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Abstract: Understanding the operation of complex assets such heavy-duty vehicles is essential for
improving the efficiency, sustainability, and safety of future industry. Specifically, reducing energy
consumption of transportation is crucially important for fleet operators, due to the impact it has on
decreasing energy costs and lowering greenhouse gas emissions. Drivers have a high influence on
fuel usage. However, reliably estimating driver performance is challenging. This is a key component
of many eco-driving tools used to train drivers. Some key aspects of good, or efficient, drivers
include being more aware of the surroundings, adapting to the road situations, and anticipating likely
developments of the traffic conditions. With the development of IoT technologies and possibility of
collecting high-precision and high-frequency data, even such vague concepts can be qualitatively
measured, or at least approximated. In this paper, we demonstrate how the driver’s degree of
attention to the road can be automatically extracted from onboard sensor data. More specifically,
our main contribution is introduction of a new metric, called attention horizon (AH); it can, fully
automatically and based on readily-available IoT data, capture, differentiate, and evaluate a driver’s
behavior as the vehicle approaches a red traffic light. We suggest that our measure encapsulates
complex concepts such as driver’s “awareness” and “carefulness” in itself. This metric is extracted
from the pedal positions in a 150 m trajectory just before stopping. We demonstrate that this metric is
correlated with normalized fuel consumption rate (FCR) in the long term, making it a suitable tool
for ranking and evaluating drivers. For example, over weekly periods we found a negative median
correlation between AH and FCR with the absolute value of 0.156; while using monthly data, the
value was 0.402.

Keywords: attention horizon; driver performance metric; fuel consumption rate; road safety

1. Introduction

Fuel efficiency of vehicles is an important concern for economical and environmental
reasons. High efficiency of operation is the key focus of Smart Industry. It has been shown
that the driver’s behavior is a significant factor in fuel efficiency of a vehicle [1–7]. For this
reason, in the past decade there has been a surge of studies that try to determine the driving
behavior that maximizes fuel efficiency [8–13]. The term “eco-driving” [8,13–19] is often
used to describe this type of efficient driving, although it also includes strategic and tactical
decisions that lead to less fuel consumption, besides driving behavior itself. In the past,
relatively simple data from controlled vehicle testing was often used to determine the
optimal behavior [1,20]. However, nowadays it is possible to collect sufficiently detailed
data from normal vehicle operation to extract the best sequence of actions by employing fuel
consumption models of vehicles, and finally optimize for the driver behavior that yields
the lowest fuel consumption [21,22]. In particular, combining high-resolution sensor data
with additional heterogeneous sources, such as map information, provides unique novel
opportunities. The obtained driver behavior model can either be used as an algorithm for a
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cruise control system or for suggestions in a driver assistant system [17,18,22,23], indicating
what actions to take to improve fuel efficiency. For example, there is a study that gives gear
shift guidance to the driver according to the timing of the traffic lights [9]. Although cruise
control and driver assistance systems can be helpful, educating the driver to correct their
general driving habits has been shown to be of great effectiveness [6,15]. Eco-driving-
related education is a low-cost method that can improve fuel efficiency without the need for
extra equipment. Another benefit is that improving the behavior affects fuel economy even
if the driver is not using the cruise control or paying attention to the assistance systems.

Analyzing the driver’s behavior to understand which decisions lead to a better fuel
economy is another side of the problem. This question has been the subject of studies at
least since the 1970s [2]. A key challenge in this task is to make sure that all the relevant
factors are taken into account—even though capturing the full complexity of the traffic
situation is usually not possible with the available data. It has also been long known [2],
and even mathematically proven [10], that the specific behavior of the driver approaching
a traffic light is crucial to the amount of fuel the vehicle consumes. We exploit this fact
and postulate that analyzing this specific maneuver can provide insights into the driver’s
more general behavior. We also demonstrate a complete solution to the problem of driver
behavior ranking in such a way that it can be straightforwardly applied in realistic vehicle
operation, as opposed to a controlled experimental setting. To the best of our knowledge,
such a method has never been proposed before.

