efficiency [15].
At present, data-driven SHM is mainly divided into two directions: vision-based and
vibration-based SHM [16]. The former is to essentially process the data of structural de-
formation, such as displacement, crack, corrosion, and other apparent diseases, which
are mainly represented by images or videos. The latter uses the vibration response data
measured by the accelerometer deployed on the structure to detect internal and invisible
damage. Most of the researchers treat the damage detection tasks in a supervised manner,
which can be viewed as a pattern recognition problem in nature, using deep learning
methods such as CNN [17–19] and LSTM [20]. Chen et al. [21] proposed a new pavement
transverse crack detection model based on time–frequency analysis and CNN, and a good
recognition performance was achieved by analyzing the measured data. This supervised
method requires labeled data in all structural health and damage scenarios to learn [17].
However, it is sometimes difficult to obtain data in all possible damage scenarios, which
are rare in practical applications [22].

In contrast, unsupervised learning can avoid such shortcomings, including K-means,
K-NN, Auto-Encoder, and its improvement [22–24]. Chalapathy et al. [22] developed
a deep learning technique for novelty detection based on an unsupervised CNN for struc-
tural damage about loose bolts on a bridge model. Ma et al. [23] presented a damage
detection method based on a variational auto-encoder for representation extraction and
applied it to bridge damage identification under a moving vehicle, and its accuracy was
proved by the numerical simulation and in-lab experiment [23]. Li et al. [24] proposed
an unsupervised damage detection method based on convolutional auto-encoders and
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conducts field experiments on the PSC-I bridge to test the accuracy and robustness of the
method. Cha et al. [25,26] proposed an unsupervised deep learning method for detecting
structural damage with a deep auto-encoder with a one-class of support vector machines,
which was verified by steel bridge experiments. However, the major disadvantage of these
unsupervised deep learning methods is that they remain inferior in identifying the damage
type and degree and detecting low levels of damage [27].

To effectively identify tunnel damage from in-service train dynamic response data,
a novel unsupervised deep learning damage identification method is proposed in this
study. The method uses the CAVE model to identify whether there is damage and then uses
the wavelet packet energy relative entropy to obtain the approximate area of the damage
location. The novelties and contributions of this study are as follows.

(1) A convolutional variational autoencoder model (CVAE) based on in-service train
dynamic response is developed to detect the tunnel damage with low cost and high efficiency.

(2) A damage-sensitive indicator (TDIWPE) based on the relative entropy of wavelet
packet energy is developed to identify tunnel damage locations.

(3) A laboratory model that can be automatically controlled is designed and the
damage of the void behind the tunnel wall is simulated, and a large amount of experimental
data is collected to test the algorithm.

(4) By analyzing the experimental data and comparing with other methods, we show
that the proposed method has better recognition accuracy and noise immunity.

The remainder of this paper is arranged as follows. Section 2 introduces the unsu-
pervised method of tunnel damage identification. Section 3 introduces the automated
model test system and uses the model test data to train the neural network to verify the
effectiveness of the proposed method. Section 4 discusses the comparison between different
methods and robustness against noise. Eventually, Section 5 presents the conclusion of
this study.

2. Methodology
2.1. Method Overview

As shown in Figure 1, the tunnel damage identification method uses the onboard
accelerometer to collect the vibration response of the in-service subway train and then
identifies the damage of the tunnel structure by analyzing acceleration data. The theoretical
basis can be found in the literature [4], which has been also verified by numerical simulation
and experiments tests.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 17 
 

 

unsupervised damage detection method based on convolutional auto-encoders and con-
ducts field experiments on the PSC-I bridge to test the accuracy and robustness of the 
method. Cha et al. [25,26] proposed an unsupervised deep learning method for detecting 
structural damage with a deep auto-encoder with a one-class of support vector machines, 
which was verified by steel bridge experiments. However, the major disadvantage of 
these unsupervised deep learning methods is that they remain inferior in identifying the 
damage type and degree and detecting low levels of damage [27]. 

