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Abstract: This paper seeks to evaluate and calibrate data collected by low-cost particulate matter
(PM) sensors in different environments and using different aggregated temporal units (i.e., 5-s, 1-min,
10-min, 30 min intervals). We first collected PM concentrations (i.e., PM1, PM2.5, and PM10) data
in five different environments (i.e., indoor and outdoor of an office building, a train platform and
lobby of a subway station, and a seaside location) in Hong Kong, using five AirBeam2 sensors as
the low-cost sensors and a TSI DustTrak DRX Aerosol Monitor 8533 as the reference sensor. By
comparing the collected PM concentrations, we found high linearity and correlation between the
data reported by the AirBeam2 sensors in different environments. Furthermore, the results suggest
that the accuracy and bias of the PM data reported by the AirBeam2 sensors are affected by rainy
weather and environments with high humidity and a high level of hygroscopic salts (i.e., a seaside
location). In addition, increasing the aggregation level of the temporal units (i.e., from 5-s to 30 min
intervals) increases the correlation between the PM concentrations obtained by the AirBeam2 sensors,
while it does not significantly improve the accuracy and bias of the data. Lastly, our results indicate
that using a machine learning model (i.e., random forest) for the calibration of PM concentrations
collected on sunny days generates better results than those obtained with multiple linear models.
These findings have important implications for researchers when designing environmental exposure
studies based on low-cost PM sensors.

Keywords: particulate matter; AirBeam2; low-cost sensors; urban environments; different aggregated
temporal units; sensor calibration

1. Introduction

Much research on the health impacts of individual exposure to particulate matter (e.g.,
PM1, PM2.5, and PM10) is based on people’s residential neighborhoods [1,2]. However,
using people’s residential neighborhoods for environmental health research can lead to the
uncertain geographic context problem (UGCoP) and the neighborhood effect averaging
problem (NEAP) [3–9]. The UGCoP stresses that using different geographically delineated
contextual areas could lead to different research findings about the health effects of envi-
ronmental factors [10]; and the NEAP suggests that ignoring people’s daily mobility and
exposure to nonresidential contexts could lead to biased estimations of personal exposure,
specifically, the exposure of people who have very high or low residence-based exposures
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would tend toward the average of the population when their daily mobility is taken into
account (i.e., mobility-based exposures) [11,12].

To address these methodological issues, some recent studies have applied a mobility-
based exposure approach to simultaneously capture the spatiotemporal variability of PM
concentrations and human mobility [13–15]. The mobility-based exposure approach uses
low-cost sensors to measure individual-level PM-concentration exposure in different types
of environments, which is different from conventional environmental exposure studies (e.g.,
using residential neighborhoods). Furthermore, the mobility-based exposure approach has
advanced the acquisition of accurate data on human space-time behaviors considerably in
different types of environments (e.g., workplaces, supermarkets, and transport stations). It
provides detailed space–time information that is essential for a personal environmental
exposure assessment and has been increasingly used in health research [16–18]. The
mobility-based exposure approach requires people to carry a portable low-cost PM sensor
and a GPS sensor, which can simultaneously monitor individuals’ geographic locations
and measure the real-time PM concentrations in people’s immediate surroundings at very
fine spatiotemporal resolutions [19]. Specifically, a mobility-based exposure approach can
capture individuals’ real-time location (i.e., longitude and latitude) and exposure to PM
concentrations every second [4]. Although such an approach can significantly improve
the accuracy of people’s PM exposure assessment compared with conventional methods
(e.g., using residential neighborhoods), our knowledge on the reliability of data collected
by low-cost PM sensors in different types of environments is still very limited to date.

Some studies have found that the data collected by low-cost PM sensors are not as ac-
curate as those collected by conventional monitoring stations [20–22]. Specifically, various
studies and reports have indicated that certain ambient physical conditions (e.g., temper-
ature, humidity, and precipitation) can significantly affect the performance of low-cost
PM sensors [23,24]. For instance, by comparing the measurements of low-cost air quality
sensors (i.e., Airbeam and the Alphasense Optical Particle Counter) with the measurements
of high-end instruments (i.e., the GRIMM 11-R optical particle counter and the Met One
beta attenuation monitor), Mukherjee et al. [20] found that sensor measurements were
influenced by the meteorological conditions and the distribution of aerosol size. Sou-
san et al. [25] conducted simulation experiments in the laboratory and suggested that the
reliability of data provided by low-cost PM sensors can be improved if calibrated differ-
ently for various environmental conditions (e.g., different environmental and occupational
settings) using site-specific calibration factors.

Although previous studies provided a useful foundation for improving the accuracy of
data recorded by low-cost portable PM sensors, they did not examine how the performance
of these sensors varies in different types of environments for people’s daily life. Specifically,
the performance of low-cost PM sensors may vary between different types of environments
(e.g., workplaces, supermarkets, and transport stations) due to different environmental
conditions (e.g., temperature, humidity, and precipitation). Note that most people are
exposed to different types of environments in their daily life, since they may travel around
and visit different types of places and venues. Thus, low-cost PM sensors may have different
levels of performance when people are required to carry the sensors while conducting
their daily activities in mobility-based environmental exposure studies. Besides, although
the mobility-based exposure approach can measure individuals’ PM concentrations every
second, the accuracy of the data recorded by low-cost PM sensors may vary due to different
aggregation levels of the temporal unit (i.e., 1 s, 1 min, 10 min, etc.). Thus, it is important to
evaluate and calibrate the data recorded by low-cost PM sensors under different types of
environments using different aggregated temporal units for mobility-based environmental
exposure studies. The contribution of such an analysis is two-fold. On one hand, the new
knowledge generated can help in the development and enhancement of the effectiveness of
a research design for mobility-based environmental exposure studies. On the other hand,
the uncertainties arising from the performance of low-cost PM sensors can be examined
and addressed using appropriate calibration models.
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Motivated by the abovementioned research gaps, this study seeks to evaluate and
calibrate low-cost PM sensors in different types of urban environments using different
aggregated temporal units. Specifically, we first used five AirBeam2 low-cost sensors and a
TSI DustTrak DRX Aerosol Monitor 8533 as a reference sensor to collect PM concentrations
(i.e., PM1, PM2.5, and PM10) data in five types of environments (i.e., an indoor location
and an outdoor location of an office building, the train platform and lobby of a subway
station, and a seaside location) in Hong Kong. Then, using the PM concentrations data
aggregated into 5-s, 1-min, 10-min, and 30 min intervals, the performance of the AirBeam2
sensors was evaluated based on the correlation, accuracy, and bias of the data collected in
different environments. Furthermore, we calibrated the 1 min average PM concentrations
data using the temperature and humidity data recorded by the AirBeam2 sensors based
on multiple linear regression (MLR) and random forest (RF) (a machine learning method).
Finally, we discuss how different types of environments and different aggregated temporal
units would affect the performance of low-cost PM sensors and their implications for better
design in mobility-based environmental exposure studies.