A different aspect of driving that could benefit from monitoring is safety. It has been
shown that humans are the biggest contributing factor to all road accidents [24,25]. It is also
known that variables such as trip duration and distance or number of harsh accelerations
are linked to the percentage of speeding time [26], which increases the chance of crashes.
After speeding, “inattentiveness” has been shown to be the biggest human error in road
crashes [27]. Furthermore, reduced driver vigilance is a causative factor in 35% of vehicle
accidents on motorways. Hence, it is useful to have a metric to quantify how attentive
a driver is or measure his awareness, which is also the goal that we have pursued in the
current study. One example of this type of work is [28], where it is proposed that the jerk
(derivative of acceleration) measurement can be connected to dangerous driving behavior,
and it is integrated to a mobile app that gives correction feedback to the driver.

Driver and vehicle monitoring has already been widely adopted in commercial fleets.
It quantifies important aspects of vehicle operation and provides feedback loops to various
actors, such as the driver or fleet operator. The general belief is that the drivers will
adapt their driving style in order to obtain more favorable feedback from these systems.
The fleet owner will, in return, see reduced operational costs due to lower fuel consumption
and less wear and tear on the vehicles. It is inherently hard to make these systems fair,
which is a significant problem. In the trivial case of comparing average fuel consumption
between drivers, it is obvious that drivers who are assigned routes with higher average
speed or more hilly terrain will score lower, since those two environmental conditions
cause higher average fuel consumption. Therefore, it is essential to remove the impact of
external conditions, such as specific route or vehicle features, from the eco-driving score
when evaluating driver performance. Another possible option is to ensure that drivers are
evaluated in very specific conditions in order to ensure uniformity and thus fairness.

In this paper, we introduce a new driver performance metric called attention horizon
(AH). This metric is automatically calculated based on the onboard collected data, namely,
the sequence of the acceleration and brake pedals positions before stopping at a red traffic
light. The goal is to measure the awareness of the drivers with respect to the traffic
conditions surrounding them. More specifically, the AH measures how far ahead drivers
plan, in particular, as they start to take actions to stop the vehicle at a crossing. The key
contribution of this paper is introduction of a novel descriptive driver behavior indicator,
inspired by complex concepts such as “attention”, “awareness”, or “carefulness”, which is
nevertheless possible to compute fully automatically, at a large scale, based on IoT data.
We suggest that drivers with higher AH have more eco-friendly driving styles, which
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intuitively should be correlated with improved fuel efficiency. This is especially important
for hybrid or electric vehicles, where harsher braking prevents optimal energy regeneration.
In this study, we take advantage of naturalistic data from everyday use of heavy-duty
vehicles, specifically city and coach buses, and demonstrate a meaningful correlation
between the AH of a driver and their normalized fuel consumption rate (FCR) obtained
during weekly and monthly periods.

The rest of this paper is organized as follows. First, our acquired data and methodology
to obtain AH is described in Section 2. Then, Section 3 presents our approach to validate
the correlation between AH and FCR, and describes the results. We discuss our findings
and possible future work in Section 4. Finally, we conclude the paper in Section 5.

Related Work

Recently, Carpatorea et al. have introduced an approach that analyzes the driving
behavior based on the extracted sequence of drivers’ actions [29]. These actions are clusters
extracted by a Gaussian mixture model from a 2D histogram (APPES) of accelerator pedal
position (APP) and engine speed (ES). The clusters are represented by letter symbols, and
additional symbols are defined for braking and automatic cruise control. They show that
by combining their sequential feature and a support vector machine (SVM) regressor, they
can predict the fuel consumption of a trip with less than 5% error for more than 60% of
their samples when using the whole length of the trip.

In another study, [30], Castignani et al. take advantage of the GPS, accelerometer,
magnetometer, and gravity sensors in mobile phones to detect different bad behaviors of
drivers that could lead to extra emissions and fuel consumption. They train a fuzzy logic
network to detect these events and use a scoring function to score the drivers based on
their behavior. They show that their score is identical to drivers’ subjective scores in their
controlled study. However, they fall short in linking this score to actual fuel consumption,
emission, or other performance metrics.

