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Abstract: Despite the unprecedented success of deep learning in various fields, it has been recognized
that clinical diagnosis requires extra caution when applying recent deep learning techniques because
false prediction can result in severe consequences. In this study, we proposed a reliable deep learning
framework that could minimize incorrect segmentation by quantifying and exploiting uncertainty
measures. The proposed framework demonstrated the effectiveness of a public dataset: Multimodal
Brain Tumor Segmentation Challenge 2018. By using this framework, segmentation performances,
particularly for small lesions, were improved. Since the segmentation of small lesions is difficult but
also clinically significant, this framework could be effectively applied to the medical imaging field.

Keywords: brain tumor; semantic segmentation; uncertainty quantification; attention mechanism

1. Introduction

Gliomas are the most common primary brain tumors and are classified by grading.
Glioblastoma is the most aggressive glioma associated with short-term survival compared
to low-grade glioma. Gadolinium (Gd) enhancement MR imaging is the first choice in
diagnostic modality for distinguishing heterogeneous tissue. Modality can effectively
represent the Gd-enhancing tumor, non-enhancing tumor, and necrotic and peritumoral
edematous areas. The proper segmentation of these heterogeneous areas is crucial for
surgery and radiotherapy [1–3]. However, manual segmentation in the clinical field is
a tedious and time-consuming task that expert neuroradiologists can only accomplish.
Moreover, intraobserver and interobserver variabilities have been reported to be over 20%
for the manual segmentation of brain tumors [2,4].

To overcome the aforementioned limitations, numerous automated glioma segmenta-
tion methods have been adapted to diagnose brain tumors more accurately, rapidly, and
consistently [5–9]. Since 2012, the worldwide Multimodal Brain Tumor Image Segmentation
(BraTS) Challenge was established to facilitate the progress of automated glioma segmen-
tation [1,2,4]. BraTS Challenge 2018 provides a large dataset consisting of multimodal
magnetic resonance imaging (MRI) scans of patients with low-grade and high-grade glioma
and manually segmented results. A single segmentation was conducted by multiple raters
and experienced neuro-radiologists to minimize inter-rater variability. Many deep learning
methods have been developed and published to segment gliomas based on this BraTS
dataset [10–13]. These deep learning methods commonly focus on diagnostic accuracy
as well as speed (inference time) and cost (computational complexity). Most top-ranking
models in the BraTS18 Challenge were ensembles of 3-dimensional (3D) convolutional
neural networks (CNN), which achieved excellent performance and resulted in huge com-
putational cost and time. [11–13]. Myroneko [11] designed an ensemble model comprising
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ten 3D CNNs and achieved first place in the BraTS18 Challenge. On the contrary, several
studies have focused on effectiveness instead of accuracy. Chen et al. [10] designed an
effective 3D CNN that significantly reduced cost and time while achieving comparable
segmentation accuracy.

However, the AI diagnosis method often generates incorrect predictions. Therefore,
AI has not been widely applied in the clinical field yet [14,15]. There have been many
studies that seek to overcome this dilemma [16–20]. To fully trust the prediction of AI, other
metrics may be needed in addition to accuracy only [14,21]. Several deep learning studies
recently suggested an uncertainty quantification method for accurate lesion detection,
which can be a significant indicator to convince prediction [14,15,20]. Uncertainty in
this context means that the prediction result by AI is uncertain. Therefore, calculating
uncertainty measures in lesion segmentation is essential for correcting prediction errors.
Kwon et al. [20] designed a neural network to quantify prediction uncertainty with two
different moment-based metrics (aleatoric and epistemic). This approach showed that
the uncertainty quantification method provides additional insights for accurate diagnosis
in ischemic stroke lesion segmentation. Nair et al. [14] designed a 3D Multiple Sclerosis
segmentation CNN that quantifies and exploits four different uncertainty measurements,
including mutual information and entropy. Uncertain predictions were eliminated based
on pixel-wise uncertainty measures. Therefore, uncertainty filtering improves the true
positive rate and reduces the false detection rate on remaining predictions. However,
each uncertainty measure should have a threshold. This threshold is a specific value to
decide whether the corresponding prediction should be excluded. Finding these values is a
heuristic task and requires numerous experiments [14].

