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Abstract: Partial discharge (PD) is a common phenomenon of insulation aging in air-insulated
switchgear and will change the gas composition in the equipment. However, it is still a challenge to
diagnose and identify the defect types of PD. This paper conducts enclosed experiments based on gas
sensors to obtain the concentration data of the characteristic gases CO, NO2, and O3 under four typical
defects. The random forest algorithm with grid search optimization is used for fault identification to
explore a method of identifying defect types through gas concentration. The results show that the
gases concentration variations do have statistical characteristics, and the RF algorithm can achieve
high accuracy in prediction. The combination of a sensor and a machine learning algorithm provides
the gas component analysis method a way to diagnose PD in an air-insulated switchgear.

Keywords: partial discharge (PD); gas detection; fault classification; random forests; air-insulated
switchgear

1. Introduction

Based on advanced sensing and measurement technology, two-way communication is
an essential feature of the smart grid to ensure reliable and safe operation. In particular, the
running status of air-insulated switchgear, critical pieces of equipment in the distribution
network, contains critical information about power grid monitoring. During operation,
insulation degradation such as internal impurities, bulges, and other defects in the air-
insulated switchgear can easily cause a strong electric field area. When the electric field
intensity exceeds a certain threshold, it will cause partial discharges (PD) [1]. Regarded as
a latent period of insulation deterioration [2], if it is not found and handled in time, PD
will evolve into insulation failure. Therefore, PD detection is a critical factor for judging
the running state of air-insulated switchgear, playing an important role in constructing the
smart distribution network.

According to the phenomenon generated by PD, such as sound, light, and electricity,
the primary methods used for PD detection are based on acoustic emission [3,4], pulse
current [5], transient earth voltage [6], and ultrahigh frequency [7]. PD detection technology
has been used to optimize insulation materials, detect equipment faults, and in other
fields [8–10]. However, the methods described above are vulnerable to disturbance and are
only able to achieve an external measurement. Consequently, to realize live monitoring,
many scholars analyze the chemical changes of air molecules caused by PD and study the
application of gas composition analysis for their detection. Gas detection is more convenient
and efficient, with a more powerful anti-jamming ability than the other methods. Based on
the method of gas composition analysis, an integrated sensing system could be established
for PD detection.
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In the PD process, the dissociation by electron collision is the dominant factor that
will cause air decomposition. The new gas molecules will be generated by the collision of a
large number of energetic electrons with air-neutralizing molecules. Zhang et al. [11–13]
analyzed the reactions involving O, C, and N elements and carried out experiments to
obtain the concentrations changes of CO and NO2. Wang et al. [14,15] determined that
CO, NO2, and O3 can be used as characteristic gases to detect PD through the simulation
software Gaussian. However, the existing study focused on finding chemical processes
and monitoring the characteristic components instead of classifying concentration data for
fault identification.

In PD defect identification based on gas composition analysis, a lot more work has
focused on GIS or the power transformer. The typical one is the three-ratio method, which
has been used to judge the operation state of transformers. On PD defect diagnosis for GIS,
coding recognition was proposed to process the data of SF6 decomposition [16]. In recent
years, some studies have used machine learning to identify PD defects. Dai employed
fuzzy c-means to recognize different kinds of PD by choosing three concentration ratios
as feature parameters [17]. The support vector machines (SVM) algorithm combined with
the wavelet analysis technique was used to discriminate PD [18]. Based on dissolved gas
analysis (DGA), more scholars adopted the artificial neural network (ANN), the polynomial
neural network (PNN), etc., [19–21]. Moreover, some studies have optimized the algorithms
to achieve better results [22–24]. Compared to the three-ratio method, the adoption of
machine learning significantly improved the accuracy of diagnosis. However, little research
has studied PD defect identification for air-insulated switchgear.

Therefore, in order to achieve PD defect identification by analyzing the gas components
inside the switchgear, this paper carried out experiments to obtain data and used a machine
learning algorithm to complete the classification. CO, NO2, and O3 were selected as the
characteristic gases for detecting PD based on the stability and generation rate of the new
gas molecules. To achieve a timely diagnosis, the random forest (RF) algorithm was adopted
to explore the possibility of identification. The results showed that the combination of a
sensor and machine learning algorithm provided a good way to apply the gas component
analysis method to the diagnosis of PD in the switchgear.

2. Experimental Setup

An experiment platform was built, as shown in Figure 1. The power signal was
generated by the combination of the voltage regulator and experimental transformer, which
could produce a 50 Hz voltage of up to 50 kV. The gas sensor collected the parameters of
characteristic gas. All the measured results were input into the PC.
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Figure 1. Experiment Platform: (a) schematic diagram of the experiment platform; (b) layout of the
experiment platform.



