
����������
�������

Citation: Yang, J.-P.; Su, H.-K.

Integrated Resource Management for

Fog Networks. Sensors 2022, 22, 2404.

https://doi.org/10.3390/s22062404

Academic Editor: Francesco Longo

Received: 17 February 2022

Accepted: 18 March 2022

Published: 21 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Communication

Integrated Resource Management for Fog Networks
Jui-Pin Yang 1,* and Hui-Kai Su 2

1 Department of Information Technology and Communication, Shih-Chien University, Kaohsiung 845, Taiwan
2 Department of Electrical Engineering, National Formosa University, Yunlin 632, Taiwan; hksu@nfu.edu.tw
* Correspondence: juipinyang@gmail.com

Abstract: In this paper, we consider integrated resource management for fog networks inclusive
of intelligent energy perception, service level agreement (SLA) planning and replication-based
hotspot offload (RHO). In the beginning, we propose an intelligent energy perception scheme which
dynamically classifies the fog nodes into a hot set, a warm set or a cold set, based on their load
conditions. The fog nodes in the hot set are responsible for a quality of service (QoS) guarantee and the
fog nodes in the cold set are maintained at a low-energy state to save energy consumption. Moreover,
the fog nodes in the warm set are used to balance the QoS guarantee and energy consumption.
Secondly, we propose an SLA mapping scheme which effectively identifies the SLA elements with
the same semantics. Finally, we propose a replication-based load-balancing scheme, namely RHO.
The RHO can leverage the skewed access pattern caused by the hotspot services. In addition, it
greatly reduces communication overheads because the load conditions are updated only when the
load variations exceed a specific threshold. Finally, we use computer simulations to compare the
performance of the RHO with other schemes under a variety of load conditions. In a word, we propose
a comprehensive and feasible solution that contributes to the integrated resource management of
fog networks.

Keywords: resource management; fog network; energy perception; service level agreement; load
balancing; hotspot offload

1. Introduction

In the paper, we propose integrated resource management for fog networks including
load balancing, energy perception and SLA planning. The load balancing is the most
important issue in integrated resource management because it plays a key role in the
overall performance of the fog networks. The main functionality of load balancing schemes
is to deal with bursty and unbalanced load conditions in fog networks. Unfortunately,
load-balancing schemes that achieve excellent fairness are generally too complicated to
implement. Apparently, the fog nodes that contain hotspot services have relatively heavier
loads. Many replication-based load-balancing schemes have been proposed, which could
be roughly divided into four categories. In the first category, all stored data are replicated
to all fog nodes in a fog network regardless of their load conditions [1–3]. This strategy is
easy to implement. However, it consumes a lot of resources inclusive of storage space and
network bandwidth whenever data replication happens. The second category only stores
a replica of stored data and consequently it has the highest storage utilization. However,
it can only work well under very limited load conditions because there are no additional
replicas. The third category keeps a pre-defined number of replicas for stored data and
hence the number of replicas cannot be adjusted to cope with load variations. Furthermore,
it needs specific request scheduling algorithms to efficiently distribute the arriving requests
to adequate fog nodes, such as round robin [4]. The fourth category dynamically constructs
an adequate number of replicas according to load conditions [5–8]. In order to deal with
fairness, simplicity and resource efficiency, we propose a novel replication-based load-
balancing scheme that works well under bursty and unbalanced load conditions. More

Sensors 2022, 22, 2404. https://doi.org/10.3390/s22062404 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22062404
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5653-1893
https://doi.org/10.3390/s22062404
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22062404?type=check_update&version=1

Sensors 2022, 22, 2404 2 of 15

importantly, it only requires small numbers of replicas. As a result, it is very suitable to be
deployed for fog networks whose resources are limited.

A high locality of reference exists especially for extremely large file systems [9]. For
instance, some files possess extremely unbalanced access behaviors as compared with
other files. Similarly, some data are extremely popular and therefore they have relatively
higher access frequencies [10]. To efficiently reduce energy consumption, the main idea
is to dynamically classify the fog nodes into hot set, warm set or cold set. In the hot set,
fog nodes maintain the replicas of hotspot services, which continuously work in active
state for achieving QoS requirements. In addition, the fog nodes that belong to the cold
set are used to maintain the replicas of the non-hotspot service. They also work in inactive
state. The warm set is a temporary state between active state and inactive state. The fog
nodes in the warm set dynamically switch to active state or inactive state depending on
overall system situations. In other words, they maintain the replicas of hotspot services or
non-hotspot services on demand. Apparently, our proposal is capable of load balancing
and intelligent energy perception. Finally, we incorporate SLA planning and hence users
can systematically represent their QoS requirements that contribute to constructing SLA
contracts. We conclude the contributions of this study as follows:

(1) We propose an intelligent energy perception scheme capable of efficient energy man-
agement. The fog nodes are dynamically classified into a hot set, warm set or cold
set in terms of load conditions. The fog nodes in the hot set are responsible for QoS
guarantee and the fog nodes in the cold set are used to reduce energy consumption.
Additionally, the fog nodes that belong to the warm set are used to deal with sudden
load conditions in time, while balancing energy consumption.

(2) We propose an SLA mapping scheme for SLA planning, which systematically de-
scribes the relationship between resource metrics and SLA parameters. Moreover, this
scheme can identify the SLA elements with the same semantics.

(3) We propose a replication-based hotspot offload (RHO) scheme which achieves ap-
proximately perfect fairness under different load conditions. In addition, it is suitable
to be deployed in fog networks whose resources are limited.

The remainder of the paper is organized as follows; in Section 2, we present the related
work. Section 3 explains the details of the integrated resource management inclusive of
intelligent energy perception, SLA planning and replication-based hotspot offload. Section 4
compares the fairness of the RHO scheme with other load-balancing schemes under various
load conditions. Finally, we conclude the contributions and future work in Section 5.

2. Related Work

In this section, we review previous studies associated with integrated resource man-
agement. First of all, we introduce the load-balancing schemes. A block placement strategy
that determines the best data nodes achieves real-time responses in the Hadoop environ-
ment [11]. This strategy requires preliminary replicas so it improves data synchronization.
However, it has poor fairness. One study investigated the effects of job scheduling and data
replication [12]. In order to efficiently manage the number of replicas, an auction protocol
that combines an economic model was proposed. However, this proposal was evaluated
under European data grid environments. Two ways are generally used to handle the
arriving requests of replication-based load-balancing schemes and they both are classified
into centralized control and distributed control [13–15]. In centralized control, the fog
controller must select the best fog nodes for processing the arrival requests. In addition,
the centralized control needs to collect real-time fog node information and therefore it
results in huge additional communication overheads and larger latency. Moreover, all
arriving requests are handled by the fog controller which might become the performance
bottleneck. In distributed control, arriving requests are mainly handled by corresponding
master fog nodes. Consequently, it greatly reduces communication overheads and gets rid
of the performance bottleneck. Therefore, we take distributed control into account. Several
load-balancing schemes require a prior knowledge used to efficiently deal with arriving

Sensors 2022, 22, 2404 3 of 15

requests [16]. Comparatively speaking, the other load-balancing schemes do not require
any prior knowledge but they rely on other specific information, for instance, the system
status or the amount of awaiting requests in each server. A solution that adopts a low-level
load balancer works at the network level in the open system interconnection model [17].
When a request arrives, it is forwarded to a back-end server. Next, the header of the request
is modified according to a mapping table. However, this scheme has non-linear speedup
proportional to the number of servers.

A load-balancing algorithm was proposed to deal with the conditions where the back-
end servers should be familiar with the front-end servers [18]. As a result, it cannot be
applied to conditions where the end-users can directly access back-end servers. Similarly,
a dynamic load-balancing scheme that utilizes dynamic DNS updates and a round-robin
mechanism was proposed [19]. The scheme can add or remove a server from the DNS
list according to load variations. Accordingly, it decreases response time because the
overloaded servers can be dynamically removed from the DNS list. A scheduling algorithm
that depends on resource usages such as CPU, memory and bandwidth accordingly was
also proposed. One scheme reduces scheduling overheads by creating several replicas of
each job. Therefore, the requests could be effectively dispatched to adequate replicas [20].
When a replica reaches the head of the queue at one of the servers, the other servers that
have the same replica of the job are removed from corresponding queues. Although it
is useful to improve queuing overheads, inter-server communication still could lead to
performance degradation such as high propagation delay. MapReduce is a distributed
programming model and therefore it is very suitable for the development of large-scale data-
parallel applications [21]. A load-balancing algorithm that considers node performance is
applied to address the problem of data assignment. After the map phase, the execution
time can be balanced for the reduce tasks [22].