To effectively identify tunnel damage from in-service train dynamic response data, a 
novel unsupervised deep learning damage identification method is proposed in this 
study. The method uses the CAVE model to identify whether there is damage and then 
uses the wavelet packet energy relative entropy to obtain the approximate area of the 
damage location. The novelties and contributions of this study are as follows.  

(1) A convolutional variational autoencoder model (CVAE) based on in-service train 
dynamic response is developed to detect the tunnel damage with low cost and high effi-
ciency. 

(2) A damage-sensitive indicator (TDIWPE) based on the relative entropy of wavelet 
packet energy is developed to identify tunnel damage locations. 

(3) A laboratory model that can be automatically controlled is designed and the dam-
age of the void behind the tunnel wall is simulated, and a large amount of experimental 
data is collected to test the algorithm. 

(4) By analyzing the experimental data and comparing with other methods, we show 
that the proposed method has better recognition accuracy and noise immunity. 

The remainder of this paper is arranged as follows. Section 2 introduces the unsuper-
vised method of tunnel damage identification. Section 3 introduces the automated model 
test system and uses the model test data to train the neural network to verify the effective-
ness of the proposed method. Section 4 discusses the comparison between different meth-
ods and robustness against noise. Eventually, Section 5 presents the conclusion of this 
study. 

2. Methodology 
2.1. Method Overview 

As shown in Figure 1, the tunnel damage identification method uses the onboard 
accelerometer to collect the vibration response of the in-service subway train and then 
identifies the damage of the tunnel structure by analyzing acceleration data. The theoret-
ical basis can be found in the literature [4], which has been also verified by numerical 
simulation and experiments tests. 

 Vibration data of in-
service train

Wavelet packet 
energy spectrum 

and normalization
Damage position

Convolutional 
Variational 

Auto-Encoder

Relative entropy 
of wavelet Packet 

energy
 

Figure 1. The proposed tunnel damage detection method. 

  

Figure 1. The proposed tunnel damage detection method.

To monitor the health status of the tunnel in approximately real-time and identify the
abnormality of the tunnel when the subway train is in service normally, this study adopts
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the CVAE model and indicator TDIWPE to solve the modeling problem. The framework of
the proposed damage identification method is shown in Figure 2. The proposed method in-
cludes three parts: (1) Raw data preprocessing: After wavelet packet decomposition (WPD)
and noise reduction, the wavelet packet energy of each slice is calculated and normalized;
(2) Model training: Using the processed data as the learning sample of the model, train and
optimize the established CVAE model; (3) Damage identification: The samples are input
into the trained CVAE model, and the damage index TDIWPE of the input and output data
is calculated. By comparing the Root Mean Square Error (RMSE) and the damage threshold,
it is determined whether there is any damage in the tunnel, and the section where the
damage is located is given by TDIWPE.
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2.2. CVAE

Variational Auto-encoders (VAE) is a model proposed by Kingma et al. [28], which
improves the latent variables of the auto-encoder. The essence of the variational autoen-
coder is a deep Bayesian network, which is a combination of statistics and neural networks.
Compared with Auto-encoders (AE), the core idea of VAE is that the latent variables
z are forced to satisfy a specific distribution, such as the standard normal distribution.
Considering its independence constraint on latent variables, VAE may be a better feature
extraction method.
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The CVAE used in this study is to replace the fully connected layer of the VAE with
a convolutional layer and a pooling layer, where the encoder and decoder are convolutional
neural networks (CNN). In this way, the spatial information of the two-dimensional input
data can be preserved, and the network learning ability and computational efficiency can
be greatly improved.

Figure 3 shows the architecture diagram of the CVAE model and shows the expression
of the loss function. Conv2D denotes a two-dimensional convolution layer. The two param-
eter vectors µ and σ, represent the mean and variance of the hidden variable, respectively,
so that each element of the hidden variable obeys the corresponding normal distribution
N(µx, σ2

x). The network adopts the technique of resampling and introduces Gaussian noise
ε ∼ N(0, I).
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The latent variables z is obtained by:

z = µ + σ � ε (1)

where � represents the Hadamard operator, which represents element-wise multiplication.
The goal of CVAE is to maximize the evidence lower bound (ELBO), which can be

expressed as:
ELBO = Ez∼q(z|x)[log p(x|z )]− KL[q(z|x )‖p(z)] (2)

where Ez∼q(z|x)[] is a mathematical expectation calculator; KL[] represents the Kullback–
Leibler (KL) divergence that measures the difference between two distributions. For more
details on ELBO, please refer to the literature [29].

