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Abstract: In this paper, to balance power supplement from the solar energy’s intermittent and
unpredictable generation, we design a solar energy generation and trading platform (EggBlock)
using Internet of Things (IoT) systems and blockchain technique. Without a centralized broker, the
proposed EggBlock platform can promote energy trading between users equipped with solar panels,
and balance demand and generation. By applying the second price sealed-bid auction, which is
one of the suitable pricing mechanisms in the blockchain technique, it is possible to derive truthful
bidding of market participants according to their utility function and induce the proceed transaction.
Furthermore, for efficient generation of solar energy, EggBlock proposes a Q-learning-based dynamic
panel control mechanism. Specifically, we set the instantaneous direction of the solar panel and
the amount of power generation as the state and reward, respectively. The angle of the panel to be
moved becomes an action at the next time step. Then, we continuously update the Q-table using
transfer learning, which can cope with recent changes in the surrounding environment or weather. We
implement the proposed EggBlock platform using Ethereum’s smart contract for reliable transactions.
At the end of the paper, measurement-based experiments show that the proposed EggBlock achieves
reliable and transparent energy trading on the blockchain and converges to the optimal direction
with short iterations. Finally, the results of the study show that an average energy generation gain of
35% is obtained.

Keywords: solar energy generation; energy trading; auction theory; testbed; measurement study;
Internet of Things; blockchain; reinforcement learning

1. Introduction

The use of solar energy is considered as a promising renewable energy source. Solar
energy has various advantages in terms of increasing energy efficiency and reducing
greenhouse gas emissions [1]. In the conventional centralized power grid system, several
problems can occur, such as energy loss owing to the transmission process and power
instability due to the peak power demand [2]. Using solar energy as a distributed energy
resource, it is possible to minimize the transmission loss and supply energy to the consumer
more efficiently. However, the solar panel has a problem in that it is sensitive to changes in
the surrounding environment, and it is difficult to arbitrarily control the amount of energy
generation [3,4].

To address these challenges, various studies have been conducted in the literature,
aiming for efficient energy trading mechanisms [5–7]. Specifically, using a centralized
system manager, market-based energy trading models have been suggested for balancing
demand and generation. However, such interventions of the centralized system cause
additional participation fees and security issues in transaction records. Thus, to alleviate
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these problems, blockchain technology-based distributed energy trading models have
been proposed as one of the promising technologies in the smart grid system [8–10].
Nevertheless, research on implementation-based energy trading in distributed solar energy
generation is limited. Most of the studies were confined to numerical or simulation-based
studies. As a result, no conventional studies have addressed practical designs, such as the
implementation of solar energy generation and trading platforms that consider AI-based
automatic energy generation and blockchain-based secure energy trading at the same time.
Therefore, we deal with an operation method of solar energy as one of promising renewable
energy source, considering the actual environment and the residual energy transaction
platform using the actual dataset.

In this study, we design a solar energy generation and trading platform in Internet
of Things (IoT) systems using blockchain (EggBlock), which promotes distributed energy
trading without introducing a centralized broker and supports efficient energy generation.
The contributions of this study are summarized as follows:

• To support reliable energy trading among users without the participation of a cen-
tralized broker, the EggBlock platform using Ethereum for blockchain is proposed in
this paper. In order to determine a reasonable transaction of the generated renewable
energy, we infer the determination of transaction price and the amount of energy in
the market according to the second price sealed-bid auction mechanism. Further-
more, for efficient generation of solar energy, the EggBlock proposes the Q-learning
based dynamic panel control mechanism. Specifically, we consider a model-free-based
Q-learning algorithm, where the state and the action are the current position of the
solar panel and the angle at which the solar panel will move to the next time step,
respectively. Finally, the reward is designed as the amount of solar power that the
solar panels can obtain under the given state.

• We implement the proposed EggBlock platform using Ethereum for blockchain, which
enables Android smartphones to monitor contracts of energy trading in a real-time
manner. Furthermore, we build an IoT hardware testbed equipped with a solar panel
to generate and deliver energy for trading.

• The measurement-based experiments in the testbed show that the proposed EggBlock
achieves reliable and transparent energy trading using blockchain, and it converges to
the optimal direction with short-iterations. Finally, the results of the study show that
an average energy generation gain of 35% is obtained.

The remainder of this study is organized as follows. We review existing research in
Section 2. After the introduction of the overall system model in Section 3, the Q-learing
algorithm is introduced in detail in Section 4. Section 5 contains a detailed description of the
actual implementation, while Section 6 contains a detailed description of the experimental
results. Finally, Section 7 concludes with a detailed description of our system’s usage area
and future plans.