2. Materials and Methods
2.1. Sensors and Study Sites

The low-cost PM sensors used in this study are five AirBeam2 sensors (HabitatMap,
Brooklyn, NY, USA). We used AirBeam2 sensors because they are lightweight (198.5 g),
have a long battery life (10 h when fully charged), and are widely used in mobility-based
environmental exposure studies [4,5,19,26]. Furthermore, AirBeam2 sensors can measure
fine particulate matter (PM1, PM2.5 and PM10), temperature, and relative humidity. Note
that the PM concentrations measured by AirBeam2 sensors have been calibrated based
on equations developed by fitting the data to the GRIMM EDM180. Past studies have
evaluated the performance of AirBeam2 sensors by comparing them with different reference
instruments. For instance, by comparing AirBeam2 measurements to measurements by a
TSI DustTrak DRX Aerosol Monitor 8533 in a concentrated air pollutants (CAPS) chamber,
Michael and Lim [27] found that the PM concentrations measured by AirBeam2 have a
highly linear relationship with the data recorded by the DustTrak sensor (i.e., R2 = 0.89
for PM2.5 and R2 = 0.88 for PM1). In field tests performed by different researchers, the
measurements of PM2.5 of AirBeam sensors strongly correlated with the measurements
obtained by a GRIMM monitor (i.e., R2 = 0.80–0.99) [20]. While these studies provided
significant evidence to demonstrate the reliability of AirBeam2 sensors in particulate
matter (PM) measurements, they did not examine how the performance of the AirBeam2
sensors vary between different types of urban environments (e.g., Mass Transit Railway
[MTR] stations, supermarkets, seaside, and offices). Thus, this paper seeks to evaluate the
performances of AirBeam2 sensors in different types of urban environments.

To evaluate the accuracy and bias of the AirBeam2 sensors, we compared the PM
concentrations they recorded with the data obtained by a TSI DustTrak DRX Aerosol
Monitor 8533 sensor. The DustTrak sensor offers simultaneous measurements of PM
concentrations for different particle sizes (PM1, PM2.5, PM3, PM10, and total particles) [28].
The DustTrak is widely used in measuring PM concentrations in indoor and outdoor
environments and evaluating low-cost PM sensors [29–34].

The AirBeam2 and DustTrak sensors were employed in this study to measure PM
concentrations in different types of environments in Hong Kong. The city has a highly
transit-oriented development (TOD) around Victoria Harbour due to limited land resources,
and more than 90% of the people in Hong Kong are serviced by the public transport
system [35,36]. Note that the yearly average PM2.5 and PM10 concentrations in Hong
Kong are 16.7 µg/m3 and 29.7 µg/m3 according to the data collected by the Hong Kong
Environmental Protection Department, covering the period from October 2020 to September
2021 [37]. In addition, Hong Kong has a subtropical climate. Its 2021 monthly average
temperatures range from 16.2 ◦C (January) to 29.7 ◦C (July) [38]. Thus, people in Hong
Kong usually conduct their daily activities in places or venues around Mass Transit Railway
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(MTR) stations or seaside locations (e.g., walking, running, or taking a ferry). Note that the
MTR stations in Hong Kong usually have a lobby with several shops (e.g., cake shops, banks,
coffee shops, and newsstands), station facilities (e.g., customer service centers, restrooms or
toilets, and breastfeeding areas), and platforms for passengers to take the train.

We selected three locations with five types of environments in Hong Kong to collect the
PM concentrations data. Table 1 provides a brief description of the selected environments
and the date of data collection, including the indoor and outdoor areas of an office building,
the platform and the lobby of an MTR station, and a seaside location near a ferry pier. The
office is in the Institute of Space and Earth Information Science at The Chinese University of
Hong Kong. The MTR station and ferry pier are in Hung Hom, which is a major transport
hub in Hong Kong with an MTR station, a ferries pier, a cross-harbor tunnel, and a terminus
of cross-border bus services with transport to major cities in Mainland China. Note that the
day we collected data in the office (outdoor) was rainy, and the days we collected data in
other environments were all sunny. The patterns of people’s daily mobility in a city tend to
be quite regular over days (e.g., weekdays and weekends) [36,39,40]. Thus, mobility-based
environmental exposure studies usually require people to carry an AirBeam2 sensor for two
days (one weekday and one weekend) [4,5,19,26,41]. Hence, for each type of environment,
we collected data from 9:00 to 17:00. For PM concentrations data in the office (indoor),
data were missing for one of the AirBeam2 sensors from 12:30 to 13:00. Besides, Table 1
also presents the average PM2.5 and PM10 concentrations reported by the Hong Kong
Environmental Protection Department on the days of our data collection (i.e., Sha Tin,
Sham Shui Po, Mong Kok, and Kwun Kong monitoring stations) [37].