In this study, a new CNN framework was designed for brain tumor segmentation
to exploit various uncertainty measures effectively. We applied the previously published
baseline CNN into our framework and demonstrated performance improvements by
exploiting the uncertainty measures. This study aims (1) to find out uncertain predictions by
quantifying four different uncertainty measures and (2) to correct the uncertain predictions
by exploiting integrated measures.

2. Materials and Methods
2.1. Dataset

A brief explanation of our study is summarized in Figure 1. We used a public dataset,
BraTS18, which is provided in the Multimodal Brain Tumor Segmentation Challenge [1,2,4].
The dataset comprises 3T multimodal MRI scans and manual lesion annotations (ground
truth) by expert neuroradiologists following the same annotation protocol. The total
number of patients were 285, and patients’ final diagnoses were glioblastoma (HGG,
n = 210) and low-grade glioma (LGG, n = 75). Multimodal MRI of the patients comprised
four MRI contrasts, and T1-weighted (T1), contrast-enhanced T1-weighted (T1ce), T2-
weighted (T2), and Fluid Attenuated Inversion Recovery (FLAIR) images were acquired
with various scanners from multiple institutions (n = 19). The MRI images have been
preprocessed (co-registered to the same anatomical template, interpolated to the same
resolution (1 mm3), and skull-stripped), and each contrast image covers the entire brain
(240 × 240 × 155 mm3). All images have been manually segmented by one to four raters,
and skilled neuroradiologists confirmed the annotations. Each image has manually anno-
tated labels indicating a Gd enhancing tumor, necrotic/non-enhancing tumor core, and
peritumoral edema.

Automated segmentation algorithms for the BraTS18 challenge were used to find the
segmentation map of the brain tumor’s subregions. The subregions are as follows: 1. the
enhancing tumor (ET); 2. the tumor core (TC)l; and 3. the whole tumor (WT). ET has
more hyperintense lesions than normal brain parenchyma in the T1ce and T1 images. The
necrotic and non-enhancing tumors show lower intensity in T1ce when compared to T1. TC
is an actual tumor bulk, including enhancing tumors, necrotic, and non-enhancing tumors.
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The peritumoral edemas are hyperintense lesions in FLAIR. WT includes the whole extent,
including TC and peritumoral edemas.

We randomly divided the dataset to train and evaluate the networks. The training
set included 235 patients (175HGG and 60LGG), and the testing set included 50 patients
(35HGG and 15LGG) to assess the segmentation performance of the proposed model.
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Figure 1. Flow diagram of our study. Brain tumor segmentation on MRI was automatically per-
formed, and three types of lesions (enhancing tumor, necrotic/non-enhancing tumor, and edema)
were distinguished. The proposed framework can minimize the error of the baseline model. To
evaluate the framework, we used a public dataset, BraTS18. T1 = T1-weighted; T1ce = T1 contrast-
enhanced; T2 = T2-weighted; FLAIR = Fluid Attenuated Inversion Recovery; HGG = high-grade
glioma (glioblastoma); LGG = low-grade glioma.

2.2. Baseline Model

The goal of our study is to upgrade the baseline model. The proposed framework
is designed to find out mistakes of baseline prediction and to correct them. The baseline
models in this study were well-known brain tumor segmentation models that focus on ef-
fectiveness [10]. These models achieved real-time segmentation by significantly decreasing
computational cost and time.