2. Related Works

Currently, renewable energy accounts for a large portion of the total energy genera-
tion [11]. It is advantageous in terms of environmental sustainability, low maintenance cost,
and ease of installation in urban areas [12]. However, the energy generation of renewable
energy is unstable due to various uncertain factors, such as weather, cloud movement, or
solar irradiation [13]. Therefore, various studies have been conducted to manage unsta-
ble energy generation with the installation of additional facilities, such as energy storage
systems or auxiliary generators. However, the construction of such additional facilities
requires considerable cost and time [14]. Thus, various energy trading approaches in smart
grid systems have been proposed for reliable and efficient energy use by balancing demand
and generation [5–7]. The work in [5] provided a game-theoretical analysis for a distributed
energy trading mechanism in which multiple microgrids re-sell or store surplus energy to
maximize their own profit. By representing the Nash equilibrium of all players, the authors
analyzed individual players’ strategies in each market environment. In [6], Zhang et al.
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proposed a peer-to-peer (P2P) energy trading model to improve the local energy balance.
Here, the authors considered a practical low-level voltage microgrid environment to ana-
lyze its effectiveness. In [7], Pei et al. introduced the concept of a two-stage market model
to maintain the balance of energy supply and demand in the entire system and region.
Specifically, using a Monte Carlo sampling method, the authors alleviated the effect of the
uncertainties of renewable energy. Additionally, by showing the various simulation results,
the authors verified that the proposed market framework applies to an actual system.

Nevertheless, in most of the previous energy trading studies, interventions of the
system manager should manage such an energy trading market. However, such inter-
ventions also resulted in additional participation fees and security issues of transaction
records. Therefore, blockchain technology-based distributed energy trading model without
a centralized manager have been proposed as solutions to alleviate such issues in the smart
grid system [8–10,15–17]. In [8], Mihaylov et al. proposed an energy trading method for
energy prosumers and consumers using the proposed NRGcoin. The authors argued that
the introduction of NRGcoin can solve the security issues associated with energy trading
and the fiat money conversion problem. In [9], Mengelkamp et al. developed energy
transaction models and demonstrated the simulation environment in the region using the
private blockchain method. The authors show the market operation results by analyzing
the relationship between the proportion of solar energy generation in the total energy
supplement and market price from an economic perspective. On the other hand, with the
implementation of an actual experimental system, Zhang et al. proposed a real-time energy
transaction system by incorporating the concepts of prioritization and cryptocurrency [10].
By presenting the numerical results, the authors showed that the proposed system can
be beneficial to market participants from both monetary and non-monetary perspectives.
In addition, unlike most conventional studies that use cryptocurrency as an alternative
currency, the proposed cryptocurrency in the paper has the abilities to convert fiat currency
and change the physical power flow. Vehicle to grid (V2G) network is one of the environ-
ments in smartgrid system that is appropriate to use blockchain technology in, as depicted
in [15]. Hassija et al. addressed the direct acyclic graph-based V2G network (DV2G), which
is organized with lightweight blockchain protocol. Showing the mechanism and numerical
results, authors proved that the proposed method is highly scalable and supports the micro-
transaction that is required in V2G network. By introducing the blockchain technique, it
is possible to operate the system according to the consensus of smart contract between
the participants without the intervention of a third party. In [16], Xi Chen et al. proposed
energy transaction among the renewable energy and electric vehicle to minimize the burden
of the power system operator. Through the blockchain-based EV incentive system, authors
addressed that it is possible to maximize the utilization of renewable energy and manage
the power system more effectively. A similar approach to this paper is dealt in [17]. In the
paper, Hassan et al. proposed auction and blockchain-based energy transaction scheme
to maximize the energy producer’s revenue in the system. Here, the authors insist that it
is possible to provide moderate cost, secure, and private auction schemes for microgrids
using the blockchain technology. Applying the advantages of blockchain to maximize
the profit of various market participants and increase the stability of energy transaction is
similar to this paper. However, our paper has the distinction of maximizing the amount
of power generation by controlling the angle of the solar panel and considering the actual
electricity tariff to facilitate application in the real environment.

3. Proposed System

As illustrated in Figure 1, the proposed EggBlock system model considers that there
are multiple edge-based IoT devices as users who participate in energy trading using
the generated energy. We set the environment in which the edge-based IoT devices are
equipped with solar panels for energy generation and energy storage to store redundant
energy for future use. Therefore, the proposed EggBlock system consists of two parts:
(1) energy generation and (2) energy trading.
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In the energy generation part, we deal with a method that can maximize energy
generation by controlling the angle of the solar panel. Here, the intensity of light over
various locations is measured to determine the direction of the solar panel where a BH1750
photo resistor controlled by Raspberry Pi is used. Such measured data are used for the
Q-learning algorithm, which maximizes the expected reward (i.e., energy generation) by
determining the optimal solar panel angle under the given state space.