Table 1. The selected environments and dates for data collection.

Urban Environments Location with Latitude and Longitude Data Collection Date PM2.5 (µg/m3) PM10 (µg/m3)

Office (Indoor) Institute of Space and Earth Information
Science, The Chinese University of

Hong Kong (22.4213◦ N, 114.2068◦ E)

31 July 2021 9.8 16.7

Office (Outdoor) * 3 August 2021 4.6 7.8

MTR station (Platform) Hung Hom Station
(22.3034◦ N, 114.1814◦ E)

5 October 2021 13.5 34.3
MTR station (Lobby) 18 October 2021 14.5 23.2

Seaside Hung Hom Ferry Pier
(22.3011◦ N, 114.1902◦ E) 6 October 2021 14.7 36.5

* Note that 3 August 2021 is a rainy day.

2.2. Evaluation of Correlation, Accuracy, and Bias of Data Collected with Low-Cost PM Sensors

Data collected from the Airbeam2 sensors were time-paired with the data collected by
the DustTrak sensor every second using Python. First, we used scatterplots and descriptive
statistics (i.e., the mean and standard deviation) for the 1 min average concentrations of
PM1, PM2.5, and PM10 recorded by the AirBeam2 and DustTrak sensors to explore the
general patterns of the data. Then, using the 1 min average PM concentrations recorded by
the sensors, the data of the AirBeam2 sensors were examined based on their correlation,
accuracy, and bias in different types of environments. Specifically, the Pearson coefficient
was used to explore the correlation between the data recorded by the five AirBeam2 sensors.
A linear regression model was used to measure the accuracy (i.e., the slope and R2) of
the AirBeam2 sensors compared to the DustTrak sensor. Finally, the bias (how well the
Airbeam2 data agreed with the DustTrak data) was evaluated for the 1 min average PM
concentrations using the following Equation (1):

B1s =
1
n ∑

yi − xi
xi

(1)

where y is the observed PM concentrations of the AirBeam2 sensors, x is the observed PM
concentrations of the DustTrak sensor, i is the data pair index, and n is the total number of
data pairs. In addition, we also aggregated the collected PM concentrations data into 5 s,
1 min, 10 min, and 30 min intervals to explore how the correlation, accuracy, and bias of
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the data recorded by the AirBeam2 sensors would be affected due to the use of different
aggregated temporal units.

2.3. Machine Learning-Based Calibration Model Development and Validation

In this subsection, we focus on developing and validating calibration models based
on the temperature and humidity data recorded by the AirBeam2 sensors using multiple
linear regression (MLR) and the random forest (RF) method. Equation (2) was used in the
MLR model.

Y = β1X + β2Temp + β3RH + β0, (2)

where Y is the PM concentrations (i.e., PM1, PM2.5, and PM10) recorded by the DustTrak
sensor, X is PM concentrations recorded by the AirBeam2 sensors, Temp is the temperature
reported by the AirBeam2 sensors, and RH is the relative humidity reported by the Air-
Beam2 sensors. Note that all data collected in the selected environments were used and
aggregated into 1 min intervals in the model.

We also used the same data to develop a calibration model based on RF, which is
a decision tree-based machine learning method widely used for classification or regres-
sion [42–44]. In the RF method, a collection of regression or classification trees is first drawn
from different bootstrap samples of the training data. Then, each tree acts as a regression
or classification function on its own, and the final output is taken as the majority vote for
classification or average of the individual tree for regression. In this study, the RF model
was applied by using scikit-learn library in Python, and the parameters for the model were
selected by using an optimizing hyperparameter tuning method [45].

For the MLR and RF models, the ten-fold cross-validation method was applied to fit
better models. For the ten-fold cross-validation method, each model was trained using
80% of the data, and the remaining 20% of the data were used to validate the model. This
process was repeated ten times and all the data were used to validate the calibrated results.
In addition, the performance of the calibration models was evaluated by comparing data
between model-calibrated PM concentrations data and the data recorded by the DustTrak
sensor using R2, bias (i.e., Formula (1)), mean error (ME) (µg/m3) and root mean squared
error (RMSE) (µg/m3).

ME =
1
n

n

∑
i=1
|yi − xi|, (3)

RMSE =

√∫ n
i=1(yi − xi)

n
, (4)

where n is the number of data pairs, yi is the calibrated PM concentrations generated by
the MLR and RF models, and xi is the PM concentrations recorded by the DustTrak sensor.

Recall that the day we collected data in the outdoor area of an office building was a
rainy day, and all the other days were sunny. To further explore how the performance of
the calibration models would be affected by weather conditions, we also excluded the data
collected in the office (outdoor) environment and reanalyzed the MLR and RF models. The
training data and validating data were randomly chosen from the data set using a method
similar to that described above.