In order to enhance system resource utilizations and constrain the frequencies of
message exchange, a load-balancing strategy that incorporates an information exchange
policy consisting of a random walk and a decentralized nature was proposed [23]. This
strategy exchanges information using random packets so that each node keeps up-to-date
knowledge of the other nodes. Furthermore, two message replication strategies are used
to improve the efficiency and scalability of unstructured P2P networks while maintaining
query performance [24]. First of all, distance-based message replication strategy replicates
query messages among different topological regions. Next, landmark-based strategy
optimizes query processing because both the topology and physical proximity of peers
are considered. A dynamic replica technique utilizes acceleration to resolve reliability and
latency for cloud storage [25]. This technique can identify hotspot data in the next period
based on acceleration information. Accordingly, it selects the best node and then creates
a new replica. One strategy uses the session time to explore time-related replication that
get rid of bursty failures under P2P-based storage systems [26]. Furthermore, it provides
sufficient time to replace the lost replica using the primary replica. A dynamic replication
strategy was proposed to reduce delay because it considers access costs [27]. The strategy
not only enhances load balancing but also improves data availability. However, it is too
complicated to implement.

Several energy perception schemes enable the servers to work at low energy states.
Therefore, the servers decrease energy consumption of high-performance applications with
virtualization [28]. A system alleviates the impact of time-varying loads in fog networks
because it can dynamically control the on/off states of the fog nodes [29]. The system
modifies reconfiguration decisions by considering the overall load impact on the system,
energy and performance. As a result, several adjustment policies were proposed to modify
current configurations. With various combinations of dynamic voltage scaling and node
states, the policies decrease the aggregate energy consumption within a server cluster
when the overall workload is low [30]. A runtime system utilizes energy management that
supports system-wide, application-independent, dynamic voltage and frequency scaling
in a generic energy-aware cluster [31]. The system achieves 20% energy saving based on

Sensors 2022, 22, 2404 4 of 15

NAS parallel benchmark. In addition, it can constrain the performance degradation of most
applications under user-specified limits. A run-time scheduling algorithm was proposed to
improve energy consumption in cluster systems [32]. An energy-aware algorithm possesses
energy reduction accompanied with minimal impact on performance by adjusting the
settings of voltage and frequency [33]. In the past, load balancing and energy perception
were studied separately and therefore in the idea that we consider, both load balancing and
energy perception are novel and useful.

Finally, we review the work related to the SLA planning. The transfer functions are
used to represent the relationships between resource metrics and QoS attributes in web
services [34]. Furthermore, it continuously monitors and evaluates the states of QoS at-
tributes so as to guarantee QoS requirements. On the other hand, it lacks monitoring on
resource metrics, that results in infeasibility. LoM2HiS architecture manages the relation-
ships between resource metrics and SLA parameters [35]. The architecture monitors the
resource metrics and SLA parameters so that SLA violations can be detected. Furthermore,
a prevention policy is used to deal with SLA violations. However, data inconsistencies may
occur because many replicas are needed. More importantly, single point of failure is an
unavoidable problem herein. The web service level agreement (WSLA) is an XML-based
agreement [36]. In addition, the WSLA can be extended to establish new metrics based
on current metrics. In other words, it can be used to implement multiple SLA parameters.
The WS-Agreement was developed for grid computing [37]. The WS-Agreement is an
XML-based agreement, which is generally used to represent the non-functional attributes
of an SLA contract in web services. We found that the WSLA is relatively suitable for
fog networks.

SLA management was proposed to multiple software architectures, including the
operation layer, application layer, middle layer and basic layer [38]. In addition, a QoS
model that associates with different SLA layers was proposed. However, it lacks feasibility
because it only demonstrates a multilayer abstract software architecture. The SLA guarantee
and penalty are two common components in SLA planning. For instance, the maximum
and minimum thresholds should be set up in order to guarantee the SLA requirements.
Once the SLA is violated, some penalty policies should be adopted for the service providers.
In general, the users would like to satisfy their service level objectives with minimum cost.
Inversely, service providers expect to get maximum revenue with minimum resources. An
agent system reaches SLA negotiation based on auction policy [39]. SLA negotiation consists
of three phases inclusive of negotiation media, auction selection and SLA configuration.
Once the SLA negotiation is completed, it means that an SLA contact has been established.
The auction procedures are too complicated to rapidly complete SLA negotiation. Therefore,
additional time is necessary. The SLA negotiation can use ontology to realize the automatic
SLA matches and then select the adequate service providers [40–42]. Apparently, the SLA
mapping is a key component because it is mainly responsible for bridging the differences
of SLAs [43,44]. In this study, we propose a novel SLA mapping mechanism which is the
core of the SLA planning. Furthermore, the proposed mechanism is capable of rapidly
identifying the SLA elements with the same semantics.

3. Integrated Resource Management

A system architecture that consists of M fog networks is depicted in Figure 1. In
addition, a fog network consists of different numbers of fog nodes, for instance, fog network
1 consists of N fog nodes. Moreover, there is at least one fog controller in each fog network.
The number of fog controllers is proportional to the scales of the fog networks. The fog
controllers are responsible for managing fog nodes in corresponding fog networks. Besides,
they communicate with other fog controllers regarding resource sharing among different
fog networks. There are two ways to deal with arriving requests which include centralized
control and distributed control. In centralized control, all arriving requests are completely
handled by the fog controller. It means that the fog controller has to determine the best
fog node to process the arriving requests. In addition, the fog controller uses a scheduling

Sensors 2022, 22, 2404 5 of 15

algorithm whose functionality is to schedule the arriving requests to fog nodes with
the required services according to specific performance metrics, such as load conditions,
resource usages and latency. Undoubtedly, centralized control is easy to implement, but it
imposes a heavy burden on fog controllers. In other words, fog controllers may become the
performance bottleneck. Besides, it may lead to high communication overheads between the
fog controllers and fog nodes. In distributed control, the fog controller looks up the master
fog nodes with the required service and then it directly forwards the arriving requests
to the selected master fog node. Then, the fog controller is unnecessary to handle the
following processing. The master fog node maintains the original service, which dispatches
arriving requests to other fog nodes (slave fog nodes) with the replica of required service
based on load conditions. A replica means a duplicate of the same service. In other words,
the master fog node is responsible for the partial tasks of the fog controller so that it can
relieve the load burden of the fog controller. Moreover, the master fog node may play
the role of a slave fog node, depending on the originality of services. The access patterns
of hotspot service usually have short-term and unpredictable characteristics. Therefore,
load imbalance frequently happens. With the replicas, the master fog node can effectively
distribute arriving requests to other slave fog nodes, thus improving overall load balancing.
Accordingly, we consider the distributed control in this study.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 15

completely handled by the fog controller. It means that the fog controller has to determine
the best fog node to process the arriving requests. In addition, the fog controller uses a
scheduling algorithm whose functionality is to schedule the arriving requests to fog nodes
with the required services according to specific performance metrics, such as load condi-
tions, resource usages and latency. Undoubtedly, centralized control is easy to implement,
but it imposes a heavy burden on fog controllers. In other words, fog controllers may be-
come the performance bottleneck. Besides, it may lead to high communication overheads
between the fog controllers and fog nodes. In distributed control, the fog controller looks
up the master fog nodes with the required service and then it directly forwards the arriv-
ing requests to the selected master fog node. Then, the fog controller is unnecessary to
handle the following processing. The master fog node maintains the original service,
which dispatches arriving requests to other fog nodes (slave fog nodes) with the replica
of required service based on load conditions. A replica means a duplicate of the same
service. In other words, the master fog node is responsible for the partial tasks of the fog
controller so that it can relieve the load burden of the fog controller. Moreover, the master
fog node may play the role of a slave fog node, depending on the originality of services.
The access patterns of hotspot service usually have short-term and unpredictable charac-
teristics. Therefore, load imbalance frequently happens. With the replicas, the master fog
node can effectively distribute arriving requests to other slave fog nodes, thus improving
overall load balancing. Accordingly, we consider the distributed control in this study.