Sensors 2022, 22, 2395 3 of 11

2.1. Setup of Discharge Model

Four types of simulated defects were built in the discharge chamber. They were metal
protrusion, an air gap between the metal conductor and the insulator, pollution on the
insulator surface, and charged metal particles, which were sorted out from the analysis of
various defects in the air-insulated switchgear. The needle electrode, plate electrode, and
ball electrode were all made of copper. The metal particles were also made of copper with
a volume of about 1cm3. The specific structure and size are shown in Figure 2.
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conductor and the insulator, (c) pollution on the insulator surface, and (d) charged metal particles.

2.2. Measuring of Characteristic Gases Concentrations

As shown in the upper right corner of Figure 1a, a set of gas circulation systems was
designed by using a gas sensor and a couple of gas pumps. Based on electrochemical
detection technology, the gas sensor could be operated simply by computer control and had
the advantages of fast response, high accuracy, good stability, and repeatability. Critical
components in the sensor included the sampling probe, gas sensor, and unit of data
processing, storing, and transmitting. Before beginning the experiment, standard gas was
used to calibrate the gas sensor to ensure the data reliability. The unit used to measure
the gas concentrations was part per million (ppm), meaning the volume fraction of the
characteristic gases as a percentage of the air volume in parts per million

Two gas pumps were set up to extract the mixed gas in the air chamber to the gas
sensor and change the gas with the surrounding air before the experiment. They were
micromotors with variable power. The flow rate was controlled at 2 L/min, which not only
minimized the influence of gas-flowing factors on the discharge decomposition reaction
but also met the requirements of the China National Standard System (GB/T15438-1995)
for the residence time of air in the gas path system.
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3. Experiment Results
3.1. Partial Discharge

The components were connected according to Figure 1 and grounded safely. Firstly,
we continuously increased the voltage until the air gap was broken down and recorded
the breakdown voltage. Then, we added voltage until the PD signal could be found on
the oscilloscope and maintained the discharge. The applied voltages of the first three
defects were about 70% of the breakdown voltages. As for the charged metal particles,
it was necessary to apply a voltage close to the breakdown voltage, which would cause
the apparent and stable PD phenomenon. Over the next 24 h, the gas sensor collected the
concentration data of the characteristic gas every two hours. The voltage applied during
the experiment for each defect is shown in Table 1.

Table 1. The voltage applied for each defect.

Type Metal
Protrusion

Air Gap between the
Metal Conductor and

the Insulator

Pollution on
the Insulator

Surface

Charged
Metal

Particles

Applied Voltage (kV) 8 13 8.2 12.8
Breakdown Voltage (kV) 11.4 18.6 11.8 12.8

3.2. The Volume Fraction

Five repeated experiments were carried out for each defect to reduce the impact of
random error. The growth trends of the characteristic gases over time collected by the gas
sensor are displayed in Figure 3.

The volume fraction data indicate that there would be different growth trends and gas
production rates of characteristic gas under different discharge modes. The experimental
results were not surprising, since the electric field distribution and apparent charge of PD
were different among different modes.

The CO concentration in the four different defect models continued to increase. The
PD generated by the metal protrusions was mainly due to the electric field distortion at the
metal tip, which was persistent and had a corresponding relationship between the number
of electrons excited at the same time. However, when the PD was intense, the C elements
in the air were not enough to provide continuous excitation. Therefore, the concentration
level of CO was low. The CO produced under the air gap between the metal conductor
and the insulator was much higher than the other defects. That was because the material
of the insulator was epoxy resin with a large amount of C elements. Electrons penetrated
the insulation material and continuously stimulated it to release C elements. In the case
of pollution on the insulator surface defect, the PD was mainly concentrated on the metal
on the insulator surface, so the C element excited was lower than the previous one. As for
the defects of charged metal particles, the CO production was the lowest and an obvious
saturation phenomenon appeared after 16 h due to the unstable and low discharge.

Furthermore, the NO2 concentration changing with time in the first three defects
showed a trend of saturation. Due to the spark discharge of the charged metal particles, it
produced NO and provide the intermediate products for NO2. Moreover, the reason for
the trends of O3, which exhibited a curve shape of the inverted ‘V,’ may be due to a series
of oxidation reactions between O3 and NO and CO.



Sensors 2022, 22, 2395 5 of 11

Sensors 2022, 22, x FOR PEER REVIEW 4 of 11 
 

 

3. Experiment Results 

3.1. Partial Discharge 

The components were connected according to Figure 1 and grounded safely. Firstly, 

we continuously increased the voltage until the air gap was broken down and recorded 

the breakdown voltage. Then, we added voltage until the PD signal could be found on the 

oscilloscope and maintained the discharge. The applied voltages of the first three defects 

were about 70% of the breakdown voltages. As for the charged metal particles, it was 

necessary to apply a voltage close to the breakdown voltage, which would cause the ap-

parent and stable PD phenomenon. Over the next 24 h, the gas sensor collected the con-

centration data of the characteristic gas every two hours. The voltage applied during the 

experiment for each defect is shown in Table 1. 