3. Results
3.1. PM1, PM2.5, and PM10 Concentrations Collected by Sensors in Different Environments

In this subsection, we first use scatterplots and descriptive statistics (i.e., the mean and
standard deviation) for the 1 min average PM concentrations recorded by the AirBeam2
and DustTrak sensors to explore the general patterns of the data. Figure 1 presents the
distribution of the 1 min PM1, PM2.5, and PM10 average concentrations reported by the
AirBeam2 and DustTrak sensors in the indoor and outdoor space of an office building, the
platform and the lobby of an MTR station, and a seaside location. The results indicate that
the PM concentrations recorded by the DustTrak sensor are generally higher than those
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recorded by the AirBeam2 sensors in different environments, which is in line with the
results of previous studies [27]. Specifically, the 95% confidence interval on the mean of the
differences between the PM concentrations reported by the AirBeam2 and DustTrak sensors
range from 1.54 to 11.04 for PM1, −0.01 to 8.17 for PM2.5, and −2.41 to 8.47 for PM10.
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Table 2 presents the descriptive statistics of the 1 min PM1, PM2.5, and PM10 average
concentrations obtained by the AirBeam2 and DustTrak sensors in different environments.
The results indicate that the mean values of the PM concentrations reported by the Air-
Beam2 sensors are lower than that of the DustTrak sensor, while the differences between
the mean values reported by the sensors decrease as the size of PM increases. In other
words, the PM10 concentrations recorded by the AirBeam2 and DustTrak sensors have the
smallest difference, while the PM1 concentrations present the largest difference. These
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results are consistent with our earlier findings from Figure 1. In addition, the results also
indicate that the mean values and standard deviations of PM concentrations recorded by
the AirBeam2 sensors under different environments are generally similar to each other.
For instance, the mean values of the PM concentrations recorded by the AirBeam2 sensors
in the office (indoor) range from 1.21 to 1.81 for PM1, 2.47 to 3.36 for PM2.5, and 2.74 to
3.84 to PM10, while the standard deviations range from 0.76 to 0.84 for PM1, 0.98 to 1.04
for PM2.5 and 1.01 to 1.13 for PM10. The mean values and standard deviations of the PM
concentrations recorded by the AirBeam2 sensors in other types of environments present a
similar patterns to that of the office (indoor).

Table 2. Statistic description of the 1 min PM1, PM2.5, and PM10 average concentrations (µg/m3)
reported by AirBeam2 and DustTrak sensors in different environments.

PM1 Concentration (µg/m3)

Office (Indoor) Office (Outdoor) MTR Station
(Platform)

MTR Station
(Lobby) Seaside

Sensors Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

DustTrak 4.71 0.65 6.02 2.02 15.88 2.09 13.46 1.23 15.89 2.51
AB1 1.56 0.81 1.25 0.78 7.71 2.17 7.29 1.32 7.52 1.68
AB2 1.45 0.79 1.09 0.69 8.33 2.11 7.59 1.38 8.01 1.78
AB3 1.21 0.78 0.75 0.62 6.98 1.94 6.39 1.27 6.88 1.53
AB4 1.41 0.84 1.23 0.76 7.04 1.96 6.49 1.09 7.36 1.62
AB5 1.81 0.76 1.22 0.72 7.54 2.03 7.34 1.31 7.92 1.62

PM2.5 concentration (µg/m3)

DustTrak 4.78 0.63 6.72 2.34 16.52 2.12 13.67 1.27 16.51 2.47
AB1 3.06 1.04 2.82 1.11 11.21 2.63 11.16 1.71 11.04 1.85
AB2 2.85 0.99 2.57 0.98 11.74 2.51 11.39 1.82 11.39 1.82
AB3 2.47 0.98 1.97 0.91 10.01 2.28 9.63 1.56 9.94 1.58
AB4 2.81 0.99 2.61 1.05 10.36 2.44 10.04 1.38 10.81 1.69
AB5 3.36 1.01 2.75 1.03 10.93 2.46 11.04 1.72 11.38 1.67

PM10 concentration (µg/m3)

DustTrak 4.89 0.64 7.91 3.35 19.01 2.43 14.48 1.41 18.76 3.05
AB1 3.51 1.13 3.55 1.38 15.31 4.21 14.89 2.91 15.17 3.15
AB2 3.18 1.01 3.26 1.28 16.42 4.13 15.45 3.22 15.91 3.13
AB3 2.74 1.01 2.45 1.01 12.98 3.33 12.18 2.32 12.91 2.57
AB4 3.17 1.07 3.26 1.26 13.76 3.67 13.16 2.39 14.42 2.86
AB5 3.84 1.09 3.57 1.33 14.67 3.81 14.32 2.79 15.42 2.87

By comparing the mean values of PM concentrations reported by the AirBeam2
sensors and the monitoring stations, we found that the mean values of the PM2.5 and PM10
concentrations reported by the AirBeam2 sensors were generally lower than that of the
PM concentrations reported by the monitoring stations (see Table 1). Furthermore, by
comparing the mean values of the PM concentrations reported by the DustTrak sensor
and the monitoring sensors in the selected environments (except the office [indoor]), we
found that the mean values of the PM2.5 concentrations reported by the DustTrak sensor are
generally similar to that of the PM2.5 concentrations reported by the monitoring stations,
while the mean values of the PM10 concentrations reported by the DustTrak sensor are
lower than that of the PM10 concentrations reported by the monitoring stations. One of the
potential reasons is that the DustTrak sensors may underestimate PM10 concentration [46].
Meanwhile, the mean values of the PM2.5 and PM10 concentrations in the office (indoor)
environment reported by the DustTrak sensor are lower than that of the PM2.5 and PM10
concentrations reported by the monitoring stations. The potential reasons include that
there are air filters and air cleaning devices in the office (indoor). Using these devices and
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closing the windows improves the air quality in the office (indoor) compared that in the
other office (outdoor).

3.2. Sensor Performance in Different Environments

In this subsection, the data collected by the AirBeam2 sensors in different environ-
ments are evaluated by their correlation, accuracy, and bias using the 1 min average PM
concentrations recorded by the AirBeam2 and DustTrak sensors. Specifically, the Pearson
coefficient was used to explore the correlation between the data reported by the five Air-
Beam2 sensors. Figure 2 presents the correlations between the 1 min PM1, PM2.5, and PM10
average concentrations obtained by the AirBeam2 sensors in different environments. First,
the correlation coefficients range from 0.73 to 0.96, which indicates a high linearity and
correlation between the PM concentrations recorded by the AirBeam2 sensors in all the
selected environments. Then, we found that the correlation coefficients for data collected in
the MTR station (platform and lobby) are higher than those collected in other environments.
Specifically, data obtained by the AirBeam2 sensors on the platform of the MTR station
have the highest correlation coefficients for the 1 min PM1, PM2.5, and PM10 average con-
centrations. In addition, the results also indicate that the correlation coefficient decreases
as the size of PM increases. In other words, the correlation coefficient for the 1 min PM1
average concentrations has the highest value, while it has the smallest value for the 1 min
PM10 average concentrations.