After simplification, the loss function of the network can be expressed as the following
equation [28].

L∗(θ) = KL[q(z|x )‖p(z)] + ζL(x, y; θ) (3)

The loss function contains two parts that are reconciled by the hyperparameter ζ. The
first part is the hidden layer loss, which represents the difference between the predicted
distribution q(z|x ) of the encoder output hidden variable and the actual prior distribution
p(z), which can be represented by KL divergence. After simplification, KL is calculated
as follows:

KL[q(z|x )‖p(z)] =
∫ (

q(z|x ) log q(z|x )
p(z)

)
dz

=
∫
(q(z|x ) log q(z|x )− q(z|x ) log p(z))dz

= 1
2

N
∑

i=1
(σ2

i + µ2
i − 1− log σ2

i )

(4)
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The second part is the reconstruction loss, which represents the difference between
the input data and the output data. Generally, the Root Mean Square Error (RMSE) is used,
which is calculated according to Formula (5).

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

To assess whether the data contain anomalies, a damage threshold is set as the criterion.
When the RMSE is greater than this threshold, the damage is considered to be present.
According to the research of Ren et al., it is assumed that RMSE obeys the normal distribu-
tion N(µr, σr), and the upper confidence limit is introduced as the damage threshold. The
calculation formula is as follows:

L1−α = µr + Z1−ασr (6)

where L1−α represents the upper confidence limit, µr and σr represent the mean and
standard deviation of the reconstruction loss RMSE, respectively. The confidence level
of Z1−α is the upper limit of the one-sided confidence interval of 1−α. From statistical
knowledge, Z1−α can be calculated as follows:

Z1−α =
t1−α(n− 1)√

n
(7)

In this model, α = 0.05 is preferable, which means that the RMSE is within the
one-sided 95% confidence interval (where the RMSE is non-negative), and the sample
data can be considered to be normal. Otherwise, the data can be considered abnormal,
indicating that the tunnel may be damaged.

2.3. Relative Entropy of Wavelet Packet Energy

To identify the location of tunnel damage, a damage indicator TDIWPE based on relative
entropy of wavelet packet energy is proposed in this study. The raw signal is divided
into several slices, and TDIWPE between the input and output of the CVAE in each slice is
calculated to determine whether the slice signal is abnormal, and then we will obtain the
damage location.

The indicator calculation process is shown in Figure 2. The raw signal x(t) is firstly
decomposed by the j-layer wavelet packet, and the wavelet packet coefficient dj,k(t) of the
j-th layer can be expressed by Equation (8). Noise can also be filtered by discarding wavelet
coefficients of some frequency bands.

D =
{

dj,k(t), k = 1, 2, . . . , 2j, j = 1, 2, . . . N
}

(8)

Then, the wavelet coefficients are divided into equal-length segment slices, each slice
has a length of l sampling points, and the translation length is (slice overlap length), then the
wavelet coefficients di,j,k(t) of each slice are expressed as follow:

D =
{

di,j,k(t), k = 1, 2, . . . , 2j, j = 1, 2, . . . N, i = 1, 2, . . . M
}

(9)

The energy spectrum based on the wavelet packet in each slice can be obtained, and it
is normalized as a vector:

Pi,j =
[

pi,j,1 pi,j,2 · · · pi,j,2j

]
(10)
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where pi,j,k represents the ratio of the wavelet energy of the k-th frequency band of the i-th
slice to the total energy of this slice, which can be calculated as follows:

pi,j,k =
ei,j,k

Ei,j
=

ei,j,k

∑2j

k=1 ei,j,k
(11)

ei,j,k =
(i−1)×linc+l

∑
t=(i−1)×linc+1

∣∣∣di,j,k(t)
∣∣∣2 (12)

Then, the indicator TDIWPE of the i-th slice can be defined as Equation (13).