In [31], the authors performed a literature review enumerating many different metrics
that are likely related to eco-driving. They then score each type of metric related to the
driver’s behavior by combining the depth of its citations and also different experts’ opinions
through the grounded group decision-making (GGDM) method [32]. They remove the
unimportant factors and rank other factors based on the score of their importance. However,
they do not evaluate the accuracy of their ranking using any type of experiments.

Hoffman et al. [33] try to model the effect of route inclination and vehicle payload,
and subtract their effect on the vehicle’s fuel consumption. Then, they take advantage
of their nonlinear regression model to measure the quality of the studied truck drivers’
driving behavior using dummy variables. Although their model can rank the drivers’
behavior to some extent, it does not explain why some drivers are better than the others
regarding fuel economy.

The authors of [34] define a constant and also a moving average power ratio index for
drivers. The power ratio is based on the comparison between the power that is needed
by the vehicle for constant speed and the power that is consumed during actual driving.
At the end, they show, via regression analysis, that these indices can predict variation in
fuel economy.

Ping et al., in [35], linked drivers’ behavior to their fuel consumption. They use
different parameters such as negative and positive acceleration, along with GPS coordi-
nates and speed. They extract behavior features by applying an unsupervised learning
method. Information about the environment is obtained using the onboard cameras and
the YoloV3 [36] deep-learning-based object detector. Finally, the environment’s data is
combined with driver behavior and fuel consumption data, and is given as input to a
long short-term memory (LSTM) neural network, which is another deep-learning-based
model [37]. The downside of using a deep-learning-based method is, however, the lack
of explainability. Explainability is important for understanding what type of behavior
determines a higher level of fuel consumption—and acting accordingly. In our work, we
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define a very simple feature without any need for a learning-based model, and we prove
that it can explain differences in fuel efficiency between drivers.

2. Materials and Methods

In order to calculate the AH measurements, we used a dataset of logged information
from a fleet of heavy-duty vehicles, including anonymous data about the identity of each
vehicle’s drivers. First, it is necessary to extract the geographical locations of the traffic
lights in the neighborhoods where the vehicles have been driven. Taking advantage of the
vehicle speed and location data, we extract the paths on which the vehicle is approaching
traffic lights before stopping at them. Finally, the sequence of brake and acceleration pedal
positions on each path is analyzed to extract the AH values. In the following subsections,
we describe, in detail, each stage of the AH calculation methodology.

2.1. Data

The data used in this study were provided by the Stratio company (https://stratioautom
otive.com/, accessed on 13 March 2022) . The logged data contained time-stamped infor-
mation of several dozens of parameters, including instant fuel consumption, acceleration
pedal position, brake pedal position, vehicle speed, and geographical coordinates obtained
from the Global Navigation Satellite Systems (https://www.gps.gov/systems/gnss/, ac-
cessed on 13 March 2022) (GNSS). GNSS includes multiple satellite constellations consisting
of GPS, GLONASS, Galileo, and other geographical positioning systems. In this setting,
the approximate accuracy is expected to be within 5 m range, since it is not a high-end
system designed for autonomous driving or lane positioning. The log data was collected
during three calendar months for a fleet of heavy-duty vehicles. Additionally, anonymized
identities for 71 drivers of 40 vehicles were recorded, with time stamps.

The data were gathered using Stratio’s data logger aboard the vehicles. The data
logger is connected to their communication area network (CAN) buses. CAN buses are
used to establish the communication between sensors and computers onboard the vehicle.
Inspecting the CAN signals allows the logger to capture sensor data or even estimated data,
such as some actuator positions or brake pad temperature. As vehicles have been enriched
with more sensors, the number of CAN buses has increased to meet the data throughput
demand. Nowadays, heavy-duty vehicles may have more than eight CAN buses and over
30 onboard micro-controllers.

The ever-increasing data throughput has necessitated the creation of new CAN com-
munication protocols, as well as new proprietary protocols. The latter pose a significant
challenge to decoding, requiring decoding parameters that are either given by the original
equipment manufacturer (OEM) or obtained through time-consuming reverse engineering.