Besides, the linear regression model and bias assessment (i.e., Formula (1)) were
used to measure the accuracy of the AirBeam2 sensors compared to the DustTrak sensor.
Table 3 shows the results of the evaluation for different environments. First, we found
that the 1 min PM average concentrations recorded by the AirBeam2 sensors in the office
(indoor) and MTR station (platform and lobby) environments, in general, have a linear
relationship with the data reported by the DustTrak sensor (i.e., R2 values range from 0.61
to 0.78, and slope values range from 0.44 to 0.95). The 1 min PM average concentrations
obtained by the AirBeam2 sensors in the office (outdoor) and seaside environments have
a non-linear relationship with the data recorded by the DustTrak sensor (i.e., R2 values
range from 0.11 to 0.23). Note that we also found that the R2 values range from 0.05
to 0.11 for PM1, 0.05 to 0.33 for PM2.5, and 0.23 to 0.58 for PM10 by using a high-order
curve (second-order and third-order) to fit the data obtained in the office (outdoor) and
seaside environments. These results are different from those obtained in previous studies,
which found a highly linear relationship (R2 = 0.88–0.89) between PM concentrations
recorded by AirBeam2 sensors and a DustTrak sensor [27]. A possible reason for this is
that AirBeam2 sensors are significantly affected in a relatively high humidity environment
with hygroscopic salts [24,47,48]. Specifically, the sensitivity of AirBeam2 sensors may
be affected due to the fog droplets, which may be detected as particles in a relatively
high humidity environment [49]. Because a seaside location is a relatively high humidity
environment with a high level of hygroscopic salts, the PM concentrations reported by
the AirBeam2 sensors in the seaside location in this study would have lower accuracy
than the PM concentrations collected in other environments. In addition, the relative
humidity of the atmosphere increases during rainy weather, often approaching 100%.
Thus, the PM concentrations reported by the AirBeam2 sensors on a rainy day would be
significantly affected and have lower accuracy than the PM concentrations collected in
other environments.
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Table 3. Evaluation of 1 min PM1, PM2.5, and PM10 average concentrations (µg/m3) reported by
AirBeam2 sensors compared with the DustTrak sensor in different environments.

Sensors Linear
Regression R2 %Bias Linear

Regression R2 %Bias Linear Regression R2 %Bias

Office (Indoor) PM1 PM2.5 PM10

AB1 y = 0.67x + 3.66 0.72 397 y = 0.52x + 3.16 0.72 71 y = 0.45x + 3.27 0.65 51
AB2 y = 0.69x + 3.71 0.76 469 y = 0.57x + 3.13 0.78 85 y = 0.52x + 3.21 0.69 66
AB3 y = 0.69x + 3.88 0.71 661 y = 0.57x + 3.36 0.76 122 y = 0.53x + 3.39 0.73 101
AB4 y = 0.66x + 3.79 0.76 567 y = 0.56x = 3.19 0.76 88 y = 0.48x + 3.33 0.68 69
AB5 y = 0.73x + 3.39 0.77 222 y = 0.54x + 2.92 0.76 51 y = 0.48x + 3.03 0.64 34

Office (Outdoor) PM1 PM2.5 PM10

AB1 y = 5.53x − 0.73 0.11 682 y = 3.42x − 1.84 0.17 184 y = 7.84x − 17.44 0.24 182
AB2 y = 6.36x − 0.67 0.12 776 y = 3.82x − 2.03 0.17 222 y = 7.01x − 12.29 0.16 227
AB3 y = 8.07x − 1.47 0.16 1387 y = 4.64x − 1.44 0.23 363 y = 10.70x − 16.34 0.32 327
AB4 y = 5.64x − 1.28 0.11 741 y = 3.72x − 1.94 0.19 235 y = 8.01x − 15.64 0.21 218
AB5 y = 6.51x − 0.31 0.13 651 y = 3.51x − 1.83 0.16 197 y = 7.05x − 14.69 0.18 189

MTR station(Platform) PM1 PM2.5 PM10

AB1 y = 0.84x + 9.41 0.76 173 y = 0.69x + 8.72 0.75 52 y = 0.47x + 11.87 0.65 31
AB2 y = 0.87x + 8.63 0.76 98 y = 0.74x + 7.81 0.77 43 y = 0.47x + 11.21 0.65 21
AB3 y = 0.95x + 9.21 0.78 139 y = 0.82x + 8.29 0.78 69 y = 0.59x + 11.25 0.67 53
AB4 y = 0.94x + 9.25 0.77 137 y = 0.76x + 8.65 0.76 64 y = 0.53x + 11.71 0.64 45
AB5 y = 0.87x + 9.31 0.72 121 y = 0.73x + 8.57 0.71 55 y = 0.48x + 11.94 0.57 35

MTR station(Lobby) PM1 PM2.5 PM10

AB1 y = 0.78x + 7.76 0.71 88 y = 0.65x + 6.42 0.76 23 y = 0.41x + 8.45 0.69 −1
AB2 y = 0.73x + 7.86 0.68 81 y = 0.59x + 6.89 0.72 21 y = 0.35x + 9.01 0.65 −3
AB3 y = 0.81x + 8.31 0.69 115 y = 0.69x + 7.03 0.72 43 y = 0.51x + 8.37 0.68 21
AB4 y = 0.89x + 7.64 0.64 110 y = 0.74x + 6.23 0.65 37 y = 0.46x + 8.42 0.61 12
AB5 y = 0.77x + 7.78 0.67 86 y = 0.63x + 6.74 0.72 25 y = 0.41x + 8.69 0.64 3