TDIWPE(i) =
2j

∑
k=1

pD
i,j,k ln(

pD
i,j,k

pH
i,j,k

) (13)

where the superscript D represents the train vibration response on the tunnel damage,
and H represents the signal on the tunnel healthy.

Finally, according to the train speed, the slices are corresponding to the sections of the
tunnel space domain.

S = v× t (14)

where S is a distance of train running; v represents train speed, and t represents time.
In each slice, the TDIWPE(i) can measure the difference between the energy distribution

of the signal on healthy and damage scenarios. The closer the energy distribution is,
the more the relative entropy tends to 0, and vice versa. Therefore, the TDIWPE can reflect
whether the signal is abnormal, and then can find out which slice the damage is in.

To facilitate the quantification of the damage indicator, it is defined that the slice whose
TDIWPE is greater than 20% of the average value of each slice in the sample, may have
“damage”, and other slices are considered healthy.

3. Experimental Validations

To validate the proposed tunnel damage identification method, model experiments
were performed in the laboratory to obtain experimental datasets for method training
and performance evaluation. The model test was conducted to verify the feasibility of
the tunnel damage detection method based on the vibration response of the in-service
train. Furthermore, it was expected that the effectiveness of the proposed method in
processing monitoring data would be verified. Due to the limited experimental conditions,
we simplified the model significantly.

3.1. Experimental Test
3.1.1. Laboratory Physical Modeling System

Considering the laboratory space, prototype size (taking Jinan subway tunnel as the
prototype), model manufacture, and other factors, it was assumed that the geometric simi-
larity coefficient Cl = 1/30, the elastic modulus coefficient CE = 1/30, and the acceleration
similarity coefficient was 1. At the same time, the model did not consider the effects of
primary and secondary springs of the train, track fasteners, and groundwater. The structure
and field photos of the test system are shown in Figure 4, including the sand box, tunnel,
vehicle, power traction, automatic control, and data acquisition system. The key parameters
of the model are shown in Table 1.
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Table 1. Key physical parameters of the model.

Components Parameters Value

Sand
Depth (m) 0.9

Density (kg·m−3) 1510

Tunnel

External diameter (m) 0.3
Length (m) 3

Depth of tunnel (m) 0.2
Ring width (m) 0.1

Lining thickness (m) 0.01
Density of photosensitive

resin (kg·m−3) 1150

Tensile modulus (MPa) 2779
Poisson’s ratio 0.42

Sandbox Length × width × height (m) 3 × 1.5 × 1
Polystyrene foam board Thickness (m) 0.25

Vehicle
Length × width × height (m) 0.3 × 0.15 × 0.12

Speed (m·s−1) 0.9
Weight (kg) 5.08

Track Length × width × height (m) 3 × 0.004 × 0.004

Sensor

Length × width × height (m) 0.04 × 0.04 × 0.05
Measuring range (g) 2

Sampling frequency (Hz) 4000
Weight (kg) 0.136

Resolution (µg) 0.2

The tunnel structure and track plates are fabricated using photosensitive resin 3D
printing technology. The outer diameter of the actual tunnel is 6.2 m, and the lining
thickness is 0.3 m. Bolts were used to assemble the lining segments, including one standard
part-I (SPI, arc 48◦ × width 10 cm), two standard parts-II (SPII, arc 96◦ × width 10cm),
and a bottom part (BP), as shown in Figure 5. The track is made of two smooth metal strips,
reducing the effects of track irregularities.
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The sandbox was made of steel. The inner walls of the sandbox were covered with
25 cm thick polystyrene foam boards to absorb vibrational waves and prevent wave reflec-
tions that affect the vibrational modes of the structure. Although sand cannot accurately
represent the complex real ground, it is useful for controlling boundary conditions and
repeatable tests. The sand was compacted during the experiment.