In the energy trading part, we propose a blockchain-based decentralized energy
trading model that is organized without a centralized broker. In this study, we design
a transaction environment using an Ethereum-based decentralized application (Dapp)
platform. Here, the use of Dapp is suitable for the proposed energy transaction model
because it has various advantages (e.g., zero downtime, privacy, resistance to censorship,
complete data integrity, and trustless computation/verifiable behavior) [18,19]. Based on
these advantages, participants in the market cannot cheat or falsify transactions and have a
reliable transaction service.

Figure 1. System model.

3.1. Energy Generation

To maximize energy generation by adjusting the position of the solar panels, we use a
reinforcement learning (RL) framework. Here, we use two Raspberry Pi boards as edge
nodes to control the solar panel: (1) collecting solar energy data and (2) using the collected
data to train Q-Learning and adjusting the position of solar panels through stepper motors.

In the first edge node, solar energy data collection is performed using a photo register,
which can be used for training the RL model. The collected data are sent on every time step
to the second edge node.

To use the data collected from the first edge node, a Q-table is defined using a model-
free RL framework at the second edge node [20]. For every time step, the second edge node
selects an optimal action by referring to the Q-table and transmits the action value to a
stepper motor to efficiently control the position of the solar panel. The Q-table is updated at
every time step based on the received reward corresponding to the state so that it converges
to the optimal action corresponding to the state. Here, when the stepper motor moves the
solar panel based on the received action value, the reward occurs according to the action
process and updates the Q-table. The detailed process of the RL framework will be covered
in Section 4.

3.2. Energy Trading

The energy obtained from solar panel is sold to bidders at a price determined based
on the auction mechanism. For reliable energy transactions between sellers and buyers, the
energy trading platform is implemented through a blockchain using Ethereum. According
to the Ethereum-based smart contract, transactions proceed among sellers and buyers with
their purpose and status. Accordingly, if the transaction is conducted via the smart contract,
the blockchain guarantees the authenticity and the reliability of the transaction execution
without requiring a centralized broker [21].
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3.2.1. Determination of Transaction Based on Sealed-Bid Auction Mechanism

The energy generated by the photovoltaic (PV) generator is sold at an appropriate
price to buyers who need it. At this time, in order to determine the transaction price,
a second price sealed-bid auction mechanism is proposed in this paper. There are two
reasons for choosing the second price sealed-bid auction mechanism in this paper. First, it
is possible to minimize the exposure of information about the buyer’s bidding strategy (e.g.,
bidding price, current status, policy, etc.). Second, buyers adopt a truthful bidding strategy
in which their expected price is equal to their bidding price. Since it can be seen that the
advantages of such mechanism are efficient in the blockchain-based energy transaction
model, we use the method and predict the bidding price of buyers.

In Figure 2, we represent the overall structure of auction-based market model. Since
the proposed market is operated separately from the conventional energy market, it is
necessary to consider the market data in actual system. In the figure, we could check that
there are two different participants in the market. The energy producer is a seller who
has renewable energy with a storage device to sell residual power. The energy consumer
is a buyer who wants to purchase energy from the producer to minimize the overall cost.
Here, the consumer might be a prosumer with solar energy or simple electricity consumer
who wants to purchase energy in a cost-effective manner through EggBlock rather than
purchasing from the conventional market. As depicted in the above statement, a transaction
of the proposed scheme is the progressed auction mechanism. Therefore, the auction is
began through the disclosure of the amount of energy sold by the seller.

Figure 2. Auction-based energy transaction model.

In this paper, we use a second price sealed-bid auction mechanism that the seller sells
the energy to the buyer with the highest bidding price for the second highest price. The
characteristics of the auction called sealed-bid makes the buyer decide the bidding price by
only considering it’s own profit. In addition, considering the bidding mechanism, it can
be seen that the buyer makes a truthful bidding in the proposed system [22,23]. Therefore,
the details of the utility function to determine each participant’s strategy are depicted as
follow:
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Seller: In the case of a seller, it is possible to determine the amount and price of energy
to be sold considering the current profit and the future value achieved by storing the energy.
Here, the utility function of the seller could be depicted as:

max
p

Û(p) = Csell Êp + Copln(1 + Êη(1− p)] (1)

s.t. 0 ≤ p ≤ 1. (2)

In Equation (1), the first term Csell Êp refers to the profit that the seller achieves through
selling energy. Here, Csell refers to the unit price for selling energy, and Ê is the energy
generated from the solar panel. In addition, p is the decision variable of the seller that
means the portion of energy to sell in the market. Furthermore, the second represents the
satisfaction the seller attained by storing the energy Ê(1− p) in the storage system [24].
Here, a weight factor Cop is added to transform the seller’s satisfaction level into the
monetary aspect. Since the formula is a concave model consisting of one decision variable,
the optimal value can be calculated as follows:

Derivation: To obtain an optimal solution of the problem, we differentiate Equation (1)
by p as:

∂Û(p)
∂p

= αÊ− Êη

1 + Êη(1− p)
, (3)

∂2Û(p)
∂p2 = − Êη2

(1 + Êη(1− p))2
. (4)

To organize the formula more easily, we transform the Csell
Cop

into the auxiliary variable
α. Assuming that the value of Cop is larger than Csell , we could set 0 ≤ α ≤ 1 in the
equation. In addition, since the auxiliary variable η is positive, the second derivation of
utility function in Equation (4) becomes a negative value. Since the utility function of the
seller is organized with a single decision variable, it is possible to prove that the utility
function of the seller is concave. Therefore, the optimal value p∗ is calculated as 0 according
to the first derivation in Equation (3). In this way, we could calculate the optimal value as
follows:

p∗ = max(min(1− 1
Ê
(
(η − α)

αη
), 1), 0). (5)

Buyer: In the case of a buyer, the main purpose is minimizing the overall cost by
submitting the proper bidding price to the auction market.

Ui(bi) = (1− e−γibi )
(
(ps − bi)min(Di, E)− bi max(E− Di, 0)

)
− e−γibi psDi. (6)

In Equation (6), (1− eγibi )
(
(ps− bi)min(Di, E)− bi max(E−Di, 0)

)
refers to the profit

that a buyer i can achieve from the auction market. In the equation, (1− eγibi ) refers to the
probability that the buyer i could achieve the energy from the auction progress. Here, γi is
an auxiliary variable that determines the probability of successful bidding according to the
bidding price submitted by the buyer i. In addition, (ps − bi)min(Di, E) is the profit that
the buyer i achieved from the auction process. For the case that the buyer i successes the
bidding process, the buyer could achieve the monetary profit (ps − bi)min(Di, E) and get
the loss bi max(E− Di, 0) when the purchasing energy E is higher than required energy Di.
Furthermore, the last term −eγibi psDi is the cost that the buyer i has to pay when the buyer
fails in the auction.
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Case 1: For the case that a buyer i’s required energy Di is larger than purchasing energy
E, we could set the utility function of buyer i as follows:

Ui(bi) = (1− e−γibi )
(
(ps − bi)E

)
− e−γibi psDi. (7)

According to the second derivative result of the buyer’s utility function, it is possible
to check that the utility function is organized with the concave function. To find the optimal
b∗i that maximizes the profit of buyer i’s profit, we could differentiate the Equation (11) as:

∂U(bi)

∂bi
= γie−γibi (psE− biE)− (1− e−γibi )E + e−γibi γi psDi = 0. (8)

Here, we could reorganize the formula as:

eγibi = 1 + γi(ps − bi) +
1
E
(γi psDi). (9)

According to the Taylor series equation, we could change eγibi = 1 + γibi +
γ2

i b2
i

2! +
γ3

i b3
i

3! + · · · . Here, we assume that values after γ3
i b3

i
3! are too small to be 0. Therefore, we

could find the optimal value through the following equation.

1 + γibi +
γ2

i b2
i

2
= 1 + γi(ps − bi) +

1
E
(γi psDi) (10)

(bi +
2
γi
)2 − 4

γ2
i
− 2ps

γi
− 2

Eγi
psDi = 0

∴ b∗i =

√
4

γ2
i
+

2ps

γi
+

2
Eγi

psDi −
2
γi

Case 2: For the case that purchasing energy E is larger than the buyer i’s required
energy Di, we could set the utility function as follows:

Ui(bi) = (1− e−γibi )
(
(psDi − biE

)
− e−γibi psDi. (11)

By differentiating the utility function, we could get the optimal bidding price as:

γie−γibi (psDi − biE)− (1− e−γibi )E + γie−γibi psDi = 0 (12)

γie−γibi (2psDi − biE +
E
γi
)− E = 0

eγibi =
2psDiγi

E
− γibi + 1

1 + γibi +
γ2

i b2
i

2
=

2psDiγi
E

− γibi + 1 (13)

b2
i +

4bi
γi
− 4psDi

Eγi
= 0

(bi +
2
γi
)2 − 4

γ2
i
− 4psDi

Eγi
= 0

∴ b∗i =

√
4

γ2
i
+

4psDi
Eγi

− 2
γi

In this way, it is possible to predict the strategies of seller and buyers in the market.
Since we use the second price sealed-bid auction, each participant conducts a truthful
bidding according to the optimal value of its utility function. After participants decide their
strategy, the amount of transaction energy set by the seller is sold to the person who bids
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the highest price by paying the second highest bidding price. Here, information about the
whole of the participants’ strategy and transaction results are stored in the block.