Seaside PM1 PM2.5 PM10

AB1 y = 0.66x + 10.93 0.19 117 y = 0.61x + 9.79 0.21 51 y = 0.44x + 11.95 0.22 27
AB2 y = 0.65x + 10.71 0.21 103 y = 0.66x + 8.94 0.24 46 y = 0.47x + 11.27 0.23 20
AB3 y = 0.66x + 11.37 0.16 137 y = 0.67x + 9.79 0.19 68 y = 0.53x + 11.86 0.21 48
AB4 y = 0.64x + 11.17 0.17 121 y = 0.64x + 9.61 0.19 54 y = 0.46x + 12.14 0.18 33
AB5 y = 0.63x + 10.92 0.17 105 y = 0.64x + 9.21 0.19 47 y = 0.46x + 11.74 0.18 24

In addition, the bias percentage between the data recorded by the AirBeam2 sensors
and the data collected by the DustTrak sensor decreases as the size of PM increases. This
result is in line with the results reported earlier in Section 3.1. The differences between
the mean values of PM concentrations recorded by the sensors decreases as the size of
PM increases.

3.3. Sensor Performance in Different Temporal Units

In this subsection, we focus on exploring how the correlation, accuracy, and bias of
PM concentrations recorded by the AirBeam2 sensors are affected by the use of different
aggregated temporal units. Figure S1 presents the correlation between the PM1, PM2.5,
and PM10 concentrations reported by the AirBeam2 sensors in different environments and
different temporal units (i.e., 5 s, 1 min, 10 min, and 30 min). We found that the correlation
increases as the aggregation level of the temporal unit increases for all environments.
Specifically, the correlation coefficients are around 0.6 to 0.7 when the temporal unit is 5 s,
while the correlation coefficients range from 0.95 to 1 when the temporal unit is 30 min. In
addition, the correlation coefficients for different temporal units are not affected by changes
in PM size.
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Figure S2 presents the results of the multiple linear regression models for the data
recorded by the AirBeam2 and DustTrak sensors in different environments and different
temporal units. The result indicates that the R2 values generally increase as the aggregation
level of the temporal units increases (i.e., from 5 s to 30 min) in the office (indoor) and MTR
station (platform and lobby) environments. For the office (outdoor) environment, increasing
the aggregation level of the temporal units (i.e., from 5 s to 30 min) does not significantly
affect the results of the multiple linear regression between the PM concentrations reported
by the AirBeam2 and DustTrak sensors. For the seaside environment, the R2 values first
increase as the aggregation level of the temporal units increases (i.e., from 5 s to 10 min)
and then decrease for the 30 min interval. Thus, the R2 values reach the maximum value
when the temporal unit is 10 min.

Figure S3 presents the results of the bias percentage between the PM concentrations
recorded by the AirBeam2 and DustTrak sensors in different environments and different
temporal units. The results suggest that changing the aggregated temporal units does not
significantly reduce the bias. Specifically, the bias values may increase or decrease with an
increase in the aggregation level of the temporal units (i.e., from 5 s to 30 min) in different
environments. These results suggest that increasing the aggregation level of the temporal
units increases the correlation of the PM concentrations obtained by the AirBeam2 sensors
in different environments, while it does not significantly improve the accuracy and bias for
the data.

3.4. Machine Learning-Based Calibration and Validation

In this subsection, we focus on developing and validating calibration models that
are based on the temperature and humidity data reported by the AirBeam2 sensors using
multiple linear regression (MLR) and the random forest (RF) method. We first used all
PM concentrations collected in the selected environments and aggregated them into 1 min
intervals. Table 4 presents the results of the calibrated models based on the data collected
in all selected environments. The results indicate low-to-moderate linearity (i.e., R2 values
range from 0.16 to 0.59) between the calibrated 1 min PM1, PM2.5 and PM10 average
concentrations recorded by the AirBeam2 and DustTrak sensors based on the MLR and RF
models. Furthermore, the results also suggest that the R2 values between the calibrated PM
concentrations data recorded by the AirBeam2 sensors and those recorded by the DustTrak
sensor decrease as the size of PM increases. In addition, the bias percentage significantly
decreases (i.e., the bias percentage range from −2.54 to 1.23) after the PM concentrations
data were calibrated.

Besides, we also excluded data collected in the office (outdoor) environment and
rerun the MLR and RF models. Table 5 presents the results of the calibrated models
based on the PM concentrations collected in the office (indoor), MTR station (platform
and lobby), and the seaside location. First, the results indicate a high linearity (i.e., R2

values range from 0.89 to 0.95) between the calibrated 1 min PM1, PM2.5, and PM10 average
concentrations recorded by the AirBeam2 and DustTrak sensors based on the MLR and RF
models. Furthermore, the results also suggest that R2 values between the calibrated PM
concentrations recorded by the AirBeam2 and DustTrak sensors are not affected by the size
of PM. In addition, the bias percentage significantly decreased (i.e., the bias percentage
ranges from −1.21 to −0.04) after the data were calibrated.
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Table 4. Summary of cross-validation R2, ME, RMSE, and bias percentage for calibration models
based on data collected in all selected environments.