Fog
Node 2
(Slave)

Fog Network 1

User

Fog
Node N
(Slave)

Fog
Node 1

(Master)

Fog
Node 4
(Slave)

Fog
Node 3
(Slave)

Fog
Controller

…………

User

Centralized Control
Distributed Control

Fog Network M

Fog Network 2

.

.

.

Fog
Controller

Fog
Controller

Overlay Control Network User
User

Figure 1. System architecture of fog networks.

To achieve efficient resource management among fog networks, the fog controllers are
responsible for configuring an overlay control network that enhances resource sharing. The
consistency of the overlay control network depends on the physical proximity of the fog
networks. In the overlay control network, the fog controllers dynamically update their sys-
tem information to others whenever the variations of monitored resources exceed pre-de-
fined thresholds. For instance, when the overall load of a specific fog network turns into a
high value, the corresponding fog controller will communicate with other fog controllers
via the overlay control network. Next, the fog controllers will be in charge of looking up the
fog node with the lowest load and sending the relative information of the selected fog node
back to the corresponding fog controller. Next, the fog controller selects the best fog node
according to the received information if new replicas are needed. Once the hotspot effect is
eliminated, the replica can be deleted on demand. As a result, the load variations can be
distributed to different fog networks and therefore it improves overall load balancing. In

Figure 1. System architecture of fog networks.

To achieve efficient resource management among fog networks, the fog controllers
are responsible for configuring an overlay control network that enhances resource sharing.
The consistency of the overlay control network depends on the physical proximity of the
fog networks. In the overlay control network, the fog controllers dynamically update
their system information to others whenever the variations of monitored resources exceed
pre-defined thresholds. For instance, when the overall load of a specific fog network
turns into a high value, the corresponding fog controller will communicate with other fog
controllers via the overlay control network. Next, the fog controllers will be in charge
of looking up the fog node with the lowest load and sending the relative information of
the selected fog node back to the corresponding fog controller. Next, the fog controller
selects the best fog node according to the received information if new replicas are needed.
Once the hotspot effect is eliminated, the replica can be deleted on demand. As a result,
the load variations can be distributed to different fog networks and therefore it improves
overall load balancing. In order to simplify simulations and analysis, we consider one fog
network in this study. However, it is applicable to multiple fog networks. The framework

Sensors 2022, 22, 2404 6 of 15

of the integrated resource management is described in Figure 2, which is composed of
three components including replication-based hotspot offload (RHO), intelligent energy
perception and SLA planning. The fog controllers contain two components including
intelligent energy perception and SLA planning. The fog nodes contain one component,
namely RHO.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 15

order to simplify simulations and analysis, we consider one fog network in this study. How-
ever, it is applicable to multiple fog networks. The framework of the integrated resource
management is described in Figure 2, which is composed of three components including
replication-based hotspot offload (RHO), intelligent energy perception and SLA planning.
The fog controllers contain two components including intelligent energy perception and
SLA planning. The fog nodes contain one component, namely RHO.

Replication-
based Hotspot

Offload

Fog Node 1

Fog Controller

Replication-
based Hotspot

Offload

Fog Node N

.

Intelligent Energy
Perception

SLA Planing

Figure 2. The framework of integrated resource management.

Figure 3 is the architecture of intelligent energy perception where the fog controllers
are responsible for power management and the fog nodes are responsible for physical
power handling. In the overlay control network, all fog nodes in different fog networks
are dynamically classified into a hot set, warm set or cold set based on load conditions or
a pre-defined number of fog nodes in each set. The hotspot services generally maintain
multiple replicas which are distributed to the fog nodes belonging to the hot set. In ad-
dition, the seldomly accessed replicas are stored in the fog nodes belonging to the cold
set. According to the 80/20 rule, the hotspot services occupy a small proportion of total
services in the overlay control network. Consequently, the number of fog nodes in the
hot set is normally smaller than that in the cold set and warm set. In order to rapidly
recover the request processing, some fog nodes are selected and they belong to the warm
set. Apparently, the fog nodes can be automatically added/removed from the overlay
control network. When the fog nodes belong to the hot set, they support high performance
with high energy state. When the fog nodes belong to the warm set, they maintain at me-
dium energy state and hence they can recover in time. Finally, the fog nodes that belong
to the cold set maintain at low energy state and therefore energy consumption can be re-
duced. Accordingly, it achieves intelligent energy perception. It is easy to extend the RHO
to achieve intelligent energy perception while keeping excellent load balancing. When the
RHO needs to create a replica of a required service, the new replica will be sequentially
allocated to one of the fog nodes in the hot set, warm set and cold set. In a word, the RHO
can simply integrate with intelligent energy perception that achieves efficient energy con-
trol under various load conditions. Fog nodes have multiple energy states which consume
different levels of energy. S0, S3 and S4 represent active state, sleep state and hibernate
state respectively. The energy consumption of the sleep state is close to that of the hiber-
nate state. However, it takes longer time to switch a fog node from the hibernate state to
the active state. As a result, the energy efficiency of sleep state is better than that of the
hibernate state. The three energy states correspond to hot set, warm set and cold set, re-
spectively. First, the fog nodes in the hot set work in active state with the goal of guaran-
teeing QoS requirements. Second, the fog nodes in the warm set work in sleep state with
the goal of balancing QoS requirements and energy consumption. Third, the fog nodes in

Figure 2. The framework of integrated resource management.

Figure 3 is the architecture of intelligent energy perception where the fog controllers
are responsible for power management and the fog nodes are responsible for physical
power handling. In the overlay control network, all fog nodes in different fog networks are
dynamically classified into a hot set, warm set or cold set based on load conditions or a pre-
defined number of fog nodes in each set. The hotspot services generally maintain multiple
replicas which are distributed to the fog nodes belonging to the hot set. In addition, the
seldomly accessed replicas are stored in the fog nodes belonging to the cold set. According
to the 80/20 rule, the hotspot services occupy a small proportion of total services in the
overlay control network. Consequently, the number of fog nodes in the hot set is normally
smaller than that in the cold set and warm set. In order to rapidly recover the request
processing, some fog nodes are selected and they belong to the warm set. Apparently, the
fog nodes can be automatically added/removed from the overlay control network. When
the fog nodes belong to the hot set, they support high performance with high energy state.
When the fog nodes belong to the warm set, they maintain at medium energy state and
hence they can recover in time. Finally, the fog nodes that belong to the cold set maintain
at low energy state and therefore energy consumption can be reduced. Accordingly, it
achieves intelligent energy perception. It is easy to extend the RHO to achieve intelligent
energy perception while keeping excellent load balancing. When the RHO needs to create
a replica of a required service, the new replica will be sequentially allocated to one of the
fog nodes in the hot set, warm set and cold set. In a word, the RHO can simply integrate
with intelligent energy perception that achieves efficient energy control under various load
conditions. Fog nodes have multiple energy states which consume different levels of energy.
S0, S3 and S4 represent active state, sleep state and hibernate state respectively. The energy
consumption of the sleep state is close to that of the hibernate state. However, it takes
longer time to switch a fog node from the hibernate state to the active state. As a result, the
energy efficiency of sleep state is better than that of the hibernate state. The three energy
states correspond to hot set, warm set and cold set, respectively. First, the fog nodes in the
hot set work in active state with the goal of guaranteeing QoS requirements. Second, the fog
nodes in the warm set work in sleep state with the goal of balancing QoS requirements and
energy consumption. Third, the fog nodes in the cold set work in hibernate state with the
goal reducing energy consumption. By dynamically switching the fog nodes into different
sets, we can guarantee QoS requirements and achieve intelligent energy perception.