Regardless of the primary and secondary suspension springs of the train, the vehicle
was divided into three compartments, which were equipped with wireless sensors and
mass. The wireless sensor was fastened with bolts in the middle of the vehicle to collect
the vertical acceleration. The sensor sampling frequency was 4000 Hz, with the resolution
being 0.2 µg, the measuring range 2 g, and the weight 136 g. Under standard conditions,
the vehicle speed and total mass (load and sensor) were 0.9 m/s and 5.08 kg. A stepper
motor and tracks pulled the vehicle reciprocating at a constant speed on the track on
the track. The test system was automatically controlled by a program to ensure uniform
vehicle speed.

3.1.2. Damage Setup

The tunnel damage was caused by structural material degradation and the external
environment. Concrete carbonation, erosion, and spalling reduce lining stiffness, causing
tunnel deformation and cracking, leading to water leakage. Soil movement, soil erosion,
and surface overloading lead to tunnel subsidence and dislocation, which can lead to
tunnel damage.

As shown in Figure 5, the 3D-printed cavity is a parabolic hollow shell of different
sizes made of photosensitive resin, which was placed in the soil behind the bottom of the
tunnel to simulate the effect of different volumes of the cavity. The void size and position
on the tunnel are shown in Figure 5b. To reduce the test workload, four damage levels
were set, and the volumes were 566 cm3, 331.7 cm3, 447 cm3, and 166.4 cm3, respectively.

3.1.3. Test Conditions

Due to the limitations of test materials and equipment, the standard working condition
was set as the healthy working condition, with the train speed being 0.9 m/s, and the total
mass of the vehicle, load, and sensor being 5.08 kg. In each case, the vehicle reciprocated
runs in the tunnel, taking a single trip (from left to right) as a valid sample, and each
sample was about 3 s long. As shown in Figure 6, the total length of the tunnel was 3 m,
with 30 rings. Among them, 24 rings were analyzed as the effective length and divided
into 8 segments. Then, the void damage was placed on the 14th ring, which is on the 4th
segment. The test conditions are shown in Table 2. Lastly, 2000 samples were collected
repeatedly in Case 0, and 500 samples in each of the other four damage cases.
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Table 2. Test conditions.

Case 0 1 2 3 4

Void/cm3 - 166.4 331.7 447 566

3.2. Data Preprocessing

Figure 7 shows the collected vehicle’s vertical acceleration of Case 0 and 3. However,
it is difficult to directly identify the damage through the time domain signal because of
noise. Therefore, we used deep learning methods to solve this problem. According to the
method described in Section 2.3, the original data were converted into a WPE distribution
map by using the wavelet packet analysis, which was used as the input sample of the
deep learning network. The sym4 wavelet basis function was used, and the number of
decomposition layers was 8.
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Figure 7. Original signal of the vehicle in modelling test.

The calculation result is shown in Figure 8. The x-axis in the figure represents the time,
and the time window length was 0.25 s, indicating that the time resolution was 0.25 s. The
y-axis represents the frequency with a frequency resolution of 7.8 Hz. Each point in the
figure represents the ratio of the energy of this frequency band to the sum of the energy
of all frequency bands in this time period. The signal energy was mainly concentrated in
two frequency ranges, 35.16–144.5 Hz and 261.7–425.8 Hz. Comparing the images of Case
0 and 3, certain subtle differences are observed in the red box in the time period of 1~1.5 s
and frequency range of 35.16–144.5 Hz, indicating potential damage in this area. However,
other frequency bands are still very noisy, which can affect the damage identification.
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As an unsupervised model, the training set samples only selected the test data without
tunnel damage and used the K-fold verification method to train the neural network. The
partition of the dataset is shown in Table 3.

Table 3. Datasets partition.

Datasets Condition Case Number of Testing Sets

Training Healthy 0 1280
Validation Healthy 0 320

Test

Healthy 0 400
Voids 1 100
Voids 2 100
Voids 3 100
Voids 4 100

3.3. CVAE Model Establishing and Training

To select the optimal parameters of the model, first, some initial parameters were
set as reference models based on experience, and then the grid search method was used
for optimization. The optimized network model structure and parameters are shown in
Table 4. The input layer of the model is the normalized WPE distribution map of the train
acceleration response data. The size of the input layer is a tensor of 1@18 × 96, where
1 represents one channel, and 18 × 96 represents the size of the map. The algorithm was
implemented using Python3.9 and TensorFlow 2.5 and trained on a computer with NVIDIA
GTX 1060(GPU) and Intel i7-7700K(CPU).