3.2.2. Architecture of Smart Contract

Ethereum is a global, decentralized open-source blockchain featuring smart contract
functionality, where ether (ETH) in Ethereum is the cryptocurrency generated by Ethereum
miners as a reward for computations for adding blocks to the blockchain. The detailed
Ethereum architecture is illustrated in Figure 3. The term user in Figure 3 represents both
buyers and sellers who participate in a transaction. Correspondingly, when a user transacts
via Ethereum, the user must first connect to a node and refer to the Ethereum client through
a web browser powered by MetaMask [25].

Figure 3. Ethereum architecture.

The Ethereum clients, who have a distributed database and are interconnected to
the Ethereum Network, receive information when the block is created owing to a new
transaction. In other words, Ethereum clients are nodes of a blockchain network, called
blockchain nodes, which allow general users to connect to the blockchain. Users will be
able to obtain blockchain information or use smart contracts through the Ethereum client.
The smart contract is a script that implements the contents of a contract using the code and
allows the contract to be automatically fulfilled when the conditions are met. The smart
contract created by one user is stored in blocks through the Ethereum client. Therefore,
all nodes in the blockchain network have the same smart contract code. The process of
creating smart contracts includes the following:

• Smart contract coding: Code the contents of the contract you want to include in the
smart contract.

• Connect with Ethereum client: The written code is placed on the Ethereum virtual
machine (EVM) of the Ethereum client.

• Compile the implemented code: EVM byte code will provide the compilation result.
• Smart contract distribution: Add the compiled EVM byte code to the block as a

transaction and register to the blockchain.
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In this process, when the smart contract is registered to the blockchain, all Ethereum
clients on the blockchain will have the byte code of the smart contract. Then, the Ethereum
client will be able to run a registered smart contract on its EVM. Additionally, if a transaction
occurs, the content of a smart contract will change. Thus, after the transaction, other nodes
can access the smart contract so that they can change the content.

3.2.3. Transaction Process

Figure 4 shows the sequence diagram for the energy trading. In the energy trading
platform, some participants have superfluous energy that they wish to sell to the platform
as sellers, whereas others do not have sufficient energy to meet their demands and must
buy the shortfall from the platform as buyers. Specifically, first, the buyer defines and sends
Ether and code so that smart contracts can be created.

Figure 4. Sequence diagram for the energy trading.

A smart contract is run on top of the EVM. The terms of the transaction stored in
the smart contract are disclosed to everyone who can participate in the transaction. For
reliable transactions, sellers should prove the amount of energy they have. The amount of
proven energy is returned to the token, which is held by the seller. At this time, the token
is used only to prove the amount of energy without monetary value. If there is a seller
who has sufficient energy to sell as much as the buyer needs, the seller sends a token with
energy to the buyer. After the buyer receives the energy as required, it sends the completed
message receipt to the smart contract account. Finally, the smart contract delivers the ETHs
stored in the transactions to the seller. Simultaneously, the token sent to the purchaser is
extinguished.

Through this process, two participants can make a safe transaction without third-party
intervention, and this process is transparently recorded in the blockchain.

4. Model-Free Q-Learning

Model-free RL aims to achieve efficient control of the solar panel’s movement so that
the solar panel can collect the maximum energy when compensation is unknown. To design
the model-free RL algorithm, a Markov decision process (MDP) framework is considered,
which requires a description of states, actions, and rewards [20]. We consider the discrete
state and action spaces where the state and action refer to the current location of the solar
panel and the amount of angle to be moved. Here, the goal of the agent (i.e., solar panel) is
to learn the policy π, which allows the agent to choose actions that can maximize long-term
cumulative rewards (i.e., energy generation) where states are given.
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4.1. Markov Decision Process

The environment for the MDP consists of an agent, a BH1750 photo register, and a
solar energy battery capable of storing energy. In this study, we assume an environment
in which time is divided into consecutive fixed-length intervals. In each time interval, the
agent, which is a solar panel, determines the action. Here, we define a set of time steps
that identifies the intervals as T = {0, 1, 2, ...}. Then, the agent determines the action at
the next time step to maximize the expected cumulative rewards based on photo resistor
observation and previous experience. Specifically, the angle movement of the solar panel is
controlled through the stepper motor. Then, the chosen action is transmitted to the stepper
motor to control the angle of the solar panel. A detailed description of the states, actions,
and rewards for the proposed MDP framework is provided as follows.

