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Abstract: Based on the residual turbulent scintillation theory, the Mie-scattering lidar can measure
the intensity of atmospheric turbulence by detecting the light intensity scintillation index of the
laser return signal. In order to evaluate and optimize the reliability of the Mie-scattering lidar
system for detecting atmospheric turbulence, the appropriate parameters of the Mie-scattering lidar
system are selected and optimized using the residual turbulent scintillation theory. Then, the Fourier
transform method is employed to perform the numerical simulation of the phase screen of the laser
light intensity transformation on the vertical transmission path of atmospheric turbulence. The
phase screen simulation, low-frequency optimization, and scintillation index calculation methods are
provided in detail, respectively. Based on the phase distribution of the laser beam, the scintillation
index is obtained. Through the relationship between the scintillation index and the atmospheric
turbulent refractive index structure constant, the atmospheric turbulence profile is inverted. The
simulation results show that the atmospheric refractive index structure constant profile obtained by
the iterative method is consistent with the input HV5/7 model below 6500 m, which has great guiding
significance to carry out actual experiments to measure atmospheric turbulence using the Mie lidar.

Keywords: Mie lidar; atmospheric turbulence; residual turbulent scintillation; scintillation index;
atmospheric refractive index structure constant

1. Introduction

Atmospheric turbulence is a kind of irregular vortex motion and is generated mainly
due to three reasons: wind shear caused by the drag of the air on the Earth’s surface, ther-
mal convection caused by surface heat radiation, and fluctuation in the temperature and
velocity fields due to heat-releasing phase transition processes (deposition and crystalliza-
tion) [1]. The physical properties of turbulence, such as pressure, speed, and temperature,
are random. The atmospheric turbulence effect will cause a series of optical phenomena,
including light intensity scintillation, beam drift, beam expansion, and arrival angle fluctu-
ation [2]. Among them, the light intensity scintillation will cause the loss of received power,
thereby reducing the signal-to-noise ratio of the system. In fact, atmospheric turbulence has
a certain impact on the study of adaptive optics [3,4], atmospheric laser communication [5],
astronomical site selection, and astronomical observation image analysis [6]. However,
there is no complete model to fully describe the impact of atmospheric turbulence [7].

The Navier–Stokes (NS) equation is the basis for many atmospheric turbulence calcu-
lations. According to the different processing scales of atmospheric turbulence, it is divided
into direct numerical simulation (DNS), Reynolds averaged Navier–Stokes (RANS), and
large eddy simulation (LES). Among them, the direct numerical simulation method does
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not need any turbulence model, artificial assumptions, or empirical constants, and in prin-
ciple can solve all atmospheric turbulence problems [8]. Therefore, numerical modeling
is usually used as one of the main research methods to study atmospheric turbulence.
Numerical modeling usually includes the Fourier transform method (FFT), Zernike polyno-
mial higher-order method (Zernike), fractal method (Fractal), and some hybrid methods,
among which the Fourier transform method has been applied widely in the turbulent
phase screen simulation due to its fast calculation advantage, especially in the occasions
with high real-time requirements, such as space optical communication and atmospheric
laser transmission. However, the Fourier transform method has serious defects in the
low-frequency part, which makes the phase screen have a large error in characterizing
large-scale turbulent eddies [9]. Therefore, some research has been performed to overcome
the defect. In 1992, Lane et al. proposed a multi-order harmonic method to improve the
low-frequency compensation, simulation accuracy, and calculation speed [10]. In 2008 and
2009, Qian et al. studied the distribution of the phase screen and the selection of calcu-
lation parameters [11,12]. In 2013, Herman and Strungala proposed a method of adding
sub-harmonics to perform low-frequency compensation on the phase screen generated by
the FFT method [13]. In 2013, Charnotskii et al. proposed a sparse spectral model, which
superimposed the dense sampling of the low-frequency part and the sparse sampling of the
high-frequency part, and achieved good results [14]. In 2017, Feng et al. proposed a phase
screen simulation of atmospheric turbulence based on wavelet analysis and found that it
was in good agreement with the von Karman spectrum and the computational complexity
was reduced [15]. In 2019 and 2020, Zhang et al. proposed an optimization algorithm for
sparsely resampling the low-frequency region with the help of the gravitational search
algorithm to form a low-frequency compensation screen [16,17].

Moreover, in using the scintillation index to study atmospheric turbulence, some
research has been carried out. In 2006, Rao et al. conducted a simulation study on the
scintillation index of Gaussian beams in atmospheric turbulence and verified that the scin-
tillation index increases with the distance from the optical axis [18]. In 2017, Han et al. used
the step Fourier method to simulate the two-way transmission of the laser and analyzed
the backward enhancement effect of the plane mirror and the angle of reflection on the
scintillation index by calculating the scintillation index of the retroreflection spot [19]. In
2018, Li et al. simulated the scintillation index of plane waves propagating in atmospheric
turbulence with the non-Kolmogorov spectrum and compared the variation of the scintilla-
tion index of the Kolmogorov spectrum and the non-Kolmogorov spectrum alone on the
turbulent path [20].