Sensors 2022, 22, 2404 7 of 15

Sensors 2022, 22, x FOR PEER REVIEW 7 of 15

the cold set work in hibernate state with the goal reducing energy consumption. By dy-
namically switching the fog nodes into different sets, we can guarantee QoS requirements
and achieve intelligent energy perception.

Fog
Node

Fog
Node

Fog
Node

Fog
NodeFog

Node

Fog
 Controller

Overlay Control
Network

Hot Set Cold Set

Warm Set
Figure 3. Architecture of intelligent energy perception.

Apart from intelligent energy perception, the fog controllers are responsible for the
SLA planning. WSLA is generally used to describe the relationships between the parties,
service definition and obligations in the SLA. There are three main factors including met-
rics, SLA parameters and functions because they are transparent to different service pro-
viders. Besides, the other factors can be set at default settings, such as supporting party
and service level objectives. Consequently, we complete the design of an SLA template.
There are no unified syntax definitions for the SLA template. How to bridge the SLA tem-
plates with different syntax but representing the same semantics becomes the main issue.
In the past, many studies only considered the mapping between low-level metrics and
high-level SLAs. Therefore, we propose a complete and practical SLA mapping mecha-
nism as depicted in Figure 4. To efficiently bridge the differences between service provid-
ers and clients, there are two SLA mapping rules and two conditions in the SLA mapping
mechanism. The first rule is used to resolve the response time of the service level objec-
tives. The second rule is more complicated because it has to establish formulas that map
different units of metrics. After completing the SLA mapping rules, we further construct
the required conditions related to the service level objectives and metrics, respectively.
Furthermore, we establish the criteria to judge whether the conditions of the SLA contract
are satisfied. We utilize the character-based similarity method because the SLA templates
usually consist of short strings with less changing syntax. However, the character-based
similarity method cannot deal with strings with large syntax differences but they repre-
sent the same meaning of semantics. Therefore, we extract the successful mapping infor-
mation from the mapping repository and further combine with a case-based reasoning
method. As a result, we can efficiently identify the SLA templates with the same seman-
tics. As we mentioned previously, we use intelligent energy perception to adjust the fog
nodes into a hot set, warm set and cold set that contributes to efficient energy saving.
Finally, the RHO is in charge of dynamical replica management. Once it is possible to
violate the SLA contract, such as data availability and delay, more fog nodes will be trans-
ferred into the hot set by intelligent energy perception.

Figure 3. Architecture of intelligent energy perception.

Apart from intelligent energy perception, the fog controllers are responsible for the
SLA planning. WSLA is generally used to describe the relationships between the parties,
service definition and obligations in the SLA. There are three main factors including metrics,
SLA parameters and functions because they are transparent to different service providers.
Besides, the other factors can be set at default settings, such as supporting party and service
level objectives. Consequently, we complete the design of an SLA template. There are no
unified syntax definitions for the SLA template. How to bridge the SLA templates with
different syntax but representing the same semantics becomes the main issue. In the past,
many studies only considered the mapping between low-level metrics and high-level SLAs.
Therefore, we propose a complete and practical SLA mapping mechanism as depicted in
Figure 4. To efficiently bridge the differences between service providers and clients, there
are two SLA mapping rules and two conditions in the SLA mapping mechanism. The first
rule is used to resolve the response time of the service level objectives. The second rule is
more complicated because it has to establish formulas that map different units of metrics.
After completing the SLA mapping rules, we further construct the required conditions
related to the service level objectives and metrics, respectively. Furthermore, we establish
the criteria to judge whether the conditions of the SLA contract are satisfied. We utilize
the character-based similarity method because the SLA templates usually consist of short
strings with less changing syntax. However, the character-based similarity method cannot
deal with strings with large syntax differences but they represent the same meaning of
semantics. Therefore, we extract the successful mapping information from the mapping
repository and further combine with a case-based reasoning method. As a result, we
can efficiently identify the SLA templates with the same semantics. As we mentioned
previously, we use intelligent energy perception to adjust the fog nodes into a hot set, warm
set and cold set that contributes to efficient energy saving. Finally, the RHO is in charge
of dynamical replica management. Once it is possible to violate the SLA contract, such as
data availability and delay, more fog nodes will be transferred into the hot set by intelligent
energy perception.

Sensors 2022, 22, 2404 8 of 15Sensors 2022, 22, x FOR PEER REVIEW 8 of 15

Figure 4. SLA mapping mechanism.

Next, we introduce the RHO scheme. First, we use Equation (1) to estimate the aver-
age load of fog node i at the beginning of kth time interval, which is denoted by 𝑙𝑜𝑎𝑑௜,௞.
Similarly, The 𝑙𝑜𝑎𝑑௜,௞ିଵ denotes the average load of fog node i at the beginning of (k −
1)th time interval. 𝑙𝑜𝑎𝑑௜,௞ିଵ௖௨௥௥௘௡௧ denotes the current load of fog node i during (k − 1)th and
kth time interval. Finally, 𝑘௔ is a parameter whose functionality is used to prevent the
estimate of 𝑙𝑜𝑎𝑑௜,௞ from being affected by short-term or long-term load variations. Tௗ
denotes the duration of each time interval. 𝑙𝑜𝑎𝑑௜,௞ = 𝑘௔ × 𝑙𝑜𝑎𝑑௜,௞ିଵ + (1 − 𝑘௔) × 𝑙𝑜𝑎𝑑௜,௞ିଵ௖௨௥௥௘௡௧ (1)

The 𝑙𝑜𝑎𝑑௜,௞ିଵ௖௨௥௥௘௡௧ is the sum of ℎ𝑜𝑡𝑠𝑝𝑜𝑡_𝑙𝑜𝑎𝑑௜,௞ିଵ௖௨௥௥௘௡௧ and 𝑛𝑜𝑛ℎ𝑜𝑡𝑠𝑝𝑜𝑡_𝑙𝑜𝑎𝑑௜,௞ିଵ௖௨௥௥௘௡௧ ,
which represent the current loads of hotspot services and non-hotspot services in fog node
i during (k−1)th and kth time interval respectively. We adopt the same formula to estimate
the ℎ𝑜𝑡𝑠𝑝𝑜𝑡_𝑙𝑜𝑎𝑑௜,௞ and nonℎ𝑜𝑡𝑠𝑝𝑜𝑡_𝑙𝑜𝑎𝑑௜,௞ where ℎ𝑜𝑡𝑠𝑝𝑜𝑡_𝑙𝑜𝑎𝑑௜,௞ and nonℎ𝑜𝑡𝑠𝑝𝑜𝑡_𝑙𝑜𝑎𝑑௜,௞ denote the average load of hotspot services and non-hotspot services
in fog node i at the beginning of kth time interval, respectively. Next, we present the def-
initions of a hotspot service and a non-hotspot service. 𝐴௜,௞௝ denotes the amount of arriv-
ing requests for fog node i with service j during (k−1)th and kth time interval. If 𝐴௜,௞௝ ex-
ceeds a hotspot threshold ℎ𝑜𝑡𝑠𝑝𝑜𝑡௧௛, then service j is classified as hotspot service; other-
wise, service j is classified as non-hotspot service. If ℎ𝑜𝑡𝑠𝑝𝑜𝑡௟௢௔ௗ௜,௞/(𝑛𝑜𝑛ℎ𝑜𝑡𝑠𝑝𝑜𝑡_𝑙𝑜𝑎𝑑௜,௞ +ℎ𝑜𝑡𝑠𝑝𝑜𝑡௟௢௔ௗ௜,௞) ≥ ℎ𝑜𝑡𝑠𝑝𝑜𝑡௧௛, then fog node i is identified as a hotspot node. Otherwise, the
fog node i is identified as a non-hotspot node. To reduce frequent updates of load varia-
tions, we classify the loads into different levels. 𝑤𝑒𝑖𝑔ℎ𝑡௣ denote the weight of load level
p. N is the number of levels. 𝑘௕ and 𝑘௖ determine the level structure. N must be a mul-
tiple of 𝑘௖ and C denotes the maximum capacity of request processing.