State: State means the current location of the agent. The location of the agent in the t
time step is received as a scalar value of st. The set of states is denoted by S and marked as
S = {s1, s2, s3, ..., st}. We denote the state of the system in time step t as st, which is given
as follows:

st = [solar panel’s angle in time step t] (14)

Action: Action means the angle at which the motor must move at st. The action value
in the time step t can be expressed as a scalar value at. The set of actions is named A and
marked as A = {a1, a2, a3, ..., at}. Consider the state of the system in time step t denoted by
at, which is given as follows:

at = [angle to move in time step t] (15)

Reward: Reward R(st, at) obtained by taking action at at state st is the total amount
of energy that can be obtained from state st. Our goal is to maximize the total energy
generation, which can be expressed in a formula to maximize the expected rewards of the
solar panel.

R(st, at) = [amount of energy can be obtained in time step t]. (16)

4.2. Q-Learning

The state and action pairs (s, a) applied in this study are mapped through policy π
derived using Q-learning. Qπ(s, a) is the cumulative reward for taking action a from a state
s and follows policy π accordingly. Qπ is specified as follows:

Qπ(s, a) = E
[

∞

∑
t=0

γt
i R(st, π(st))|s0 = s, a0 = a

]
. (17)

where γi ∈ (0, 1), which is a hyper-parameter of the Q-function, is the discount factor.
Therefore, maximizing the cumulative reward is the same as finding a policy that maximizes
the Q-function. The optimized Q-function is called Q∗, which satisfies the Bellman equation.

Q∗(s, a) = R(s, a) + γi ·Es′ [max
a

Q∗(s′, a)]. (18)

The purpose of the Q-learning algorithm is to learn the optimal Q∗ in the observation
sequence (st, at, Rt+1, st+1). The optimal policy π∗ can be computed using Q∗ as follows:

π∗(s) = arg max
a

Q∗(s, a). (19)

The Q-learning algorithm was implemented as follows. At each time step t, the agent
updates the Q-function Qt as follows:

Q(st, at) = (1− αt)Q(st, at) + αt(Rt + γi max
a

Q(st+1, at)), (20)
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where αt denotes the learning rate. If state-action pairs are sampled infinitely and under
suitable conditions on the learning rate, Qt will converge to the optimal Q-function Q [26].

As described in Algorithm 1, we set the parameter K as the time range representing
the daily energy collection time. Furthermore, ε is the hyper-parameter value of ε-greedy,
which indicates the probability that a solar panel randomly selects an action. As described
in the pseudocode, each episode consists of a one-day energy generation. t is the time
interval for calculating the reward. Therefore, in each time step t, the solar panel obtains
the current state and selects the action. There are two choices when selecting an action.
Exploring the policy may speed up training, but it may cause problems of falling into
a local optimum due to the inability to explore new routes. Therefore, we apply an e-
greedy method that can select a random action with a certain probability. After selecting
the action, the reward is calculated according to the state and action. Subsequently, the
Q-table is updated according to Equation (20). Then, we go to the next time step and iterate
this process.

Algorithm 1 Q-Learning based solar panel control method.

1: Setting K range
2: Initial γi, ε
3: Initial action-value function Q0 and t
4: for each episode do
5: while t ≤ K do
6: Get current state st
7: Select action

at =

{
random a, if probability ε,
arg maxa Q(st, at), else,

8: Execute action at
9: Calculate reward R(st, at)

10: State st transfer to the next state st+1
11: Update Q(st, at) according to (20)
12: Next time step t←− t + 1
13: end while
14: end for

5. Implementation

Using the above scenario, we conduct an evaluation by implementing an actual testbed
that can generate and trade energy. In this testbed, we set two participants, the seller and
buyer in the platform, and conduct several tests for the case in which an actual energy
transaction could be made. The details of the tests are as follows: (1) Check the possibility
that it is possible to transfer the values to the stepper motor, which is obtained through
reinforcement learning. (2) Set the environment in which the stepper motor can operate the
solar panel module. (3) Evaluate whether energy is transferred between two participants.
(4) Check that the transmission is done, and ETHs are exchanged during the transaction
process. Furthermore, we implement the proposed system as web pages and mobile
applications so that users could perform transactions smoothly and obtain the necessary
information they needed.

5.1. Testbed Hardware

The proposed testbed uses an ‘SCM 5WA’ solar cell module (solar panel), ‘ESC 1206’
charge controller, and ‘KB 4.5 Ah 12 V’ battery. The 42-angle stepper motor ‘NEMA17’ is
used to move the solar panel. Additionally, the ‘L298N 1 channel’ is used to connect the
motor to Raspberry Pi. At this time, the ‘DC-DC BUCK/BOOST’ converter is used to adjust
the voltage because the voltage sizes are all different.
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It moves the stepper motor and controls the solar cell module through the action
values obtained through reinforcement learning. The controller stores the incoming energy
in the battery and manages the energy stored in the battery for use. Using this function of
the controller, the testbed checks that when the seller sends the specified amount of energy
to the buyer, all that energy is sent to the buyer. Additionally, it connected the LED light
bulb to the controller of the buyer to check whether the energy received from the seller can
be used immediately. Figure 5 shows the blueprint of our energy transaction. Furthermore,
Figure 6 is a real testbed that we implemented.