2.3. Uncertainty Quantification

The metrics of uncertainty were carefully selected based on adaptability and effec-
tiveness. It should be adaptable to the deep learning algorithm and should be easily
measurable. Based on these criteria, Aleatoric, Epistemic, Entropy, and Mutual Information
are selected. To measure the uncertainty of the baseline prediction, a statistical technique,
Monte Carlo (MC) dropout sampling, was integrated with the baseline model. This MC
dropout sampling is a well-known statistical technique used to estimate the reliability
of the prediction by quantifying the uncertainty of the prediction [22]. We adopted the
aforementioned baseline models for our study [10] (Figure 2a). These models can only
generate semantic segmentation maps, but we applied MC dropout, randomly disconnect-
ing 10% of the neuronal connections, after every convolution layer. An input image was
forwarded T (7) times at inference time while applying dropout, generating T segmentation
samples. Because of dropout sampling, the T segmentation samples were slightly different
from each other. These samples were used to generate the four different uncertainty maps
(Aleatoric, Epistemic, Entropy, and Mutual Information) [14,22–24]. The final outputs of
the baseline models were segmentation maps and uncertainty maps estimated by four
different mathematical measures.

To generate pixel-wise UMs for image segmentation, we used the samples of the
segmentation results generated from the baseline model. The fully trained baseline model
with training dataset D was used to generate segmentation samples. Each input image (x)
is 3-dimensional in size (240× 240× 155) and has about 9 millions (N) voxels. Since all
voxels were calculated by using the equations below, the three-dimensional voxel values
were simplified to one dimension. For the ith input image xi and the tth sampled network
parameters with MC dropout θt, the segmentation probability of class c for the jth voxel
of the ith image p(yj

it = c|xi, θt) was generated. Without a loss of generality, we denote

x := xi and y := yj
i for the following definitions.
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Figure 2. Overview of the proposed framework. (a) Feedforward multimodal MRI images
into a baseline model with Monte Carlo dropout and generate a baseline segmentation map
(Step. 1) (b) Quantify uncertainty values of baseline segmentation map by four different measures
(Step. 2). Feedforward both images and uncertainty maps into the proposed model and generate
proposed segmentation map (Step. 3); MC dropout = Monte Carlo dropout; 3D CNN = 3-dimensional
convolutional neural network; UAM = uncertainty attention module.

2.3.1. Aleatoric Uncertainty

Aleatoric uncertainty captures the inherent randomness in the observation, which can
be expressed as follows [23,24].

Aleatoric(y | D) := ∑
c

Ep(θ | D)

[
p(y = c | x, θ)− p(y = c | x, θ)2

]
≈

T
∑
t

∑
c

p(yt = c |x, θt)[1− p(yt = c | x, θt )]
(1)

2.3.2. Epistemic Uncertainty

Epistemic uncertainty explains model uncertainty. This can be estimated by the
following [23,24]:

Epistemic(D) := ∑
c

Ep(θ | D)[p(y = c | x, θ)− q(y = c|x)]2

≈
T
∑
t

∑
c
[p(yt = c | x, θt )− p(y = c |x, θ)]2

(2)

where the following is obtained.

p(yt = c|x, θ) :=
1
T

T

∑
t=1

p̂(yt = c|x, θt)
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2.3.3. Entropy

Entropy shows how much information is in the model’s predictive density func-
tion [14,22]. The entropy can be approximated by the MC samples as follows.

Entropy(D) := −∑
c

p(y = c | x, D) log p(y = c | x, D)

≈ −∑
c

p(y = c | x, θ) log p(y = c | x, θ)
(3)

2.3.4. Mutual Information

The mutual information of two variables is the measurement of the mutual depen-
dence between the two variables [14,22]. Mutual information can be approximated by the
difference between the expectation of model entropies and the expected prediction entropy.

Mutual In f ormation(y; θ | D) := H(y | D)− Ep(θ | D)[H(y | x, θ )]

≈ −∑
c

p(y = c | x, θ) log p(y = c | x, θ)

+ 1
T

T
∑

t=1
∑
c

p(y = c | x, θ) log p(y = c | x, θ)

(4)

2.4. Uncertainty Exploitation

By following our framework, we had four different UMs describing these predictions
as uncertain and highly likely to be errors. We considered exploiting these meaningful
maps further to design a more accurate model. We brought this idea to the training model
by thinking of human beings who learn from their mistakes. The Ums, which are the
weaknesses of the model, were exploited to train the deep learning model. The uncertainty
exploitation method is illustrated in Figure 2b, and detailed implementation is described in
Figure 3.
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Figure 3. Architecture of uncertainty attention module (UAM). This subnetwork module can effec-
tively exploit uncertainty maps by applying an attention mechanism. This module is plugged into
any neural network. This architecture, including the operations, was highly optimized by an ablation
study. Conv = convolution; AvgPool = average pooling; MaxPool = max pooling; Favg = feature
maps from average pooling operation; Fmax = feature maps from max pooling operation. (a) UAM
architecture overview. (b) Specific architecture of green box.