3.4. Damage Identification
3.4.1. Performance Evaluation Metric

Table 5 presents the confusion matrix for evaluating the detection performance of the
method. Based on this matrix, the evaluation metric can be defined as the Equations (15)–(17).

Hit rate =
TH

TH + FN
× 100% (15)

Recall rate =
TN

TN + FH
× 100% (16)

Accuracy =
TN + TH

TN + FN + TH + FN
× 100% (17)



Sensors 2022, 22, 2412 12 of 17

where the hit rate is calculated as the percentage of void samples correctly detected; recall
rate is calculated as the percentage of correctly identified healthy samples; accuracy is
a measure of overall performance.

Table 4. Parameters of CVAE.

Blocks Layers Parameters Output

Encoder

Input 1@18 × 96 1@18 × 96
Conv2D 32@3 × 3 32@18 × 96
Conv2D 32@3 × 3 32@18 × 96

MaxPooling 3 × 3 3 × 3
Conv2D 16@3 × 3 16@6 × 32

Parameter
resampling

σ (Conv2D) 4@3 × 3 4@6 × 32
µ (Conv2D) 4@3 × 3 4@6 × 32

Hidden = µ + σ × ε σε = 0.01 σε = 0.01

Decoder

Conv2D 16@3 × 3 16@6 × 32
UpSampling 3 × 3 3 × 3

Conv2D 4@3 × 3 4@18 × 96
Conv2D 4@3 × 3 4@18 × 96

Output (Conv2D) 1@3 × 3 1@18 × 96

Regularization L2 (1 × 10−6)
Optimizer Nadam

Batchs 24
Epochs 150

Table 5. The confusion matrix.

Sample Number
Prediction

Normal Void

Ground truth
Normal True normal (TN) False hit (FH)

Void False normal (FN) True hit (TH)

3.4.2. Void Identification

Through try and error, hyper-parameters of CVAE were determined using training
and validation data. The RMSE results of part of the training set and test set are shown
in Figure 9. The damage threshold L0.95 is 7.589 × 10−4, which was calculated from the
training set results according to Equation (6). When the RMSE is less than this threshold,
it means that the tunnel is in a normal state, and when it is greater than this threshold, it is
considered that the sample is abnormal, that the tunnel may be damaged. The results show
that the RMSE of the test set (healthy) is almost all below the damage threshold, and the
recall rate is about 96.25%. At the same time, the hit rate is 86.75%, and overall accuracy is
91.5%. As can be seen from the figure, when the void volume behind the tunnel wall is very
small, the accuracy of the model to identify abnormalities is low. When the void volume
becomes larger, its RMSE value gradually increases and exceeds the damage threshold,
and the recognition effect is also significantly improved.
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Figure 9. Void identification using CVAE.

Sample-A is randomly selected from the test set as an example, and the damage
location is given by the TDIWPE. As shown in Figure 10, the TDIWPE (4) is the largest, which
is 0.28, while the average value is 0.196. The results suggest that there may be a void in
segment 4. The results of this example verify the effectiveness of the proposed method.
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4. Discussion
4.1. Compared with Other Unsupervised Methods

Experiments show that the method proposed in this study has the advantages of high
efficiency, low cost, and strong feasibility. This section compares the proposed method
to other unsupervised methods such as Convolutional Auto-Encoder (CAE), Variational
Auto-Encoder (VAE), K-means, and Gaussian Mixture Model (GMM). At the same time,
the effects of different decomposition methods such as WPD and variational modal de-
composition (VMD) are also compared. The identification effects of each model are shown
in Table 6.
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Table 6. Testing accuracy of different methods (%).