𝑤𝑒𝑖𝑔ℎ𝑡௣= ൝ 𝑘௕⌊௣/௞೎⌋ିே/௞೎ 𝑘௖ൗ 𝑘௖ + 1 ≤ 𝑝 ≤ 𝑁𝑘௕ଵିே/௞೎ 𝑘௖ൗ 1 ≤ 𝑝 < 𝑘௖ + 1 (2)

Next, we use Equation (3) to transfer the loads into corresponding load levels.

Figure 4. SLA mapping mechanism.

Next, we introduce the RHO scheme. First, we use Equation (1) to estimate the
average load of fog node i at the beginning of kth time interval, which is denoted by loadi,k.
Similarly, The loadi,k−1 denotes the average load of fog node i at the beginning of (k − 1)th
time interval. loadcurrent

i,k−1 denotes the current load of fog node i during (k − 1)th and kth
time interval. Finally, ka is a parameter whose functionality is used to prevent the estimate
of loadi,k from being affected by short-term or long-term load variations. Td denotes the
duration of each time interval.

loadi,k = ka × loadi,k−1 + (1− ka)× loadcurrent
i,k−1 (1)

The loadcurrent
i,k−1 is the sum of hotspot_loadcurrent

i,k−1 and nonhotspot_loadcurrent
i,k−1 , which rep-

resent the current loads of hotspot services and non-hotspot services in fog node i during
(k−1)th and kth time interval respectively. We adopt the same formula to estimate the
hotspot_loadi,k and nonhotspot_loadi,k where hotspot_loadi,k and nonhotspot_loadi,k denote
the average load of hotspot services and non-hotspot services in fog node i at the beginning
of kth time interval, respectively. Next, we present the definitions of a hotspot service and
a non-hotspot service. Aj

i,k denotes the amount of arriving requests for fog node i with

service j during (k−1)th and kth time interval. If Aj
i,k exceeds a hotspot threshold hotspotth,

then service j is classified as hotspot service; otherwise, service j is classified as non-hotspot
service. If hotspotloadi,k/

(
nonhotspot_loadi,k + hotspotloadi,k

)
≥ hotspotth, then fog node i

is identified as a hotspot node. Otherwise, the fog node i is identified as a non-hotspot node.
To reduce frequent updates of load variations, we classify the loads into different levels.
weightp denote the weight of load level p. N is the number of levels. kb and kc determine
the level structure. N must be a multiple of kc and C denotes the maximum capacity of
request processing.

weightp=

{
kp/kc−N/kc

b /kc kc + 1 ≤ p ≤ N
k1−N/kc

b /kc 1 ≤ p < kc + 1
(2)

Next, we use Equation (3) to transfer the loads into corresponding load levels.

Sensors 2022, 22, 2404 9 of 15

leveli,k = j where C×
j

∑
p=1

weightp/
N

∑
p=1

weightp ≤ loadi,k < C×
j+1

∑
p=1

weightp/
N

∑
p=1

weightp (3)

To balance real-time updating and communication overheads, we propose a two-layer
updating mechanism using Equation (4). updatei,k denotes the information at which a fog
node updates its load conditions. levelth denotes a threshold of load level and loadth denotes a
threshold of load variation. If

∣∣∣leveli,k − leveli,k−1

∣∣∣ ≥ levelth, then fog node i broadcasts its load
level accompanied by the residual number of replicas to other nodes. Otherwise, we further
check the fine load variations. If

∣∣∣loadi,k − loadi,k−1

∣∣∣≥ loadth , then the mechanism updates

current average load. If
∣∣∣leveli,k − leveli,k−1

∣∣∣ < levelth and
∣∣∣loadi,k − loadi,k−1

∣∣∣< loadth , then
no updating is needed. Accordingly, the two-layer updating mechanism improves communica-
tion overheads while keeping real-time updating because it dynamically updates coarse load
levels or fine average loads based on load conditions.

updatei,k =

 leveli,k
∣∣∣leveli,k − leveli,k−1

∣∣∣ ≥ levelth

loadi,k

∣∣∣leveli,k − leveli,k−1

∣∣∣ < levelth and
∣∣∣loadi,k − loadi,k−1

∣∣∣≥ loadth
(4)

Next, those fog nodes with minimum replicas of total hotspot service are sequentially
selected and they are used to allocate new replicas based on Equation (5). rde f ault denotes
the number of replicas of hotspot service. To simplify the replica estimation, we adopt a
static number of replicas. nodeset

i denotes the set of non-hotspot fog nodes that already
have a replica of the same hotspot service for fog node i. nodeadd

i denotes a set of new
fog nodes added to nodeset

i . min(x) is the smallest element in x. In brief, RHO distributes
replicas based on the number of replicas of total hotspot service residing in each fog node.
A new replica represents that a certain of requests be dispatched to other fog nodes. Thus,
RHO greatly improves load imbalances.

nodeadd
i =

m=rde f ault

∑
m=1

{
h
∣∣∣min(replicah) where h /∈ nodeset

i

}
(5)

In RHO, the master fog nodes are responsible for scheduling the arriving requests to
related slave fog nodes with the required services. The master fog node selects the fog node
with the minimum load level based on Equation (6).

dispatchi,k =
{

h
∣∣∣min

(
levelh,k

)
where h ∈ nodeset

i

}
(6)

4. Simulation Results

We developed a software simulator to perform all simulations, which was designed to
generate and process requests. We considered the application scenarios of the augmented
reality (AR) service which was deployed in the fog nodes while using container technology.
Unlike a virtual machine, the container was an efficient virtualization because it used a
host operating system, shared libraries and related resources. In other words, the container
only requires application-specific binaries and container libraries that apparently speed
up the service deployment. As a result, it required a fraction of a second to launch a
container. Therefore, our study is feasible for such application scenarios. We used computer
simulations to compare the fairness of the RHO scheme with ripple load balancing (RLB)
and optimal load-balancing (OLB) schemes. In the simulations, we assumed that the
system architecture consisted of one fog network where 64 fog nodes and one fog controller
existed. The users accessed the service deployed in the fog nodes and hence various
requests were generated. We used ON–OFF models to simulate the request behaviors of
hotspot service. Furthermore, we used ON–OFF models to simulate the load variations of

Sensors 2022, 22, 2404 10 of 15

non-hotspot service. Both RHO and RLB schemes work with distributed control but the
OLB scheme works with centralized control. In OLB, we assumed that the fog controller
always obtains the real-time load conditions of fog nodes. Furthermore, each fog node
maintains a replica of the each resided service. As a result, the fog controller can forward
the requests to the fog node with the required service while having the lowest load. The
OLB is the most impractical algorithm. First, the OLB has the highest communication
overheads because it requires real-time fog node information. Without this, it greatly
degrades fairness performance. Second, the fog controller might become the performance
bottleneck because it has to completely deal with all arriving requests. Third, to provide
real-time load conditions of fog nodes is too difficult to implement. Fourth, it needs to
duplicate the same service to all fog nodes that consumes a lot of resources such as storage,
computing and bandwidth. In all experiments, the OLB worked as a benchmark of the
fairness performance. RLB maintained a fixed number of replicas for resided services. In
other words, RLB belongs to the static strategy.

Unless otherwise specified, we used the following parameter settings in all exper-
iments. The RHO’s parameters were set as follows: ka = 0.3, kb = 2, kc = 2, N = 16,
levelth = 1, loadth = 250 and Td = 15 min. Furthermore, all fog nodes possessed the
same request processing capacity, that is C =25,000. We considered 64 fog nodes in our
simulations. Finally, there were 10 replicas for a hotspot service. The RLB’s parameters
were set as follows: ka = 0.8, kb = 0.01. The default number of requests residing in each
fog node was between 7500 and 12,500, randomly assigned in each experiment. The total
duration of each experiment was 20 h. The parameter definitions of the request generating
models are depicted in Figure 5. The OLB adopted the same scenarios as RLB and RHO.
Besides, the OLB had to deploy the same services to all fog nodes.