Our work directly utilized UMs by using a newly designed module called the uncer-
tainty attention module (UAM). The proposed model is based on the baseline model in
which UAM was plugged in. The overall structure of UAM is described in Figure 3a, and
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specific operations are summarized in Figure 3b. As the first step, an uncertainty block, U
(∈ R4×H∗×W∗ where 4, H∗, and W∗ refer to the four different UMs, the height of the input
image, and the width of the input image, respectively), was generated by concatenating
the four UMs along the channel’s axis. The feature map, F (∈ RC×H×W where C, H, and W
refer to the channel, height, and width of the intermediate feature map, respectively), from
the previous convolution block was combined with the uncertainty block to generate an
attention map, A ∈ R1×H×W . Since the uncertainty block and the feature map differed in
size, the uncertainty block was resized and denoted as Uresized. Uresized was forwarded into
a 3 × 3 convolutional layer and denoted as U′. Simultaneously, the feature map from the
previous layer (F) was forwarded into the average pool layer and maxpool layer, which are
denoted as Favg and Fmax. All maps (U′, Favg, Fmax) were concatenated along the channel
axis. The concatenated map was convolved by a 3× 3 convolutional layer and normalized
by a unipolar sigmoid function to generate the attention map. This can be summarized
as follows:

A(F, U) = σ
(

f 3×3[ f 3×3(Uresized); AvgPool(F); MaxPool(F)
])

= σ
(

f 3×3[U′; Favg; Fmax
]) (5)

where σ denotes the unipolar sigmoid function, f 3×3 denotes the 3×3 convolution layer,
and [ ] denotes the concatenation operation.

The final output O ∈ RC×H×W , which is a refined feature map, was computed with a
skip connection to reduce gradient vanishing [25,26]:

O(F, U) = (F⊗ A)⊕ F (6)

where ⊕ denotes element-wise summation, and ⊗ denotes element-wise multiplication. In
this work, UAM was plugged in the baseline model in every unit (i.e., every five layers).

2.5. Model Training

In this experiment, there were various hyperparameters, including loss function,
optimizer, and data augmentation methods for the framework. All hyperparameters used
in this experiment are described below.

The loss function for the model was Dice-Coefficient Loss [27] and is defined by
the following:

(Q2− 1) Dice Coe f f icient Loss = 1−
2 ∑N

j pjgj

∑N
j p2

j + ∑N
j g2

j
(7)

where pj is the binary value of the jth voxel in the segmentation output, (Q2−1) gj is
the binary value of the jth voxel in the ground truth, and N is the number of voxels.
The following hyperparameters were applied for the training model: Adam optimizer
(coefficients [0.5, 0.999]), L2 norm (weight decay rate: 0.00001), batch size (8), epochs
(200), initial learning rate (0.001), number of class c(4), and number of MC sampling T
(7). Overfitting was mitigated by (i) random cropping from 240 × 240 × 155 voxels to
96 × 96 × 96 voxels; (ii) random flipping across coronal, sagittal, and axial planes (proba-
bility: 0.5); and (iii) random rotations between (Q2−2) [−10

◦
, 10

◦
], (iv) random intensity

shifts between [−0.1, 0.1], and (v) random scaling between [0.9, 1.1].