An active optical remote sensing detection method is important for atmospheric
turbulence measurement. The differential image movement measurement method (DIM)
uses artificial light sources, which makes the measurement susceptible to light sources
and has low resolution [21]. The Doppler wind profiler (MST) measurement method
has high sensitivity and versatility but is easily affected by weather and has a limited
measurement range [22]. As an important active remote sensing method, lidar has the
characteristics of high resolution and high precision and is a reliable and effective means
to detect atmospheric parameters. The backscattering amplification effect of the lidar
(BSA) measurement method has high spatial, temporal, and resolution features as well
as good real-time performance, and is not affected by time integration [23], while the
scintillation lidar (DCIM) has accurate detection and low measurement cost [24]. In this
paper, considering the advantages and disadvantages of various measurement methods, a
Mie-scattering lidar system is selected for atmospheric turbulence measurement. According
to the residual turbulent scintillation (RTS) theory [25], it was improved by adding small
aperture diaphragms with appropriate apertures [26]. The atmospheric turbulence profile
is obtained by inversion using the light intensity information at different heights of the
return signal of the Mie-scattering lidar system.

In this paper, based on the RTS theory, the Mie-scattering lidar is selected to measure
the intensity of atmospheric turbulence and the numerical simulation is carried out by using
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the phase screen simulation. In the simulation, the improved fast Fourier transform method
with sub-harmonics is used to simulate the transmission of laser beams in atmospheric
turbulence. After atmospheric extinction and backscattering, telescope imaging spots at
different heights from the Mie-scattering lidar return signal are obtained. By analyzing the
imaging spot, the scintillation change of its light intensity can be obtained. Moreover, by
understanding the influence of specific measurement parameters on atmospheric turbu-
lence detection, the reliability of its detection performance can be judged and follow-up
guidance for system evaluation and optimization can be provided.

2. Numerical Simulation Model
2.1. Mie-Scattering Lidar

The schematic diagram of the Mie-scattering lidar is shown in Figure 1. The collimated
laser beam emitted by the transmitting system is expanded by the beam expander and then
transmitted to the atmosphere [27]. Through the combined action of atmospheric Fresnel
diffraction, atmospheric extinction and atmospheric turbulence [28], the backscattered
return signal is received by the receiving system and then passes through the spectroscopic
system. The return signals of each wavelength are separated and the Mie-scattering signal
with a wavelength of 532 nm is selected for our goal. Finally, the return signal is detected,
amplified, and displayed by the signal acquisition system. Table 1 shows the system
parameters of the Mie-scattering lidar [29].
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Figure 1. The structure diagram of the Mie lidar system.

The improved Mie-scattering lidar system is mainly based on the RTS theory, and a
suitable aperture diaphragm is added to the original Mie-scattering lidar system to meet
the needs of atmospheric turbulence detection. In RTS theory [25], when light propagates
in the atmosphere, if the radius of the scatterer is smaller than the spatial correlation scale
lI (lI =

√
λL, where λ is the wavelength of the incident laser light, L is the laser detection

distance), for any large receiving aperture D, the backscattered light intensity signal can
reduce the aperture averaging effect, and there will be some light intensity fluctuations.
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The following four conditions are required to be satisfied: (1) the single scattering
is approximate and the aerosol particle size is uniform; then, the laser detection distance
L, the average radius of aerosol particles a, and the incident light wavelength λ, satisfy
L� a2/λ; (2) atmospheric optical thickness τ �1; (3) the radial light intensity correlation
scale lI‖ (lI‖ ≈ L) is much larger than the scatterer scale cτ/2 (where c is the speed of
light, τ is the pulse width), and the scatterer scale is much larger than the wavelength,
that is, L � cτ/2 � λ; and (4) under weak fluctuations (σI

2 � 0.6), the telescope
receiving aperture D, the turbulent coherence length of plane waves ρ0, lI and ρcv satisfy
D � ρ0 � lI � ρcv (where σI

2 is the logarithmic light intensity fluctuation variance;
ρcv = 2L

kaef
, where ρcv is the light intensity coherence length derived from the Van–Cittert–

Zernike theory, aef is the effective size of the beam from the light source L, and k is the wave
number, k = 2π/λ). The lidar can be distinguished by two characteristic scales, namely,
aerosol spot scale, la = λF/D, and turbulence-related scale, lt = FlI/L, where F is the focal
length of the telescope. Note that la/lt = D/

√
λL, so it generally satisfied lt � la for most

large-aperture receiving systems (D �
√

λL).