Table 1. The voltage applied for each defect. 

Type 
Metal 

Protrusion 

Air Gap between the Metal 

Conductor and the Insulator 

Pollution on the 

Insulator Surface 

Charged Metal 

Particles 

Applied Voltage (kV) 8 13 8.2 12.8 

Breakdown Voltage (kV) 11.4 18.6 11.8 12.8 

3.2. The Volume Fraction 

Five repeated experiments were carried out for each defect to reduce the impact of 

random error. The growth trends of the characteristic gases over time collected by the gas 

sensor are displayed in Figure 3. 

 

Figure 3. The volume fraction of characteristic gases over time: (a) metal protrusion, (b) air gap
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metal particles.

4. PD Defect Recognition

PD detection in switchgear based on gas components requires a fast and accurate
method. Processed by a specific algorithm, the characteristic gas volume fraction data
can be classified and identified to determine the fault type. In this part, 135 groups of
the gas concentration data were randomly selected as the sample, of which 100 groups
were training samples and 35 groups were test samples. These samples were from the
characteristic gas concentrations of different time nodes in different groups of experiments.
In 100 groups of training samples, there were 25 groups of each defect type. The data were
input into the classification system for defect recognition and analysis.

4.1. DT Optimization and RF

RF is a statistical learning theory with fast and high accuracy with expected devel-
opment prospects. It uses the Bootstrap resampling method to model multiple samples
of decision trees (DT) and then combines the results of multiple DT to vote for the final
classification result [25].

DT is the basis of RF. It is a tree structure, starting at a root node and ending at the leaf
nodes, which can simply and intuitively describe the data classification process. Except for
the leaf nodes, other nodes represent splitting attributes of DT. At the end of the branches
are the leaf nodes, which correspond to the classification result. When the classification
results given by all leaf nodes are the same, the growth ends and the sample class can
be determined.
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Classification and regression tree (CART) was used to construct a single DT [26], where
the Gini impurity was recommended to replace information gain as a measure of data
impurity. The expression is as follows:

Gini(D) = 1−∑m
i=1 P2

i . (1)

In Equation (1), Pi represents the probable occurrence of each category in sample set
D, which is divided into m categories.

When the sample set D is split into two subsets, D1 and D2, the Gini impurity is:

Ginisplit(D) =
|D1|
|D| Gini(D1) +

|D2|
|D| Gini(D2). (2)

Since the splitting method for each attribute is not unique, the Gini impurity after
splitting according to a particular attribute has multiple values, of which the minimum is
generally used to represent the Gini impurity after splitting with the attribute. In addition,
the formula of the Gini impurity increment is given as:

∆Gini(R) = Gini(D)− GiniR(D) (3)

In Equation (3), R represents the dataset D, split according to an attribute R. When
the ∆Gini(R) is the largest, the DT has achieved the best performance.

The result of the RF is related to the number of splitting attributes of DT. Grid search
was used to optimize the algorithm to find the best DT and candidate attributes. The
method was to divide the variable area and traverse all grid points to find the optimal
parameter value. Firstly, this paper set the scope and step size of the number of DT and
candidate attributes. Then a grid was drawn, whose abscissa was the number of DT and
ordinate was the number of candidate attributes. Each node in the grid corresponded to a
possible RF. After calculating the value of each node, an RF was built. Then the error was
calculated according to the out-of-bag data. Comparing the error and choosing the smallest
one, its number of DT and candidate attributes was the best if its error met the requirements.
If not, the whole process should be repeated. The framework of the algorithm and the
optimization process is shown in Figure 4.

4.2. Defect Classification

Before establishing the RF fault diagnosis model, the four defect types in the air-
insulated switchgear were numbered, as shown in Table 2.

Table 2. Numbering of four defect types.

Type Metal
Protrusion

Air Gap between the
Metal Conductor and

the Insulator

Pollution on the
Insulator
Surface

Charged Metal
Particles

Number 1 2 3 4

According to the algorithm and optimization process mentioned above, one of the best
structures of DT with the minimum Gini impurity is shown in Figure 5. The tree, whose
attribute of the root node was x2 < 22.0217|x2 ≥ 22.0217, had the most significant increment
∆Gini(R).