3. Results
3.1. Uncertainty Quantification

To find out the errors of the baseline model, we applied four different uncertainty
measures, and the results are shown in Figure 4. It shows brain tumor segmentation
and Uncertainty Maps (UMs), which show how uncertain the segmentations are. For
example, red in the UMs denotes that those areas in the segmentation map are highly
uncertain, and blue denotes that those areas are highly certain. These uncertainty measures,
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originated in statistics, were measured from data noise (Aleatoric and Entropy) and model
imperfection (Epistemic and Mutual Information). These measures are widely utilized in
various fields such as medical imaging to identify an algorithm’s reliability and to minimize
its errors [14,20].
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Figure 4. Uncertainty quantification results: Automated segmentation results by baseline model,
corresponding uncertainty maps, image, and manual segmentation by experienced neurologists
(ground truth). Each scan is from a different patient. The color code of the segmentation map and
uncertainty map is described below. Red in the uncertainty map means an uncertain predictive
area, and blue means a certain predictive area. ET = enhancing tumor; NCR/NET = necrotic and
non-enhancing tumor; ED = peritumoral edema. (a) Totally correct prediction and UMs. (b) Totally
incorrect prediction and UMs. (c) Slightly incorrect prediction and UMs. (d) Moderately incorrect
prediction and UMs.
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As a result, baseline segmentation maps, corresponding UMs, ground truth, and
MRI images (FLAIR) are illustrated in Figure 4. Our UMs were corresponding maps
that indicate the uncertainty of baseline segmentation results. The ground truth images
are the manual segmentations performed by experienced neurologists. The color bar in
Figure 4 represents the level of uncertainty. Red means that the baseline prediction is
uncertain and blue means that the baseline prediction is certain. The UMs of Figure 4a
have a blue color, indicating that baseline prediction was certain. On the contrary, the UMs
of Figure 4b–d have various colors, including blue to red, indicating that some part of
the baseline prediction was uncertain. Uncertain areas (Figure 5b) are more likely to be
incorrect predictions than certain areas (Figure 5a). False negatives also tend to have highly
uncertainty values (Figure 5d). Therefore, the UMs are significant indicators in showing the
reliability of the prediction model. Moreover, tiny and confusable lesions, such as necrotic
and non-enhancing tumors, show high uncertainty values (Figure 5c). Because Epistemic
and Mutual Information measures model weakness, these maps can suggest what we can
learn from the model.
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Figure 5. Uncertainty exploitation results: Automatic segmentation results by baseline/proposed
method and manual segmentation by experienced neurologists (ground-truth). The images are
subsequent results of Figure 4. The proposed method can exploit uncertainty maps to perform brain
tumor segmentation. (a) scans with no tumor. (b) scans with ET and ED. (c) scans with all lesions. (d)
scans with all lesions.



Sensors 2022, 22, 2406 9 of 12

3.2. Uncertainty Exploitation

In order to exploit UMs effectively, we designed a subnetwork module, UAM, which
can be plugged into any kind of neural network. In this experiment, we plugged UAM into
a well-known brain tumor segmentation model, MFNet and DMFNet, and compared the
model’s performance with and without UAM.

A qualitative comparison between the baseline and the proposed model is shown
in Figure 5. The segmentation results of the model with UAM (proposed) corresponded
well with ground truth. The model with UAM was effective in reducing significant errors,
such as ET (Figure 5a,d). Moreover, tiny and confusable lesions such as NCR/NET were
well predicted by using UAM (Figure 5c). The well-predicted lesions without UAM were
maintained well even with UAM (Figure 5b).

The quantitative comparison between the baseline and the proposed model is summa-
rized in Table 1. The proposed models achieved higher performances in ET (+3.15%) and
TC (+0.58%) but had slightly lower performances in WT (−0.34%) when compared to the
baseline models (DMFNet). In particular, the improvements in ET and TC were essential
in precisely defining actual brain tumors that require resection in surgery. Even plugging
an additional module, UAM, into the baseline models had almost no increase in inference
time (FLOPs) or computing power (Params).

Table 1. Evaluation results of baseline and the proposed method. DSC = dice coefficient; ET =
enhancing tumor; TC = tumor core; WT = whole tumor; Params = number of model parameters;
FLOPs = floating-point operations per second.