Table 1. The system parameters of the Mie-scattering lidar.

Transmission System Parameter Information

Laser Semiconductor pumping
(Nd:YAG) Telescope Schmidt–Cassegreen

Frequency 10 Hz Diameter 10 inches
Pulse energy (355 nm, 532 nm, 1064 nm) 60–300 mJ Laser Power Stability (532 nm) ≤2%

Pulse width (532 nm) ≤6 ns Distance resolution 3 m
power 500 W Control interface type RS232

Receive system parameter information

Focal length 2500 mm Focal ratio f/10
Spot stability ≤50 µrad Spot diameter (1064 nm) 7 mm

PMT Hamasatmu R3896 Field of view 0.4 mrad

Because the spatial scales la and lt of the scintillation spot are completely different,
three different expressions for the fluctuation of the backscattered light intensity can be
obtained by changing the diameter of the telescope’s field of view diaphragm d0:

σp
2 = 1 + 2σI

2, d0 � la (1)

σp
2 = σI

2, la � d0 � lt (2)

σp
2 = O

(
σI

2/
(

d0

F
√

λ/L

)7/3
)

, lt � d0 (3)

where, σp
2 is the variance of the intensity fluctuation of the backscattered light passing

through the aperture; σI
2 is the variance of the intensity fluctuation of the probe beam.

Equation (1) shows that the variance of light intensity fluctuations includes aerosol speckle
fluctuations and turbulence fluctuations. Equation (2) shows that the diaphragm smooths
the aerosol speckle fluctuations but includes turbulence fluctuations. Equation (3) shows
that aerosol speckle fluctuations and turbulence fluctuations are smoothed by the di-
aphragm, and the total received energy does not fluctuate.

In this paper, the selected telescope aperture D is 10 inches (254 mm), the repetition
frequency f is 10 Hz, and the adjustable focal length F is 2500 mm. Considering the
experimental operability and the actual laboratory conditions, the selected field of view
of the telescope is d0 ≥ 0.2 mm. According to the RTS theory, the spatial correlation scale
lI (lI =

√
λL) of the light intensity fluctuation is calculated as shown in Figure 2. The

spatial correlation scale lI increases with the increase in the detection distance and incident
wavelength. When the detection distance is the maximum value of 3 km and the incident
laser wavelength takes the maximum value of 1064 mm, lI gets the maximum value of
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57.5 mm, which obviously satisfies D � lI. In addition, according to our laboratory’s
long-term measurement results of aerosol particle spectral distribution in the Yinchuan
area, China, it can be known that the aerosol particle size a = 0.9 µm. Yinchuan area is
located in the junction of the four deserts, namely Badain Jaran, Ulan Buhe, Tengger, and
Mu Us deserts, combined with the typical temperate continental semi-arid climate, the
aerosol particle size in spring is slightly larger than the average; obviously, all meet the
condition ar � lI. Therefore, the improved Mie-scattering lidar system can satisfy the
RTS theory. By changing the diameter of the field of view diaphragm, the information
characterizing atmospheric turbulence can be obtained from the return signal.
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Gaussian beam is one of the most commonly used models in lasers. In fact, the light
intensity of a Gaussian beam in a plane is perpendicular to the direction of propagation. A
Gaussian beam in a homogeneous medium is expressed as:

E(x, y, z) = E0
ω0

ω(z)
exp{−[ r2

ω(z)2 + i
k

2R(z)
]} (4)

I(x, y, z) = E0
2 ω0

2

ω(z)2 exp{−[ 2r2

ω(z)2 ]} (5)

where, ω(z) is the beam radius (i.e., ω(z) = ω0

√
1 + z2/z2

0), ω0 is the minimum value
of ω(z) at z = 0, which is called the light waist radius, r is the distance between a point in
space (x, y, z) and the light source; and k is the wave number (i.e., k = 2π/λ). Figure 3
shows the light intensity distribution of the Gaussian beam with a beam waist radius of
20 mm, wavelength λ = 532 nm, and z = 0. It can be seen that the light spot is a regular
circle, and the light spot is at the center.
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2.2. Numerical Simulation of Gaussian Beam Transmission in Atmosphere

When the laser is transmitted in the atmosphere, it is subjected to the dual action of
the turbid atmosphere and continuous turbulence and then diffracted in the atmospheric
space, resulting in atmospheric scattering and absorption and a series of turbulent effects
caused by turbulent refraction. In the phase screen model, the light propagation in atmo-
spheric turbulence mainly starts from the light propagation equation. Assuming that the
transmission path of the light beam is composed of several thin phase screens distributed
in a vacuum environment, and when the phase change caused by the refractive index of the
medium is particularly small, the process of light propagation in a vacuum environment
and the phase modulation of the medium can be regarded as completely independent
of each other and completed simultaneously [1]. That is, the multi-layer phase screen
model of light propagation in a continuous random medium is shown in Figure 4, in which
the circles or ellipses represent random media in the atmosphere, such as atmospheric
molecules, aerosols, etc. The phase disturbance is firstly generated by a thin phase screen
with negligible thickness. After propagating through the vacuum of distance ∆z, the phase
disturbance of the previous phase screen is superimposed on this phase screen to repeat
the phase modulation, with the above process repeating until the end of the transmission.