In the first experiment, we considered 16 fog nodes having high loads of hotspot
services. The experimental results are illustrated in Figure 6. The parameter settings were
as follows; on_off_pb = 160, off_on_pb = 40, on_off_factor = 2, incr_load_variation = 0.1,
decr_load_variation = 0.58 and burstiness_factor = 200. Apparently, fog node 1 had the
largest number of arriving requests, while fog node 16 had the lowest number of arriving
requests. In other words, fog node 1 to fog node 16 were heavily congested. The OLB
achieved the best fairness because all fog nodes had almost the same and stable number of
average requests. The OLB was capable of redirecting requests in time to whichever fog
node had the lowest number of residing requests. The reason is that each fog node keeps
replicas of hotspot services. To make the OLB work well, each fog node has to maintain
a replica of residing services so that real-time duplication is needed. Therefore, the OLB
had the lowest storage utilization. In addition, each fog node had to timely and frequently
update their load information to the fog controller and hence the OLB had extremely high
communication overheads. RLB-6 denotes that RLB maintains six replicas for residing
services, RLB-8 denotes that RLB maintains eight replicas for residing services, and so on.
When the number of replicas increased from 6 to 10, RLB achieved better fairness because
fog nodes with hotspot service were able to redirect more requests to other fog nodes
which only had non-hotspot services. The RHO’s fairness approached that of OLB but
was better than that of RLB-10. This is mainly because the RHO dynamically dispatched
arriving requests to the fog nodes with lower loads. Despite requiring fewer replicas, the
RHO tended to approach the best fairness of the OLB, and apparently outperformed the
RLB scheme.

In the second experiment, we considered the effect of the increment of fog nodes
with hotspot services. The number of fog nodes increased from 16 to 32 and therefore the
overall load variations increased as compared with the first experiment. The simulation
results are illustrated in Figure 7. The other parameter settings were the same values as
the first experiment. Repeatedly, the OLB demonstrated the best fairness. In evaluating
the fairness of RLB-6, RLB-8 and RLB-10, we found that increasing replicas had less
improvement on fairness. The overall throughput of RLB-10 apparently decreased because
RLB was incapable of allocating replicas effectively. Therefore, many arriving requests

Sensors 2022, 22, 2404 11 of 15

were discarded due to limited request processing capacity. The fairness of the RHO was
close to that of the OLB because more fog nodes with non-hotspot services had replicas of
the fog nodes with hotspot services. With that, RHO greatly enhanced request dispatches.
As a result, the performance of the RHO still approximated to that of the OLB. In addition,
it was much better than that of the RLB.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 15

controller always obtains the real-time load conditions of fog nodes. Furthermore, each
fog node maintains a replica of the each resided service. As a result, the fog controller can
forward the requests to the fog node with the required service while having the lowest
load. The OLB is the most impractical algorithm. First, the OLB has the highest communi-
cation overheads because it requires real-time fog node information. Without this, it
greatly degrades fairness performance. Second, the fog controller might become the per-
formance bottleneck because it has to completely deal with all arriving requests. Third, to
provide real-time load conditions of fog nodes is too difficult to implement. Fourth, it
needs to duplicate the same service to all fog nodes that consumes a lot of resources such
as storage, computing and bandwidth. In all experiments, the OLB worked as a bench-
mark of the fairness performance. RLB maintained a fixed number of replicas for resided
services. In other words, RLB belongs to the static strategy.

Unless otherwise specified, we used the following parameter settings in all
experiments. The RHO’s parameters were set as follows: 𝑘௔ = 0.3, 𝑘௕ = 2, 𝑘௖ = 2, 𝑁 =16, 𝑙𝑒𝑣𝑒𝑙௧௛ = 1, 𝑙𝑜𝑎𝑑௧௛ = 250 and 𝑇ௗ = 15 min. Furthermore, all fog nodes possessed
the same request processing capacity, that is C =25,000. We considered 64 fog nodes in our
simulations. Finally, there were 10 replicas for a hotspot service. The RLB’s parameters
were set as follows: 𝑘௔ = 0.8, 𝑘௕ = 0.01. The default number of requests residing in each
fog node was between 7500 and 12,500, randomly assigned in each experiment. The total
duration of each experiment was 20 h. The parameter definitions of the request generating
models are depicted in Figure 5. The OLB adopted the same scenarios as RLB and RHO.
Besides, the OLB had to deploy the same services to all fog nodes.

Figure 5. Request-generating models. Figure 5. Request-generating models.

In the third experiment, we studied the effect on fairness when 16 fog nodes had
different load conditions. The parameter settings including the default number of requests
residing in each node was between 5000 and 20,000 and incr_load_variation was set at 0.2.
The simulation results are illustrated in Figure 8. Due to increasing load variations, the RLB
demonstrated relatively poor fairness as compared with the first experiment. However,
the RHO still demonstrated excellent fairness and approached the performance of OLB.
From Figures 6–8, the RHO apparently outperformed the RLB and came close to the OLB
under various scenarios, such as the number of fog nodes with hotspot services and load
variations. In a word, the simplicity of the RHO was similar to that of the RLB but the RHO
achieved excellent fairness close to the OLB.

Sensors 2022, 22, 2404 12 of 15

Sensors 2022, 22, x FOR PEER REVIEW 11 of 15

In the first experiment, we considered 16 fog nodes having high loads of hotspot ser-
vices. The experimental results are illustrated in Figure 6. The parameter settings were as
follows; on_off_pb=160, off_on_pb=40, on_off_factor=2, incr_load_variation=0.1,
decr_load_variation=0.58 and burstiness_factor=200. Apparently, fog node 1 had the larg-
est number of arriving requests, while fog node 16 had the lowest number of arriving
requests. In other words, fog node 1 to fog node 16 were heavily congested. The OLB
achieved the best fairness because all fog nodes had almost the same and stable number
of average requests. The OLB was capable of redirecting requests in time to whichever fog
node had the lowest number of residing requests. The reason is that each fog node keeps
replicas of hotspot services. To make the OLB work well, each fog node has to maintain a
replica of residing services so that real-time duplication is needed. Therefore, the OLB had
the lowest storage utilization. In addition, each fog node had to timely and frequently
update their load information to the fog controller and hence the OLB had extremely high
communication overheads. RLB-6 denotes that RLB maintains six replicas for residing ser-
vices, RLB-8 denotes that RLB maintains eight replicas for residing services, and so on.
When the number of replicas increased from 6 to 10, RLB achieved better fairness because
fog nodes with hotspot service were able to redirect more requests to other fog nodes
which only had non-hotspot services. The RHO’s fairness approached that of OLB but
was better than that of RLB-10. This is mainly because the RHO dynamically dispatched
arriving requests to the fog nodes with lower loads. Despite requiring fewer replicas, the
RHO tended to approach the best fairness of the OLB, and apparently outperformed the
RLB scheme.

Figure 6. The average requests where sixteen fog nodes have high loads of hotspot services.

In the second experiment, we considered the effect of the increment of fog nodes with
hotspot services. The number of fog nodes increased from 16 to 32 and therefore the over-
all load variations increased as compared with the first experiment. The simulation results
are illustrated in Figure 7. The other parameter settings were the same values as the first
experiment. Repeatedly, the OLB demonstrated the best fairness. In evaluating the fair-
ness of RLB-6, RLB-8 and RLB-10, we found that increasing replicas had less improvement
on fairness. The overall throughput of RLB-10 apparently decreased because RLB was in-
capable of allocating replicas effectively. Therefore, many arriving requests were dis-
carded due to limited request processing capacity. The fairness of the RHO was close to
that of the OLB because more fog nodes with non-hotspot services had replicas of the fog
nodes with hotspot services. With that, RHO greatly enhanced request dispatches. As a

Figure 6. The average requests where sixteen fog nodes have high loads of hotspot services.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 15

result, the performance of the RHO still approximated to that of the OLB. In addition, it
was much better than that of the RLB.

Figure 7. The average requests where thirty-two fog nodes have high loads of hotspot services.