Model MFNet MFNet + UAM
(Proposed) DMFNet DMFNet + UAM

(Proposed)

DSC
(%)

ET 79.91 82.56 80.12 83.27
TC 84.61 84.93 84.54 85.12
WT 90.43 89.56 90.62 90.28

Params (M) 3.19 3.20 3.88 3.89

FLOPs (G) 20.61 20.81 27.04 27.28

4. Discussion

In this work, we designed a general CNN framework to improve the performance
of the model. Our proposed framework can (1) detect incorrect predictions by using
uncertainty measures and (2) automatically correct wrong predictions with our proposed
module, UAM. Our proposed framework improved the dice coefficient score of ET and TC
by 3.15% and 0.58%, respectively. In addition, WT slightly decreased by 0.34% compared to
the baseline model. Even if UAM was plugged into the baseline model, the computational
costs and times were almost the same, increasing by 0.2% and 0.9%, respectively. Our
framework can improve the model’s performance and achieve comparable results relative
to the most accurate brain tumor segmentation models. This versatile framework can be
applied to any form of CNN.

Uncertainty in outputs of the baseline model was estimated by four different well-
known uncertainty measures [14,22–24]. UMs could effectively indicate false predictions. In
particular, aleatoric and entropy measures were capable of capturing the model weakness
caused by data imbalance. Epistemic and mutual information could represent model
weakness caused by confusable and complex lesions. Uncertainty exploitation by our
proposed module (UAM) was an effective method for modifying incorrect predictions.
UAM can automatically correct the error instead of heuristic threshold filtering [14]. In
order to reduce AI errors and improve its performance, uncertainty measures can be
significant indicators.

Highly proliferating malignant cells need a larger blood supply and show reflect Gd-
enhanced brain MRI than non-enhancing tumor lesions. Surgical resection and radiotherapy
boundary in brain tumors usually include TC including ET and exclude peritumoral
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edemas [28]. Therefore, the exact demarcation of ET and TC is clinically important to assess
treatment plans such as surgery and radiotherapy [28,29]. Because the proposed method
achieved higher segmentation performance on ET and TC, as shown in Table 1, this method
may contribute to the exact diagnosis of brain tumors.

We proposed a framework that can maximize the performance of any form of CNN
by exploiting uncertainty measures. In this study, we adopted effective models, focusing
on rapid diagnoses with lower costs [10] as baseline models. Although these models
showed lower performance than the top-ranking model, we improved the performance
of the models by our proposed framework. Moreover, the proposed model achieved
comparable results relative to top-ranking models in the BraTS18 Challenge [11–13]. We
maximized the baseline model’s ET and TC segmentation performance by applying our
proposed framework, achieving dice coefficient scores of 83.27%, 85.12%, and 90.28% for
ET, TC, and WT, respectively. This performance is a comparable result to the top three
ranking models in the BraTS18 Challenge, in which the range of dice coefficient scores were
79.4~82.3%, 82.0~86.6%, and 90.0~91.0% for ET, TC, and WT, respectively [11–13]. Since
our general framework can be applied to any form of CNN, it could be used strategically
in various situations. Effective models can achieve comparable performance relative to
high-performance models while maintaining effectiveness, such as real-time diagnosis.
High-performance models can further maximize performance.

In conclusion, we designed a general framework to improve the accuracy of any form
of CNN. The framework can detect incorrect predictions and correct them automatically.
We demonstrated the effectiveness of our framework by using brain tumor segmentation.
The segmentation performance of ET and CT was substantially improved by applying the
proposed framework.

5. Conclusions

In this work, we estimated the pixel-wise uncertainty of segmentation results. More-
over, we designed a new framework to exploit uncertainty information in order to upgrade
the baseline segmentation model. The framework demonstrated the effectiveness of the
public dataset, Multimodal Brain Tumor Segmentation Challenge 2018. In particular, this
framework showed performance improvement in segmenting enhancing tumors that are
typically small in size and difficult to segment, yet clinically important. We hope that our
framework, highly optimized for the medical imaging domain, can be successfully applied
to the medical field.
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