Assuming that the light travels along the z direction, the light field can be expressed
as E = ueikz. When the laser passes through the atmospheric turbulence with a refractive
index of n = 1 + n1, under the condition of paraxial approximation, the light propagation
satisfies the parabolic equation:

2ik
∂u
∂z

+
∂2u
∂2x

+
∂2u
∂2y

+ 2k2n1u = 0 (6)

where, k = 2π/λ, λ is the wavelength of the light wave, k is the wave number, and n1 is
the refractive index fluctuation.

Let the transmission distance L of the light wave be divided into Nz segments according
to ∆z equal intervals, so the head and tail coordinates of the i-th segment are zi−1 and zi,
respectively, and the i-th phase screen is set at the endpoint zi of each segment. For each
phase screen, the grid spacing of ∆x is equally divided into N × N grids, and the above
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formula is solved by the step-by-step method. It can be known that the field distribution of
the I + 1-th phase screen is:

ui+1 = F−1[F{ui exp(ikn1∆z)} exp

(
−i

κ2
x + κ2

y

2k
∆zi

)
] (7)

where, F−1 and F are the inverse Fourier transform and Fourier transform, ui is the field
distribution of the i-th phase screen, ∆zi = zi+1 − zi is the distance between the phase
screen, and κx and κy are the phase space wave number with the unit of rad/m, which are
related to the scale of turbulence.
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The most important problem in the numerical simulation method of light propagation
is to construct the appropriate phase screen, so that it can accurately reflect the change
in the atmospheric turbulent refractive index as much as possible [30], that is, to choose
the appropriate refractive index fluctuation n1. We use the spatial spectrum model of
atmospheric turbulence to obtain a random field of the phase space, and then use Fourier
transform to get the spatial distribution of the two-dimensional phase. The specific process
is as follows: generate a complex Gaussian random number matrix aR, select an atmospheric
turbulence power density spectral function φn to filter it to obtain a random field in the
complex space, and perform inverse Fourier transform on the discrete complex random
field to obtain the real phase distribution in space.

Atmospheric turbulence refractive index spectral function φn and atmospheric turbu-
lence phase spectral function φφ using Kolmogorov spectrum [2] are written by:

φn(κ) = 0.033 ∗ Cn
2(h) ∗ κ

−11/3 1/L0 ≤ κ ≤ 1/l0 (8)

φφ(κ) = 2π ∗ k2 ∗ ∆z ∗ φn(κ) (9)

where, Cn
2 is the atmospheric refractive index structural constant when the laser travels

along the horizontal path, and the unit is m−2/3; κ is the spatial frequency; L0 is the
turbulent outer scale, and l0 is the turbulent flow inner scale, which determines the largest
and small eddies in the turbulent eddy.

The complex space random field obtained after filtering the complex Gaussian random
number matrix aR is given by:

S̃(κx, κy) = aR

√
φφ

(
κx, κy

)
(10)

aR = AR + iBR (11)

where, AR and BR are Gaussian random numbers whose real and imaginary parts
have a mean of 0 and a variance of 1. The real and imaginary parts of the phase field
obtained by Equation (10) are independent of each other, and both satisfy the spatial–
spectral distribution.
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From the above, the field distribution in the continuous space can be obtained. How-
ever, the numerical simulation needs to generate a discrete random field, that is, it needs to
perform discrete Fourier transform on it. Taking a phase screen as an example, as shown
in Figure 5, the square phase screen with side length L is divided into N equal parts to
form N × N square grids with a spacing of ∆x. Then, the discrete Fourier transform of
Equation (10) can be obtained:

S̃(p∆k, q∆k) = aR

√
φφ(p∆k, q∆k)/∆k (12)

where, ∆k is the wavenumber interval of the phase space, according to the sampling
theorem, ∆k = 2π/(N∆x).
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Figure 5. Schematic diagram of phase screen grid simulation.