Data Decomposition
Methods in Preprocessing

Machine
Learning Methods Recall Rate Hit Rate Accuracy

WPD CVAE 96.25 86.75 91.5
VMD CVAE 92.75 84.25 89

CVAE 88.75 81.5 85.13
WPD VAE 90.5 82.25 86.38
WPD CAE 85.25 80.75 83
WPD K-means 78 78.75 78.38
WPD GMM 82.25 79.5 80.88

Comparing the first three methods in the table, the identification accuracy of the model
using WPD and VMD methods in each test set is higher than that of the model without
any data preprocessing method, and the effect of the WPD-CVAE model is slightly better
than that of the VMD-CVAE model. This is because the VMD method only decomposes the
vibration amplitude, and the redundant time dimension information is retained, which will
generate more random errors when calculating the RMSE, resulting in identification errors.
The WPE distribution map obtained by WPD is also compressed in the time dimension,
which not only discards some redundant information, but also improves the calculation
speed of the model.

When the preprocessing method is WPD, by comparing the identification accuracy of
CVAE, CAE, VAE, K-means, and GMM models, it can be found that the CVAE model has the
highest identification accuracy in each test set combining the advantages of convolutional
layers and variational autoencoders. The conventional K-means and GMM models have
low accuracy, and can only identify whether there is an abnormality, but cannot identify
the damage location, so they have certain limitations in practical applications. The results
show that the proposed method has more superiority for damage detection than other
unsupervised methods.

4.2. Noise Immunity

Due to the influence of the test environment and the measurement error, noise is in-
evitably generated during the measurement process, which pollutes the original data. So,
it will inevitably affect the recognition effect of the detection algorithm. To test the robustness
of the proposed algorithm, White Gaussian Noise (WGN) in dBW of different power is injected
into the raw data [30]. Figure 11 shows the GWN of 0, 10, 20, and 30 dBW, respectively.

As shown in Table 7, taking Case 3 as an example, the hit rate, recall rate, and accuracy
rate of both methods decrease with the increase in noise power. In addition, the results also
show that the noise immunity of WPD-CVAE is better than that of VMD-CVAE.

Table 7. Performance comparison under different noise power (%).

Noise Power (dBW)
WPD-CVAE VMD-CVAE

Recall Rate Hit Rate Accuracy Recall Rate Hit Rate Accuracy

0 95.75 84.5 90.13 91.5 83 87.25
10 95.25 83.25 89.25 90.75 81.75 86.25
20 93.75 82.75 88.25 89.5 80.5 85
30 92.25 82 87.13 88 79.25 83.63
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5. Conclusions

In this study, we propose a novel automatic detection algorithm for damage localiza-
tion based on the dynamic response of in-service trains, which has the advantages of high
efficiency, low cost, and strong practicability. The proposed method uses CVAE to extract
damage-sensitive features, determines whether there is damage, and then uses TDIWPE
to identify the location of the damage. Then, the accuracy and reliability of the proposed
method are verified by laboratory tests of the vehicle–track–tunnel–soil coupled vibration
model. Finally, the effects of different damage identification methods and noise levels are
compared. The following results were obtained:

(1) The proposed method is completely unsupervised and does not require data under
various damage scenarios to train the network, which is generally difficult to obtain in
practical applications.

(2) An automatic control test system was designed, and the four levels of the void
behind the tunnel wall was simulated. The effectiveness of the method is validated by
analyzing more than 4500 data samples collected automatically. In the test case, the pro-
posed method achieves a better void identification performance than other unsupervised
methods with a 96.25% recall rate, 86.75% hit rate, and 91.5% accuracy.

(3) Compared with VMD-CVAE model, the proposed method fully utilizes the advan-
tages of WPD, CNN, and VAE methods, with higher accuracy and stronger noise immunity.

However, the main disadvantage of this unsupervised method is the inability to
identify the damage type and accurately assess the damage extent. Moreover, because the
tunnel structure is deeply buried in the ground, the stratum is complex, and the signal-to-
noise ratio is low, the quality and quantity of the data will also greatly affect the recognition
effect of the model.
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Therefore, future work needs to study supervised learning methods that make the best
of the manual label of damage information, which can automatically identify the damage
type and degree. At the same time, it is necessary to verify the effectiveness of the proposed
method through field tests, and accumulate huge amounts and high-quality monitoring
data for further research work.
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