Figure 5. Blueprint of controllers in testbed.

Figure 6. Testbed of platform.

5.2. Software

The proposed testbed uses Solidity to write the terms of the smart contract as repre-
sented in Algorithm 2 and proceeds with the transaction.

To proceed with Ethereum’s deal, the user needs a personal wallet, and the user uses
MetaMask [25], Google’s extension program that allows users to safely manage Ethereum’s
personal wallet. MetaMask can only be used with Chrome, a PC browser; therefore, the
proposed testbed creates a web page for energy trading to enable smooth trading. Energy
generation is simulated using Python 3.7. We implement Algorithm 1 using Python and
control the action value obtained from it.



Sensors 2022, 22, 2410 13 of 21

A web page, which provides the real deal experience implemented in Figure 7a, gives
the user the real-time price of Ethereum, the number of Ethereum and token users, and
the address of the user’s personal wallet. In Figure 7b, a compartment enters the amount
of energy a user wants to purchase. If the order quantity is entered, the price will be
automatically converted. When the user presses the “Purchase of Energy” button, a pop-up
window appears informing them that the energy transaction will be performed at Figure 7c.
When the deal is processed, it appears that MetaMask is executed as shown in Figure 7d
and Ethereum will be sent to the seller’s wallet. Upon the approval of the transaction, it
may be confirmed that transaction approval is conducted as shown in Figure 7e,f and then
completed. Following this process, the number of Ethereum and tokens currently in use
are updated in real time.

(a)

(b)

Figure 7. Cont.
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(c)

(d)

Figure 7. Cont.
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(e)

(f)

Figure 7. Process of energy trading in web page. (a) Real time user’s information; (b) Purchase
section; (c) Purchase progress pop-up window; (d) Ethereum transaction preview; (e) Transaction in
progress; (f) Transaction completion.
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Algorithm 2 Transaction Condition in Smart Contract.

1: if Seller’s energy is bigger than Buyer’s requirement then
2: build smart contract
3: while Exist Energy do
4: while Exist token do
5: if Check balance of token then
6: if Check balance of Ether then
7: swap token and Ether
8: record transactions on the blockchain
9: end if

10: end if
11: end while
12: end while
13: end if

In the case of the proposed testbed, we implement an Android mobile application
using Android Studio, Java, and Etherscan for the convenience of market participants.
However, because MetaMask’s characteristics make transactions impossible on mobile
devices, the application mainly serves to provide information to the user. Figure 8a is
the main page of the mobile application showing the current Ethereum’s market price.
Additionally, Figure 8b provides contract address information and does not provide the
user’s account address because MetaMask cannot be installed on a mobile device. In
Figure 8c, the price can be verified by entering the desired quantity of purchases. Here,
Figure 8d shows a graph of price and volume. Finally, by entering the user account address
information shown in Figure 8e, we can check the user’s transaction history as depicted in
Figure 8f.

After conducting actual energy transaction simulations using the hardware testbed
and web page, we could check that the energy is moved. Additionally, the LED light bulb
is checked through the energy received and it is proved that the energy received could be
used, and the Ethereum exchanged through the transaction is reflected and recorded in
real time.

(a) (b) (c)

Figure 8. Cont.
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(d) (e) (f)

Figure 8. Provided information in mobile application. (a) Main page; (b) Contract address; (c) Market
price; (d) Price with volume; (e) Account lookup; (f) Transaction history.

6. Evaluation

To analyze the performance of the proposed system, we conduct a simulation by
adjusting various parameter variables. Furthermore, the proposed system is compared
with other algorithms to determine whether it is effective. To proceed with the simulation,
we generate solar energy from several buildings at KAIST over a long time and used this
value as the actual training data.

Figure 9 is the result of ten tests each with various parameter values, averaging the
amount of solar energy that can be generated per day as a result. In Figure 9a, we see that
8000 episodes are needed to achieve optimal learning effects. Additionally, Figure 9b shows
that the learning rate α is the best parameter value of 0.1. However, Figure 9c shows that
the discount factor γi does not have a significant impact on the training result.

(a) (b) (c)

Figure 9. Adjusting parameters according to the amount of solar energy generated per day. (a) Ad-
justing number of episode; (b) Adjusting learning rate; (c) Adjusting discount factor.