In order to obtain the phase distribution in real space, the inverse Fourier transform of
Equation (12) can be given by:

Shig(p∆x, q∆x) =
1

N2

N−1

∑
m=0

N−1

∑
n=0

S̃(p∆k, q∆k) exp[−2πi(mp + nq)/N] (13)

2.3. Low-Frequency Sampling Optimization

For the simulated turbulent phase screen generated by the Fourier transform method,
the range of the minimum wave number interval ∆k of the phase screen does not include
(−∆κx/2, ∆κx/2) and

(
−∆κy/2, ∆κy/2

)
, so it has the disadvantage of insufficient low

frequency [31]. We use the method of adding sub-harmonics to perform low-frequency
compensation on the phase screen by the Fourier transform method. In essence, the
high-frequency phase screen simulated by the FFT method is interpolated and fitted to
improve the statistical characteristics of low frequency. The specific process is as follows:
firstly, divide the square area surrounded by the first sampling point of the low-frequency
part limited to the high-frequency part into nine areas with equal area; then, set the
sampling points contained in the area (including the edge part) to zero; and finally, take
eight small areas outside the center as new sampling points to form a p-order (p ≥ 1)
harmonic network.
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As shown in Figure 6, the sampling interval of the p-th harmonic network becomes
∆ fp = ∆k/3p, that is, the original high-frequency sampling area is replaced by 3−2p low-
frequency sampling small areas. According to the Kolmogorov spectrum, the subharmonic
low-frequency compensation screen can be expressed as:

Slow(p′∆x, q′∆x) =
NP

∑
P=1

1

∑
m′=0

1

∑
n′=0

S̃(p′∆x, q′∆x) exp
[
−2πi3−P

(
m′p
N

+
n′q
N

)]
(14)

S̃low(p′∆x, q′∆x) = aR
′
√

φφ(p′∆x, q′∆x)/∆k (15)
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Therefore, the phase screen expression after sub-harmonic compensation is written by:

S(p∆x, q∆x) = Shig(p∆x, q∆x) + Slow(p′∆x, q′∆x) (16)

The phase structure function is a quantity that describes the statistical properties of
the atmospheric turbulence phase screen, and the accuracy of the simulation is generally
judged by a large number of phase screens. The phase structure function is defined by [32]:

D∅
(→

r
)

=

〈[
∅
(→

ρ +
→
r
)
−∅

(→
ρ
)]2
〉

= 2
(

B∅(0)− B∅
(→

r
))

(17)

When the laser is transmitted in the atmospheric turbulence whose spectral model
takes the Kolmogorov spectrum, the theoretical expression of the structure function is given
by [32]:

D∅
(→

r
)

= 2.91k2
∣∣∣→r ∣∣∣5/3 ∫ 1

0
((l − ∆z)/l)5/3·C2

n(s)ds (18)

For the inner scale, taking infinity (κ0 → ∞ ) and infinitely small, there are:

D∅
(→

r
)

= 6.88
(∣∣∣→r ∣∣∣/r0

)5/3
(19)

D∅
(→

r
)

= 6.16r0
5/3

3
5

(
L0

2π

)5/3
−K5/6

(
rL0
4π

)5/6

Γ(11/6)
(

2πr
L0

)

 (20)

where K5/6 is the modified Bessel function of the third kind, and Γ(11/6) is the Gamma function.
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From a statistical point of view, when giving a large number of random phase screen
samples, its structure function will gradually converge to its expected structure func-
tion. In order to reduce the calculation amount, the expected structure function can
be calculated directly [17]. The specific process is as follows: perform inverse Fourier
transform on the phase spectral function φφ

(→
κr

)
to obtain the auto correlation function

B∅
(→

r
)

=
s +∞
−∞ φφ

(→
κr

)
ei
→
r ·→κr d

→
κr, and then substituting it into Equation (17) can get its

structure function. The auto correlation functions of the high-frequency phase screen and
low-frequency compensation can be written by:

B∅(p, q) = ∑N−1
m=0 ∑N−1

n=0 f 2(p, q) exp[−2πi(mp + nq)/N] (21)

B∅
(

p′, q′
)
= ∑Np

p=1 ∑N−1
m=0 ∑N−1

n=0 f 2(p′, q′
)

exp
[
−2πi3−p(mp + nq)/N

]
(22)

where, f (p, q) and f (p′, q′) are the spatial filter functions, f (p, q) = 2π
∆x·N
√

0.00058r0
−5/6(( p

∆x·N
)2

+
( q

∆x·N
)2
)−11/12

, f (p′, q′) = 2π3−p

∆x·N
√

0.00058r0
−5/6

((
p′·3−p

∆x·N

)2
+
(

q′·3−p

∆x·N

)2
)−11/12

,

and r0 is the atmospheric coherence length, which is taken as 0.185.