Include Data Collected in the Office (Outdoor)

Sensors R2 ME (µg/m3) RMSE (µg/m3) % Bias R2 ME (µg/m3) RMSE (µg/m3) % Bias

MLR Models RF Models

PM1

AB1 0.51 1.45 4.64 −0.57 0.59 1.19 4.26 −2.54
AB2 0.52 1.34 4.58 −0.42 0.47 1.79 4.81 −0.33
AB3 0.63 1.32 3.67 −0.68 0.59 1.65 3.85 −0.04
AB4 0.51 1.51 4.66 −0.46 0.47 1.78 4.63 −0.12
AB5 0.50 1.53 4.67 −0.91 0.46 1.79 4.87 −0.21

PM2.5

AB1 0.44 1.53 5.61 0.22 0.41 1.99 5.76 −0.13
AB2 0.44 1.42 5.61 0.32 0.40 2.02 5.82 −0.32
AB3 0.55 1.33 4.47 0.15 0.51 1.87 4.70 −0.02
AB4 0.54 1.43 4.54 0.33 0.52 1.83 4.69 −0.09
AB5 0.43 1.59 5.65 −0.03 0.38 2.06 5.87 −0.38

PM10

AB1 0.18 2.68 12.88 1.12 0.22 3.01 12.50 −0.94
AB2 0.17 2.50 12.92 0.90 0.16 3.00 13.02 −0.15
AB3 0.27 2.18 9.82 1.23 0.41 2.67 8.84 −0.13
AB4 0.25 2.26 9.98 1.11 0.26 2.73 11.49 −0.22
AB5 0.21 2.46 11.11 0.10 0.21 2.84 11.11 −0.29

Table 5. Evaluation of 1 min PM1, PM2.5, and PM10 average concentrations (µg/m3) reported by
AirBeam2 sensors compared with the DustTrak sensor in different environments.

Exclude Data Collected in the Office (Outdoor)

Sensors R2 ME (µg/m3) RMSE (µg/m3) % Bias R2 ME (µg/m3) RMSE (µg/m3) % Bias

MLR Models RF Models

PM1

AB1 0.91 1.02 1.49 −1.00 0.94 0.72 1.15 −0.08
AB2 0.92 0.90 1.36 −0.73 0.92 1.02 1.42 −0.16
AB3 0.90 1.03 1.52 −1.07 0.94 0.70 1.17 −0.04
AB4 0.89 1.10 1.59 −0.85 0.95 0.69 1.13 −0.05
AB5 0.89 1.16 1.66 −1.21 0.90 1.15 1.56 −0.05

PM2.5

AB1 0.93 0.93 1.39 −0.64 0.95 0.74 1.18 −0.08
AB2 0.94 0.81 1.26 −0.30 0.94 0.76 1.23 −0.05
AB3 0.93 0.90 1.36 −0.57 0.94 0.74 1.20 −0.09
AB4 0.92 1.01 1.46 −0.43 0.93 0.93 1.34 −0.09
AB5 0.91 1.04 1.50 −0.73 0.95 0.74 1.18 −0.07

PM10

AB1 0.92 1.24 1.75 −0.98 0.94 0.96 1.47 −0.10
AB2 0.93 1.09 1.59 −0.51 0.94 1.01 1.53 −1.13
AB3 0.92 1.16 1.69 −0.91 0.94 0.94 1.46 −0.10
AB4 0.91 1.30 1.80 −0.66 0.93 1.06 1.58 −0.66
AB5 0.90 1.43 1.95 −1.29 0.94 0.97 1.49 −0.03
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Additionally, by comparing the results of cross-validation ME, RMSE, and bias per-
centage between the MLR and RF models in Tables 4 and 5, we found that the RF models
can generate more robust calibrated PM concentrations for the AirBeam2 sensors than
the MLR models, as the values of the ME, RMSE and bias percentage reported by the RF
models are generally smaller than that those reported by the MLR models.

These results are consistent with previous findings [24]. The results imply that there is a
non-linear relationship between the temperature, relative humidity, and PM concentrations
reported by AirBeam2 sensors during rainy weather. It is thus difficult to derive any
appropriate correction models.

4. Discussion

Previous studies have focused on establishing different linear models to calibrate
PM concentrations recorded by low-cost portable sensors in certain environments with
different concentration levels based on the applications in the literature [50,51]. This study
is important because it extends previous studies by presenting how the correlation, accuracy,
and bias of PM concentrations reported by low-cost PM sensors (i.e., AirBeam2 sensors)
would be affected by different types of urban environments and different aggregated
temporal units. Specifically, the results reveal that the PM (i.e., PM1, PM2.5, and PM10)
concentrations recorded by the AirBeam2 sensors are generally lower than those obtained
by the monitoring stations and the DustTrak sensor in different environments. The results
show the high linearity and correlation between the data recorded by the AirBeam2 sensors
in different environments for the three types of PM concentrations. By comparing the data
collected by the AirBeam2 and DustTrak sensors, the results also indicate that the accuracy
and bias of the data recorded by the AirBeam2 sensors are significantly affected by weather
conditions (i.e., rainy day) and environments with a relatively high humidity and a high
level of hygroscopic salts (i.e., seaside). Meanwhile, the correlation, accuracy, and bias of the
PM concentrations recorded by the AirBeam2 sensors are affected by PM size. In addition,
by using data aggregated in different temporal units (i.e., 5 s, 1 min, 10 min, and 30 min),
the results suggest that increasing the aggregation level of the temporal units (i.e., from 5 s
to 30 min) significantly increases the correlation coefficients for PM concentrations recorded
by the AirBeam2 sensors in different environments, while it does not significantly improve
the accuracy and bias of the data. Lastly, the calibration models indicate that using random
forest (RF) models would generate better results than multiple linear regression (MLR)
models for the data collected on sunny days (i.e., excluding the data collected on rainy
days). The findings have several important implications for researchers when designing
mobility-based environmental exposure studies that use low-cost PM sensors.