In the third experiment, we studied the effect on fairness when 16 fog nodes had
different load conditions. The parameter settings including the default number of requests
residing in each node was between 5000 and 20,000 and incr_load_variation was set at 0.2.
The simulation results are illustrated in Figure 8. Due to increasing load variations, the
RLB demonstrated relatively poor fairness as compared with the first experiment. How-
ever, the RHO still demonstrated excellent fairness and approached the performance of
OLB. From Figure 6 to Figure 8, the RHO apparently outperformed the RLB and came
close to the OLB under various scenarios, such as the number of fog nodes with hotspot
services and load variations. In a word, the simplicity of the RHO was similar to that of
the RLB but the RHO achieved excellent fairness close to the OLB.

Figure 8. The average requests where sixteen fog nodes have different load conditions.

Figure 7. The average requests where thirty-two fog nodes have high loads of hotspot services.

Sensors 2022, 22, 2404 13 of 15

Sensors 2022, 22, x FOR PEER REVIEW 12 of 15

result, the performance of the RHO still approximated to that of the OLB. In addition, it
was much better than that of the RLB.

Figure 7. The average requests where thirty-two fog nodes have high loads of hotspot services.

In the third experiment, we studied the effect on fairness when 16 fog nodes had
different load conditions. The parameter settings including the default number of requests
residing in each node was between 5000 and 20,000 and incr_load_variation was set at 0.2.
The simulation results are illustrated in Figure 8. Due to increasing load variations, the
RLB demonstrated relatively poor fairness as compared with the first experiment. How-
ever, the RHO still demonstrated excellent fairness and approached the performance of
OLB. From Figure 6 to Figure 8, the RHO apparently outperformed the RLB and came
close to the OLB under various scenarios, such as the number of fog nodes with hotspot
services and load variations. In a word, the simplicity of the RHO was similar to that of
the RLB but the RHO achieved excellent fairness close to the OLB.

Figure 8. The average requests where sixteen fog nodes have different load conditions. Figure 8. The average requests where sixteen fog nodes have different load conditions.

5. Conclusions

In this paper, we proposed an integrated resource management for fog networks
inclusive of intelligent energy perception, service level agreement planning and replication-
based hotspot offload. First, fog nodes were dynamically classified into a hot set, warm set
or cold set in terms of load conditions or a pre-defined number of fog nodes in each set. The
fog nodes in the hot set are responsible for guaranteeing QoS and the fog nodes in the cold
set are maintained at a low-energy state to save energy consumption. Moreover, the fog
nodes in the warm set are used to balance the QoS requirements and energy consumption.
Secondly, we described the relationships between resource metrics and SLA parameters.
Accordingly, we proposed an SLA mapping mechanism which efficiently identified the
SLA elements with the same semantics. Finally, we proposed the replication-based hotspot
offload scheme which could be easily integrated with intelligent energy perception and
service level agreement planning. The RHO scheme is easy to implement and it achieves
excellent fairness. In addition, it has limited communication overheads and requires a
limited number of replicas. The simulation results demonstrated that the fairness of the
RHO outperformed that of the RLB and approached that of the OLB. In the future, we will
further study ways to contribute to improving the practicality and efficiency for integrated
resource management. First of all, we will design a transmission control protocol (TCP)
latency model so that the study can approach practical situations. Furthermore, we will
design an energy model that carries out the study for in depth evaluation of the energy
consumption of the intelligent energy perception. In the end, we will consider the mobile
environments and therefore the study can be applied to analyze more wide and complicated
fog networks.

Author Contributions: Conceptualization, J.-P.Y. and H.-K.S.; methodology, J.-P.Y.; software, J.-P.Y.;
validation, J.-P.Y. and H.-K.S.; formal analysis, J.-P.Y.; investigation, J.-P.Y.; resources, J.-P.Y. and
H.-K.S.; data curation, J.-P.Y. and H.-K.S.; writing—original draft preparation, J.-P.Y.; writing—review
and editing, J.-P.Y. and H.-K.S.; visualization, J.-P.Y.; supervision, J.-P.Y.; project administration, J.-
P.Y.; funding acquisition, J.-P.Y. All authors have read and agreed to the published version of the
manuscript.

Funding: Ministry of Science and Technology, Taiwan, MOST 109-2221-E-158-001.

Institutional Review Board Statement: Not applicable.

Sensors 2022, 22, 2404 14 of 15

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors acknowledge the financial support from the Ministry of Science and
Technology in Taiwan, under the grant numbers of MOST 109-2221-E-158-001.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liskov, B.; Ghemawat, S.; Gruber, R.; Johnson, P.; Shrira, L.; Williams, M. Replication in the Harp file system. ACM Symp. Oper.

Syst. Princ. 1991, 226–238. [CrossRef]
2. Sitaram, D.; Dan, A.; Yu, P. Issues in the design of multi-server file systems to cope with load skew. In Proceedings of the

International Conference on Parallel and Distributed Information Systems, San Diego, CA, USA, 20–22January 1993; pp. 214–224.
3. Chervenak, A.L.; Patterson, D.A.; Katz, R.H. Choosing the best storage system for video service. In Proceedings of the International

Conference on Multimedia, San Diego, CA, USA, 5–9 November 1995; pp. 109–119.
4. Ghemawat, S.; Gobioff, H.; Leung, S.T. The Google file system. ACM SIGOPS Oper. Syst. Rev. 2003, 37, 29–43. [CrossRef]
5. Yang, J.P. Intelligent Offload Detection for Achieving Approximately Optimal Load Balancing. IEEE Access 2018, 6, 58609–58618.

[CrossRef]
6. Yang, J.P. Elastic Load Balancing Using Self-Adaptive Replication Management. IEEE Access 2017, 5, 7495–7504. [CrossRef]
7. Yang, J.P. Ripple Load Balancing: To Resolve Load Congestion in a Storage System. IJICIC J. 2017, 13, 1029–1036.
8. Yang, J.P. Efficient Load Balancing Using Active Replica Management in a Storage System. Math. Probl. Eng. 2016, 2016, 4751829.

[CrossRef]
9. Park, J.K.; Seo, Y.; Kim, J. Solid state cache management scheme for improving I/O performance of hard disk drive. In Proceedings

of the IEEE International Conference on Consumer Electronics, Las Vegas, NV, USA, 12–15 January 2018; pp. 1–4.
10. Lu, Y.; Wu, C.; Li, J. EGS: An Effective Global I/O Scheduler to Improve the Load Balancing of SSD-Based RAID-5 Arrays. In

Proceedings of the IEEE International Symposium on Parallel and Distributed Processing with Applications, Guangzhou, China,
2–15 December 2017; pp. 298–305.

11. Ye, X.; Huang, M.; Zhu, D.; Xu, P. A novel blocks placement strategy for Hadoop. In Proceedings of the International Conference
on Computer and Information Science, Shanghai, China, 30 May–1 June 2012; pp. 3–7.

12. Cameron, D.; Carvajal-Schiaffino, R.; Millar, A.; Nicholson, C.; Stockinger, K.; Zini, F. Evaluating scheduling and replica
optimisation strategies in OptorSim. In Proceedings of the First Latin American Web Congress, Santiago, Chile, 12 November
2003; pp. 52–59.

13. Harchol-Balter, M. Task assignment with unknown duration. J. ACM 2002, 49, 260–288.
14. Breitgand, D.; Cohen, R.; Nahir, A.; Raz, D. On Cost-Aware Monitoring for Self-Adaptive Load-Sharing. IEEE J. Sel. Areas

Commun. 2010, 28, 70–83. [CrossRef]
15. Fischer, S.; Petrova, M.; Mähönen, P.; Vöcking, B. Distributed load balancing algorithm for adaptive channel allocation for

cognitive radios. In Proceedings of the Conference on Cognitive Radio Oriented Wireless Networks and Communications,
Orlando, FL, USA, 1–3 August 2007; pp. 508–513.