2.4. Scintillation Index of Laser Return Signal

For the RTS theory, the light intensity change of the lidar return spot is the research
focus. Under weak turbulence conditions, the scintillation index β2

I is one of the commonly
used physical quantities to describe atmospheric turbulence. β2

I represents the normalized
light intensity fluctuation difference, which is defined as:

β2
I (ρ, L) =

〈
I2〉− 〈I〉2
〈I〉2

(23)

where, < > represents the ensemble mean of the light intensity, and ρ represents the radial
distance from the optical axis of the Gaussian beam.

It is known that the Gaussian beam will produce spot drift after transmission in
atmospheric turbulence. In order to obtain its scintillation index β2

I (ρi, Li) through several
light spots with a transmission distance of Li, one need to judge the drift distance ρi of the
center of mass of the light spot [33]. The spot centroid is defined as:

ρc =
x

ρI(ρ)dρ/
x

I(ρ)dρ (24)

Usually, its first moment is used to represent the coordinates of the centroid of the
spot, namely [1]:

xc =
x

xI(x, y)dxdy/
x

I(x, y)dxdy (25)

yc =
x

yI(x, y)dxdy/
x

I(x, y)dxdy (26)

In the simulation, ten light spots with a transmission distance of ρi are taken. For each
light spot, if ρi ≤ 15∆x, the center of mass of the drifted light spot is selected as the center
of the circle. In addition to this, take 15∆x as the radius to make a circle, and count the
light intensity of points in the circle. If ρi > 15∆x, the center of mass of the spot after the
drift is also taken as the circle center. Then, ρi − 1.5∆x and ρi + 1.5∆x are used as the radii
to make a circle, respectively. Through counting the light intensity of N nodes in the ring,

the scintillation index can be calculated by the definition formula β2
I (ρi, Li) =

〈I2〉i−〈I〉2 i

〈I〉2 i
.

Finally, ten statistical averages are performed to obtain the final scintillation index at a
certain distance.

For a Gaussian beam, according to the Rytov theory, the spot scintillation index of the
beam is defined as:

β2
I (ρ, L) = 4× 2.17k7/6Re

{
{[iγ(L− z)]5/6 − [γi(L− z)]5/6}C2

n(z)dz
}

(27)

where, k = 2π/λ, γ = (1 + iaz)/(1 + iaL) = γr − iγi, a = λ/πW2
0 + i/R0.
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2.5. Inversion of Turbulent Profile

The refractive index structure constant Cn
2 can directly describe the fluctuation of

the refractive index and is one of the most intuitive physical quantities to measure the
intensity of atmospheric optical turbulence. The atmospheric turbulence intensity profile is
the variation of atmospheric refractive index structure constant Cn

2 with height [33]. In this
paper, the refractive index structure constant Cn

2 can be calculated from the correlation re-
lationship between the known spherical wave scintillation index β I,S

2 and the atmospheric
refractive structure constant Cn

2 in the horizontal and vertical directions, so as to obtain
the atmospheric turbulence intensity profile.

Kolmogorov believes that atmospheric turbulence is composed of turbulent eddies
with great difference and different scales. Under the large Reynolds number Re ( Re = UL/ν ,
where U is the characteristic velocity of the fluid, L is the overall characteristic scale of
the fluid, and ν is the molecular kinematic viscosity coefficient), the turbulent eddies
of different scales coexist. After the cascade process, the small-scale turbulence finally
reaches a statistical equilibrium process, that is, local isotropic turbulence [2]. The three-
dimensional power spectrum function of the locally isotropic turbulent refractive index
fluctuation is expressed as:

φn(κ) = 0.033 ∗ Cn
2 ∗ κ−11/3 ∗ f(κl0) (28)

where, φn(κ) is the atmospheric turbulence power spectrum function, κ is the spatial
frequency, l0 is the turbulent inner scale, that is, the scale that determines the smallest
vortex in the turbulent vortex, and f (κl0) is the inner scale correction model factor.

The Kolmogorov atmospheric turbulence power spectrum is an ideal power spectrum
model, which does not consider the inner scale effect of turbulence. It considers that the
outer scale L0 is infinite and the inner scale lo is zero [34]. At this time, f (κl0) = 1. So the
three-dimensional power spectrum function is expressed as:

φn(κ) = 0.033 ∗ Cn
2 ∗ κ−11/3 (29)

Under the condition of weak fluctuation (βI
2 < 1), the scintillation index satisfies:

β I
2 = exp

(
4σ2

χ

)
− 1 ≈ 4σ2

χ (30)

σ2
χ = (2πk)2

∫ L

0
dz
∫ ∞

0
sin2[P(γ, κ, z)]φn(κ)|zκdκ (31)

where, σ2
χ is the logarithmic amplitude fluctuation variance, k = 2π/λ is the wave number,

and κ is the spatial frequency.
In the vertical direction, according to the Kolmogorov spectrum, the relationship

between the spherical wave scintillation index β I,S
2 and the refractive index structure

constant Cn
2 is given by:

β I,S
2(L) = 4σ2

χ = 2.25 ∗ k
7
6 ∗

∫ L

0
Cn

2 ∗
[

z(L− z)
L

] 5
6
dz (32)

The atmospheric turbulence intensity profile can be inverted by the iterative method.
The entire detection range 0~L km is evenly divided into several parts, and the correspond-
ing length interval of each part is ∆L. Assuming that the refractive index structure constant
Cn

2 in each segment is a constant, then the Cn
2 in each segment can be directly extracted

from the integral equation. Here, taking Equation (32) as an example, firstly, integral the
range from zero to L1, the corresponding spherical wave scintillation index β I,S

2, Cn1
2

within zero to L1 can be obtained. Then, by iterating in turn, the curve of Cn
2 changing

with the detection height under the vertical detection path can be obtained. Therefore,
using the hierarchical iteration method, Equation (32) can be converted to Equation (33).

β I,S
2(L) = 2.25 ∗ k

7
6 ∗


∫ L1

0 C2
n1
∗
[

z(L1−z)
L1

] 5
6 dz +

∫ L2
L1

C2
n2
∗
[

z(L2−L1−z)
L2−L1

] 5
6 dz + . . .

+
∫ Ln

Ln−1
C2

nn ∗
[

z(Ln−Ln−1−z)
Ln−Ln−1

] 5
6 dz

 (33)
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3. Simulation Results and Analysis
3.1. Comparison of Low-Frequency Sampling Optimization Results

In the simulation model, the transmission of laser light in atmospheric turbulence
is regarded as a series of phase screens placed in the Gaussian beam, including high-
frequency phase screens and low-frequency compensated phase screens. Assuming that
the turbulent spectrum structure is the Kolomogorov spectrum, the corresponding phase
screen is constructed by the Fourier transform method, here, Cn

2 = 2× 10−15, L = 0.5 m,
N × N = 256× 256, ∆z = 200 m, and the transmission distance L = 2000 m. Figure 7
shows the phase distribution of the high-frequency phase screen numerically simulated in
the turbulent atmosphere.
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Figure 7. The three-dimensional (left) and two-dimensional (right) schematic diagrams of the phase
distribution of the high-frequency phase screen numerically simulated in the turbulent atmosphere.

In view of the shortcomings of the lack of low-frequency information in the phase
screen constructed by the Fourier transform method, the low-order harmonic compensation
is performed. According to the steps mentioned above, the schematic diagram of low-
frequency compensation for numerical simulation of the phase distribution in a turbulent
atmosphere is shown in Figure 8. It can be seen that the transition of the phase distribution
is smoother.

Figure 9 shows the comparison of the Kolmogorov phase screen structure function.
It can be seen that the phase distribution obtained by the spectral inversion method is
consistent in the high-frequency part, but obviously insufficient in the low-frequency part.
However, the phase distribution after the third harmonic compensation is significantly
improved in the low-frequency part.
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Figure 8. The three-dimensional (left) and two-dimensional (right) schematic diagrams of the
numerically simulated phase distribution in the turbulent atmosphere after the third harmonic
compensation under the same conditions.
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3.2. Result Verification of Turbulent Phase Screen Simulation Model

In order to test the reliability of the results of the turbulent phase screen simulation
model, the scintillation index is chosen as the physical quantity to test this method. In
order to simulate the transmission of the laser beam in atmospheric turbulence, we select
the Gaussian distribution of the laser beam to pass through the phase screen shown in
Figure 8. Figure 10 shows the light intensity distribution of the laser beam passing through
the atmospheric turbulence on the vertical path. It can be seen that the phase disturbance
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generated by the Gaussian beam after passing through the turbulent phase screen makes the
light intensity distribution no longer satisfy the Gaussian distribution. When the distance
between phase screens (∆z) remains the same, the discrete degree of the spot increases with
the increase in the transmission distance (L); when the transmission distance (L) remains
the same, the discrete degree of the spot becomes larger with the increase in the distance
between the phase screen (∆z).
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Figure 10. Light intensity distribution of the laser beam on the vertical path (a) ∆z = 75 m, L =

1000 m, (b) ∆z = 75 m, L = 2000 m, (c), ∆z = 200 m, L = 1000 m (d) ∆z = 200 m, L = 2000 m.

When the conditions are C2
n = 2× 10−15, L = 0.5 m and N×N = 256× 256, after

changing the distance between the phase screens (∆z) and the transmission distance (L),
respectively, the light intensity distribution of the laser beam passing through the phase
screen are shown as (a), (b), (c) and (d).