First, our results reveal a high linearity and correlation between the data recorded
by the AirBeam2 sensors in different environments when the aggregated temporal unit
is larger than a 5-s interval (e.g., 1 min). Specifically, the correlation coefficients between
the PM concentrations reported by the AirBeam2 sensors are not significantly affected by
the environment and the weather conditions (e.g., a relatively high humidity environment
with a high level of hygroscopic salts or a rainy day). Thus, our findings suggest that
researchers should perform tests to detect how different aggregated temporal units may
affect the results when used PM concentrations data reported by low-cost PM sensors
for mobility-based environmental exposure studies, which largely compare individual
exposure data. For instance, by comparing the PM concentrations recorded by low-cost
PM sensors with certain aggregated temporal units (e.g., 1-min), studies can explore which
social groups have a disadvantage in exposure to air pollution and thus shed light on
environmental inequality issues.

Second, our results indicate that the accuracy and bias of PM concentrations recorded
by the AirBeam2 would be affected by weather conditions (i.e., rainy days) and environ-
ments with relatively high humidity and a high level of hygroscopic salts (i.e., seaside).
Thus, when studying the health effects of PM exposure, low-cost PM sensors, without being
properly calibrated, may generate misleading measurements. In addition, the results also
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highlight the importance of deriving calibration models based on machine learning meth-
ods (e.g., random forest) with consideration of weather conditions. Specifically, the results
suggest that excluding data collected on rainy days based on random forest models for
different environments can generate better outcomes for data calibration. Thus, researchers
could develop machine learning models for data calibration in different environments when
using low-cost PM sensors to explore how PM concentrations may affect people’s health.
In addition, it should be kept in mind that weather conditions (e.g., rainy days) would
significantly affect the accuracy and bias of the data collected by low-cost PM sensors.

However, the study has several limitations. First, due to the sensors’ (i.e., the AirBeam2
and DustTrak sensors) limitations, we developed and validated the calibration models
based on the temperature and humidity data recorded by the AirBeam2 but could not
consider other meteorological factors (e.g., wind speed) in different types of environments
(e.g., outdoor and indoor environments of the office). Studies have shown that these factors
may also be important in terms of affecting PM concentrations [52]. Thus, it is necessary to
explore calibration models for PM concentrations data recorded by low-cost PM sensors
in different environments, with consideration of other meteorological factors (e.g., wind
speed) in future work.

Second, there is great potential to further extend our study on the evaluation and
calibration of low-cost PM sensors to different seasons or weather conditions based on
longer periods of data collection (e.g., including a weekday and a weekend day because
people’s daily activities would be significantly different between weekdays and weekends).
In addition, PM concentrations vary between different seasons or weather conditions. Thus,
future studies should also consider how the data recorded by low-cost PM sensors may be
affected in different seasons (e.g., winter and summer) or weather conditions (e.g., a snowy,
dry, and rainy day).

Third, there is an issue with the performance of the DustTrak sensor in the PM10
concentration data collection. The DustTrak sensor may underestimate PM10 concentrations,
and PM concentrations measured with the sensor may suffer from some random jumps
(see Section 3.1). This bias could introduce uncertainties in the accuracy assessment of
calibrated PM concentrations data for low-cost PM sensors. However, the methods applied
in this study can still be used for designing better mobility-based environmental exposure
studies that use low-cost PM sensors. Future studies would, of course, benefit from using
more reliable portable PM concentrations sensors to capture more accurate data for the
calibration of low-cost sensors in different types of indoor and outdoor environments (e.g.,
kitchen, smoking room, and various activity venues).

5. Conclusions

Low-cost PM sensor evaluation and calibration are crucial for establishing reliable PM
concentrations measurements for mobility-based environmental exposure studies. Using
data collected by five AirBeam2 sensors and one TSI DustTrak DRX Aerosol Monitor 8533
sensor in different environments (i.e., office [indoor and outdoor], MTR station [platform
and lobby], and seaside) in Hong Kong, this study first assessed the reliability of the PM
concentrations recorded by the AirBeam2 sensors during a 1 min average aggregation
using correlation, accuracy, and bias analysis. Then, the study further explored how the
correlation, accuracy, and bias of the PM concentrations recorded by the sensors are affected
by the use of different temporal units (i.e., 5 s, 1 min, 10 min, and 30 min). Lastly, the study
calibrated the data obtained by the sensors using multiple linear regression (MLR) and
random forest (RF). The results suggest that the accuracy and bias of PM concentrations
recorded by the AirBeam2 would be affected due to weather conditions (i.e., rainy days),
environments with relatively high humidity, a high level of hygroscopic salts (i.e., seaside),
and different aggregation levels of the temporal unit. The results also indicate that using RF
models would generate better results than MLR models for the data collected on sunny days
(i.e., excluding the data collected on rainy days). These results provide valuable insights
(e.g., the selection of predictive variables) for the research community when designing
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environmental exposure studies that use low-cost PM sensors. First, it is necessary to
perform tests to detect how different aggregated temporal units may affect the results of
PM concentrations data reported by low-cost PM sensors. Second, using machine learning
models (i.e., RF) for data calibration under different environments can generate better
results than MLR models. In addition, more efforts are needed to develop calibration
models under different weather conditions to obtain accurate PM concentrations data from
low-cost PM sensors.
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//www.mdpi.com/article/10.3390/s22062381/s1, Figure S1: Correlations for the PM1, PM2.5, and
PM10 concentrations (µg/m3) reported by the AirBeam2 sensors in different environments and
aggregated in different temporal units (i.e., 5-sec, 1-min, 10-min and 30-min); Figure S2: R2 of Linear
regression models for the PM1, PM2.5, and PM10 concentrations (µg/m3) reported by AirBeam2
and DustTrak sensors, and aggregated in different temporal units (i.e., 5-sec, 1-min, 10-min and
30-min); Figure S3: Bias percentage for the PM1, PM2.5, and PM10 concentrations (µg/m3) reported
by AirBeam2 and DustTrak sensors and aggregated in different temporal units (i.e., 5-sec, 1-min,
10-min and 30-min).
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