Several algorithms are compared to analyze the performance of the proposed system.
(1) A static panel that generates energy without moving the panel. (2) Regular panels move
at the same angle every time and generate energy. (3) The heuristic panel moves in such
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a way that it can generate the most energy during that period. Finally, (4) the proposed
system moves according to the completed Q-table and generates energy.

The simulation results compared to the various systems are shown in Figure 10. The
proposed system generates 35% and 16% more energy than the fixed and regular panels,
respectively. Additionally, the heuristic algorithm, which moves to the optimal location,
collects 0.06% more energy than the proposed system, indicating that there is no significant
difference in energy collection.

(a) (b)

(c) (d)

Figure 10. Simulation result. (a) Compared with static system; (b) Compared with regular system;
(c) Compared with heuristic system; (d) Total amount of generated energy.

However, the proposed system no longer needs to train once the Q-table converges.
Therefore, we believe that the proposed system will be more effective than a heuristic
algorithm that should continue checking the energy collection. As a result, we have
confirmed that the proposed system is effective in terms of solar panel generation compared
with the other operation methods by comparing the energy generation rates and their
effectiveness.

To analyze the profits of each market participant according to the auction progress,
we pre-determine the value of variables and progress the numerical simulation results.
For the sales, electricity rate Csell and future expected cost Cop are set to KRW 0.1 and
KRW 0.5. In addition, battery efficiency η is set to 0.9, and the amount of energy generated
by each time period is set to be located between 1–10 kWh. In the case of the buyer, the
price of electricity purchased through the conventional market is set to 0.08–0.24 per kWh
considering the progressive billing system in the Republic of Korea. In addition, we set the
average amount of electricity required for each time period to 5 kWh for the target of the
small-scale power consumer. At this time, numerical simulation results are progressed to
analyze the strategies of each market participant.

As depicted in Equation (5), a value of battery efficiency is related with the seller’s
decision. Here, low efficiency means a large energy loss in storing progress, so sellers take
a strategy to sell energy rather than store it. According to Figure 11a, when the battery
efficiency is less than 0.2, it can be confirmed that the seller is taking a strategy to sell the
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whole energy as the financial profit when storing progress is relatively low. In addition, the
seller’s strategy according to the relative electricity rates is shown in Figure 11b. Here, an
increase in the value of the auxiliary variable α means that the current energy sale price
Csell increases or the future expected price Cop decreases. In this case, it can be seen that the
seller takes a strategy to sell more energy at the present time and try to reduce the energy
stored.
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Figure 11. Determination of transaction ratio of seller according to environmental changes. (a) Com-
pare with static system; (b) Compare with static system.

For the case of the buyer, their strategies are related with the amount of transaction
energy, which is determined by the seller. When the transaction energy E is greater
than a buyer i’s required energy Di, the buyer pays an unnecessary cost as mentioned in
Equation (6). To prevent such a problem, the buyer tries to reduce the bidding price as the
amount of energy in the auction increases, as depicted in Figure 12a. Here, the buyer’s
bidding price is closely related to the amount of energy in the auction, but also closely
related to the success rate according to the bidding price. The fact that the higher value
of the auxiliary variable γi means that the probability of successful bidding is increased
even at the bidding price of the buyer i is low. Therefore, when γi increases, the bidding
price tends to decrease as depicted in Figure 12b. In addition, buyer’s bidding price is also
affected by the electricity price as argued in Equations (10) and (12). From these equations,
it is possible to estimate that the buyer’s bidding price tends to increase proportionally
according to the increment of market price.
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Figure 12. Determination of bidding cost of buyer i according to environmental changes. (a) Com-
pared with static system; (b) Compared with static system.

Furthermore, we verify that energy trading is going smoothly with our testbed. On
the implemented platform, when the buyer purchases energy from the seller, the energy
moves from the seller to the buyer, as shown in Figure 13. To check whether the energy
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moved, we mount an LED sensor on the buyer’s testbed. We confirm that energy trading
occurs by checking that the LED sensor is lit up as much as the energy received when the
buyer receives the energy.

Figure 13. Energy trading test.

7. Conclusions

This study proposes a solar energy generation and transaction platform (EggBlock)
using blockchain technique. The proposed EggBlock platform can maximize solar energy
generation by controlling the angle of generator, and balance the power supplement by
utilizing the proposed energy transaction scheme. Through the various simulation results,
we showed that the dynamic panel control mechanism on the EggBlock converges well to
the optimal directions with short iterations, which results in an average energy generation
gain of 35%. In addition, in the energy trading, we also analyzed the strategies of each
market participant according to the changes in the electricity price and environment of the
actual power system. In our future study, the uncertainty of solar energy generation should
be considered both in the energy trading and generation to address the practical concerns.
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