For the light intensity distribution of the laser transmission on the vertical path, the
spot drift phenomenon occurs. Figure 11 shows the spot drift phenomenon. In Figure 11,
the hexagon indicates the original spot centroid located in the middle, while the triangle
shows the centroid of the drifted spot. It is clear that the larger the value of the phase
screen spacing ∆z is, the greater the discrete degree of the spot and the more obvious the
phenomenon of light spot drifts.
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Figure 11. Spot drift phenomenon of laser transmission (a) ∆z = 75 m, L = 2000 m, (b) ∆z =

200 m, L = 2000 m.

When the conditions are C2
n = 2× 10−15,L = 0.5 m and N×N = 256× 256, the

distance between the phase screens (∆z) and the transmission distance (L) are changed,
respectively, and the spot drift of the laser beam passing through the phase screen are
shown in (a) and (b).

In this paper, the scintillation index of different heights is simulated and 10 spot
images of the simulation results for each height are employed to obtain the corresponding
scintillation index from the definition formula for each spot image. The above results
are statistically averaged to obtain the scintillation index simulation value representing
each height, and then compared with the Rytov theoretical results as shown in Figure 12.
It can be seen that the change trend of the theoretical value and the simulation value is
basically consistent.
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3.3. Atmospheric Turbulence Profile

The Hufnagel-Valley 5/7(HV5/7) model is a common statistical model representing the
turbulence profile in the mid-latitude inland region, and the expression is as follows [35]:

Cn
2(h) = 5.94·10−53·

(
21
27

)2
·h10·e

−h
1000 + 2.7·10−16·e

−h
1500 + 1.7·10−14·e

−h
100 (34)

Figure 13 shows the profile of the atmospheric refractive index structure constant
obtained by the iterative inversion algorithm. Compared with the input HV5/7 model, it
can be seen that below the detection height of 4500 m, the Cn

2 obtained by inversion is
slightly smaller than that of the HV5/7 model. When the detection height is 4500~6500 m,
the Cn

2 inverted is slightly larger than that of the HV5/7 model. Therefore, the atmospheric
refractive index structure constant profile obtained by the inversion algorithm is consistent
with the input model below 6500 m, which preliminarily verified that the Mie-scattering
lidar improved by the RTS theory has certain reliability in detecting atmospheric turbulence.
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Figure 13. The profile of atmospheric refractive index structure constant obtained by the iterative
inversion algorithm.

4. Conclusions

Numerical simulation is the most commonly used method to study atmospheric tur-
bulence, and it can be used to verify and evaluate the atmospheric turbulence detection
capability of lidar systems. The Fourier transform method is one of the methods in nu-
merical simulation. In this paper, using RTS theory combined with a Mie-scattering lidar
system in the laboratory, a phase screen simulation experiment for detecting atmospheric
turbulence was designed. The Gaussian laser beam transmission in atmospheric turbulence
was simulated by the Fourier transform method with the addition of the third harmonic,
and a series of phase screens were used to simulate the phase disturbance and light intensity
scintillation caused by atmospheric turbulence. The scintillation index can be calculated
from the light intensity distribution of the phase screen. From the relationship between the
scintillation index and the atmospheric refractive index structure constant in the vertical
direction, the simulated atmospheric turbulence profiles are obtained by iterative inver-
sion, and the accuracy of the phase screen construction is tested by the Rytov theory. The
simulation results are shown as follows:
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(1) Compared with the traditional Fourier transform method, the Fourier transform
method with the addition of the third harmonic makes the phase distribution of the
phase screen smoother, and it makes up for the shortcomings of the traditional method
of insufficient low-frequency distribution;

(2) Comparing the spot scintillation index of Gaussian beam obtained by the Rytov theory,
the trend of the scintillation index obtained by simulation is basically consistent with
the theoretical value. The scintillation index gradually increases with the increase
in the measurement distance, and it can be seen that the constructed phase screen
is accurate;

(3) Comparing the atmospheric turbulence profile of the HV5/7 model, the atmospheric
refractive index structure constant profile obtained by iterative inversion is in good
agreement with the HV5/7 model below 6500 m; it fluctuates with the increase in the
detection distance, generally increases and tends to be stable.

This study preliminarily verifies the reliability of the Mie-scattering lidar system for
detecting atmospheric turbulence from a theoretical point of view, and provides a low-
cost and easy-to-operate measurement method for detecting atmospheric turbulence in
the future. In fact, the simulation of atmospheric turbulence has practical applications,
such as the determination of the height of the top of the atmospheric boundary layer and
the study of the wind load characteristics of the atmospheric boundary layer turbulence
on low-rise buildings. At the same time, it provides a feasible research method for in-
depth understanding of the direct and indirect effects of aerosols. Further research on the
inversion algorithm is required in the later stage.
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