The RF algorithm classified the characteristic gas concentration data based on the
above DT optimization. The classification results are shown in Table 3 and Figure 6. As
shown in the table, the accuracy was 91.43%, with 32 groups identified correctly. Analyzing
the outcome, the identification of pollution on the insulator surface defect was relatively
low. This may be because the content of NO2 under the defect changed more smoothly,
which was likely to be close to the gas concentration data of other defects. At the same time,
the different proportions of each defect type in 35 groups of test samples would also affect



Sensors 2022, 22, 2395 7 of 11

the final classification results. In addition, to verify the algorithm’s reliability, a threefold
cross-validation was carried out on the basis of the same size of training and testing samples.
The other two accuracies of the classification results were 94.29% and 88.57%.
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Table 3. Confusion matrix of the RF classifier.

Actuality

Prediction
Type 1 Type 2 Type 3 Type 4

Type 1 8 0 0 0
Type 2 0 13 1 0
Type 3 2 0 5 0
Type 4 0 0 0 6
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5. Discussion

To study the online PD diagnosis in 10 kV air-insulated switchgear by gas composition
analysis, an experiment platform was set up, and RF was used to identify defect types. In
addition, this paper also adopted two basic classifiers, SVM and logistic regression (LR), to
compare the results. The confusion matrix of the SVM and LR are shown in Tables 4 and 5.

Table 4. Confusion matrix of the SVM classifier.

Actuality

Prediction
Type 1 Type 2 Type 3 Type 4

Type 1 7 1 0 0
Type 2 3 9 0 2
Type 3 0 0 6 1
Type 4 0 0 2 4

Table 5. Confusion matrix of the LR classifier.

Actuality

Prediction
Type 1 Type 2 Type 3 Type 4

Type 1 7 0 0 1
Type 2 0 14 0 0
Type 3 2 0 5 0
Type 4 1 0 0 5

The accuracy of the SVM and LR classifiers were 74.29% and 88.57%, respectively,
which were both lower than the RF. In particular, the SVM precision of Type 4 was only
57.14%, showing that the SVM classifier easily considered other types as Type 4. Similarly,
the LR classifier would consider other types as Type 1, which caused the lower accuracy.
In addition, the SVM judged five groups of Type 2 as others. The reason may be that the
characteristic gas concentrations of Type 2 for some periods were indistinguishable from
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Type 1. However, RF made more attribute comparisons between Type 1 and Type 2, which
significantly improved the recall rate of Type 2. Because of the steady growth of NO2 of
Type 3, the three algorithms had errors in its recognition.

In the field of Mathematical Science, RF can deal with multiclass classification well.
It has been applied to machine learning to solve the problems of land use, urban popula-
tion distribution, and disaster prediction. In terms of a power system, there were some
examples of using RF to forecast power load [27]. However, it has been rarely used for
fault defect classification of power equipment. The identification outcome indicates that
the RF algorithm achieved excellent results in identifying gas decomposition characteris-
tics. RF algorithms can process large data faster, achieve higher accuracy, and have better
scalability. These outstanding features make it possible to be applied to more areas of
electrical equipment fault diagnosis. With the development of computer science and deep
learning, using intelligent algorithms to realize fault identification will become a trend for
research. Compared with the methods of analyzing the ratio of gases, the RF can overcome
the problem of missing code. Moreover, it can avoid the negative impact of unbalanced
data compared with the artificial neural network. Accordingly, the extensibility of RF can
be applied to more electrical equipment fault identification.

However, there are some limitations of the study. On the one hand, the number of
training samples was insufficient due to the long time required for individual experiments.
This may cause incorrect recognition results. On the other hand, the algorithm can be
further optimized for better identification accuracy. Since the switchgear is used in ambient
conditions, there are many factors that can affect the concentration of characteristic gases,
such as temperature, humidity, internal structure, or elements of the equipment. The
influence of these factors needs to be considered in further research. In a word, the method
of gas composition analysis combined with a classification algorithm would provide a
reference for PD online monitoring. The ultimate goal of this study is to manufacture a
built-in instrument that can detect and transmit PD information in real time for the smart
distribution network.

6. Conclusions

According to the mechanism of air decomposition, this paper built a PD simulation
experiment of a 10 kV air-insulated switchgear and collected the characteristic gas data of
four PD defect types. After the experiment, the RF classification algorithm was used to
explore the application of gas component analysis in PD defect type identification. The
following conclusions were obtained:

(1) Selecting CO, NO2, and O3 as the characteristic gases of PD can enable effective
identification of the defect types.

(2) The experimental results of the characteristic gases volume fraction were consistent
with the previous research results of air decomposition products.

(3) The classification system used the RF algorithm to construct the fault recognition
model with the minimum Gini impurity and achieved excellent results in the identifi-
cation, with an accuracy up to 91.43%.

The conclusions show that the combination of sensor and machine learning algorithm
in the air-insulated switchgear provides way to diagnose PD and a good base for applying
the gas component analysis method.
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