16. Xie, T.; Qin, X. Scheduling security-critical real-time applications on clusters. IEEE Trans. Comput. 2006, 55, 864–879. [CrossRef]
17. Ristov, S.; Gusev, M.; Cvetkov, K.; Velkoski, G. Implementation of a network based cloud load balancer. In Proceedings of the

Federated Conference on Computer Science and Information Systems, Warsaw, Poland, 7–10 September 2014; pp. 775–780.
18. Lu, Y.; Xie, Q.; Kliot, G.; Geller, A.; Larus, J.R.; Greenberg, A. Join-idle-queue: A novel load balancing algorithm for dynamically

scalable web services. Perform. Eval. 2011, 68, 1056–1071. [CrossRef]
19. Desai, H.; Oza, R. A study of dynamic load balancing in grid environment. In Proceedings of the International Conference on

Wireless Communications, Signal Processing and Networking, Chennai, India, 23–25 March 2016; pp. 128–132.
20. Nahir, A.; Orda, A.; Raz, D. Replication-based load balancing. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 494–507. [CrossRef]
21. Sakr, S.; Liu, A.; Fayoumi, A.G. The family of mapreduce and large-scale data processing systems. ACM Comput. Surv. 2013, 46,

1–44. [CrossRef]
22. Gao, Z.; Liu, D.; Yang, Y.; Zheng, J.; Hao, Y. A load balance algorithm based on nodes performance in Hadoop cluster. In

Proceedings of the Asia-Pacific on Network Operations and Management Symposium, Hsinchu, Taiwan, 17–19 September 2014;
pp. 1–4.

23. Alam, T.; Raza, Z. Load balancing with random information exchanged based policy. In Proceedings of the IEEE International
Advance Computing Conference, Chennai, India, 17–19 December 2014; pp. 690–695.

24. Hassan, O.A.H.; Ramaswamy, L. Message replication in unstructured peer-to-peer network. In Proceedings of the International
Conference on Networking Applications and Worksharing, Washington, DC, USA, 12–15 November 2007; pp. 337–344.

25. Huang, M.; Ye, X.; Wei, S.; Zhu, D. A strategy of dynamic replica creation in cloud storage. In Proceedings of the International
Workshop on Cloud Computing and Information Security, Shanghai, China, 9–11 November 2013; pp. 389–392.

http://doi.org/10.1145/121133.121169
http://doi.org/10.1145/1165389.945450
http://doi.org/10.1109/ACCESS.2018.2873287
http://doi.org/10.1109/ACCESS.2016.2631490
http://doi.org/10.1155/2016/4751829
http://doi.org/10.1109/JSAC.2010.100108
http://doi.org/10.1109/TC.2006.110
http://doi.org/10.1016/j.peva.2011.07.015
http://doi.org/10.1109/TPDS.2015.2400456
http://doi.org/10.1145/2522968.2522979

Sensors 2022, 22, 2404 15 of 15

26. Rizzo, F.; Spoto, G.L.; Brizzi, P.; Bonino, D.; Di Bella, G.; Castrogiovanni, P. Beekup: A distributed and safe P2P storage framework
for IoE applications. In Proceedings of the Conference on Innovations in Clouds, Internet and Networks, Paris, France, 7–9 March
2017; pp. 44–51.

27. Omer, K.; Abdalla, G.M.T. Dynamic Algorithms Replication Using Grid Computing. In Proceedings of the International
Conference on Computer, Control, Electrical, and Electronics Engineering, Khartoum, Sudan, 12–14 August 2018; pp. 1–6.

28. Verma, A.; Ahuja, P.; Neogi, A. Energy-aware dynamic placement of HPC applications. In Proceedings of the International
Conference on Supercomputing, Austin, YX, USA, 15–21 November 2008; pp. 175–184.

29. Huan, Z.; Pengzhou, Z.; Zeyang, G. K-means Text Dynamic Clustering Algorithm Based on KL Divergence. In Proceedings of the
IEEE/ACIS International Conference on Computer and Information Science, Singapore, 6–8 June 2018; pp. 659–663.

30. Elnozahy, E.N.M.; Kistler, M.; Rajamony, R. Energy-efficient server clusters. In Proceedings of Energy-Aware Computer Systems;
Springer: Berlin/Heidelberg, Germany, 2003; pp. 179–197.

31. Ge, R.; Feng, X.; Feng, W.; Cameron, K.W. CPU MISER: A performance-directed, run-time system for energy-aware clusters. In
Proceedings of the International Conference on Parallel Processing, Xi’an, China, 10–14 September 2007; p. 18.

32. Zou, P.; Allen, T.; Feng, C.H.D.X.; Ge, R. CLIP: Cluster-Level Intelligent Energy Coordination for Energy-Bounded Systems. In
Proceedings of the IEEE International Conference on Cluster Computing, Honolulu, HI, USA, 5–8 September 2017; pp. 541–551.

33. Hsu, C.; Feng, W. A energy-aware run-time system for high-performance computing. In Proceedings of the ACM/IEEE SC
Conference, Seattle, WA, USA, 12–18 November 2005; pp. 12–18.

34. Rosenberg, F.; Platzer, C.; Dustdar, S. Bootstrapping performance and dependability attributes of web services. In Proceedings of
the International ICWS Conference, Chicago, IL, USA, 18–22 September 2006; pp. 205–212.

35. Emeakaroha, V.C.; Brandic, I.; Maurer, M.; Dustdar, S. Low level metrics to high level SLAs-LoM2HiS framework: Bridging
the gap between monitored metrics and SLA parameters in cloud environments. In Proceedings of the International HPCS
Conference, Caen, France, 28 June–2 July 2010; pp. 48–54.

36. Hudwig, A.; Keller, A.; Dan, R.; King, P.; Frank, R. Web Service Level Agreement (WSLA) Language Sepcification, Version 1.0; IBM
Corporation: Armonk, NY, USA, 2003.

37. S-Agreement from the GGF Developed by Grid Resource Allocation and Agreement Protocol. Available online: https://www.
ogf.org/documents/GFD.192.pdf (accessed on 10 March 2022).

38. Comuzzi, M.; Kotsokalis, C.; Rathfelder, C.; Theilmann, W.; Winkler, U.; Zacco, G. A framework for multi-level SLA management.
In Proceedings of the International ICSOC/ServiceWave Conference, Stockholm, Sweden, 23–27 November 2009; pp. 187–196.

39. Khan, A.A.; Chakkarwar, V.A. A Privacy Preserving Improvised Approach for QOS Aware Web Service Recommendation. In
Proceedings of the International Conference on Computing, Communication and Networking Technologies, Bengaluru, India,
10–12 July 2018; pp. 1–7.

40. Fakhfakh, K.; Tazi, S.; Drira, K.; Chaari, T.; Jmaiel, M. Requirements for QoS-based web service description and discovery. IEEE
Trans. Serv. Comput. 2009, 2, 320–337.

41. Fakhfakh, K.; Tazi, S.; Drira, K.; Chaari, T.; Jmaiel, M. Implementing and testing a semantic-driven approach towards a better
comprehension between service consumers and providers. In Proceedings of the International WAINA Conference, Perth,
Australia, 20–23 April 2010; pp. 183–188.

42. Halili, M.K.; Cico, B. Towards custom tailored SLA in IaaS environment through negotiation model: An overview. In Proceedings
of the Mediterranean Conference on Embedded Computing, Budva, Montenegro, 10–14 June 2018; pp. 1–4.

43. Hassan, S.I.; Khan, A.S. Eliciting Theory for Software Maintenance SLA Management Framework. In Proceedings of the
International Conference on Frontiers of Information Technology, Islamabad, Pakistan, 18–20 December 2017; pp. 241–246.

44. Maurer, M.; Emeakaroha, V.C.; Brandic, I.; Altmann, J. Cost-benefit analysis of an SLA mapping approach for defining standard-
ized cloud computing goods. Future Gener. Comput. Syst. 2012, 28, 39–47. [CrossRef]

https://www.ogf.org/documents/GFD.192.pdf
https://www.ogf.org/documents/GFD.192.pdf
http://doi.org/10.1016/j.future.2011.05.023

	Introduction
	Related Work
	Integrated Resource Management
	Simulation Results
	Conclusions
	References