Stratio’s logger can be simultaneously connected to up to three CAN buses and inspect
more than 300 signals. The collected data are then uploaded to a remote server through
a 4G data connection. Some signals can be sampled with periods below one second.
In order to reduce data transmission costs, the logger compresses the signals onboard using
undersampling and a proprietary algorithm.

There are aftermarket and also factory-fit integration schemes to connect Stratio’s
DataBox™ logger system to the CANs of the vehicle. One example of the factory-fit
integration designed for bus vehicles of the MAN brand is shown in Figure 1a. As can be
observed in this case, the logger is connected to diagnostic and body CANs of the vehicle.
Additionally, there is a contactless reader which allows for connecting to another internal
CAN-bus. There are also connections to ignition switch, power supply, and the K-line,
which is a single line serial connection used for diagnostic purposes. Furthermore, a photo
of the logger installed on an actual MAN bus is presented in Figure 1b.

https://stratioautomotive.com/
https://stratioautomotive.com/
https://www.gps.gov/systems/gnss/
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(a) (b)

Figure 1. Integration of Stratio’s Databox ™ logger with the CANs of MAN bus vehicles. Shown
is (a) the connection scheme of the logger with different CAN buses and other connections on the
vehicle, and (b) a photograph showing the logger installed onboard a vehicle.

2.2. Extraction of Red Light Positions

The first step in our proposed method is to extract the positions of traffic lights within
the coordinate boundaries of the area used by the fleet. For this task, we take advantage of
the overpass-turbo (https://overpass-turbo.eu, accessed on 13 March 2022) tool that can
access information from the OpenStreetMap (https://openstreetmap.org, accessed on 13
March 2022) dataset. The traffic light coordinates are used to determine whether the vehicle
is, at any given time, approaching a traffic light and stopping. We assume that a vehicle
that stopped before a traffic light has encountered either a red light or a visible obstacle.
We then extract the data from a fixed traversed distance before the vehicle stops at a traffic
light. We denote the fixed distance by Lp.

2.3. Extraction of Red Light-Approaching Trajectories

In order to extract the points that belong to the vehicle’s trajectory before stopping at
the traffic light, we first extract the points from the dataset where the vehicle has a slow
speed (in our case, less than 1 m/s). The reason for separating these points is that they
indicate the occasions when the vehicle has stopped. The speed is calculated from the
timestamps and geographical coordinates; however, it could also be obtained directly from
CAN data, or from any other reliable source. We keep the coordinates of the traffic lights
in a KD-tree for fast access. Using this data structure, we extract the points with slow
speed that are closer than 50 m to a traffic light. After that, we iterate through these points
chronologically. At each point, we check if there is a path of consecutive points to the
closest traffic light. The path could contain points where the vehicle is not moving slowly;
however, it must be within a 50 m radius of the closest traffic light from the initial slow
point and its last point must be closer than 5 m away from that traffic light. To create the
final set of the path points, we start by adding the point closest to the traffic light to the set
and iteratively keep adding points that come before that point, one by one, until the length
of the path exceeds 150 m. The length of the path is calculated as the sum of the distances
between consecutive coordinate points.

More formally, let us assume that C = 〈c1, c2, . . . , cN〉 is the vector of geographical
coordinates of the vehicle during a day. Furthermore, S = 〈s1, s2, . . . , sN〉 is the vector of
vehicle speeds at the corresponding geographical locations, and the order of the points in
both vectors is chronological, e.g., the vehicle was at location ci before being at location ci+1.
Take T as the KD-tree that contains the traffic light coordinates. The set of all traffic light
paths can be obtained from Algorithm 1. As one can see, the algorithm outputs a set of the
paths (P) traversed before the stopping points at traffic lights. Each element of the path

https://overpass-turbo.eu
https://openstreetmap.org
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contains the indices of the data points in the path (R) and the traversed distance from those
points to the stopping point (D). You can see how each path is created in Algorithm 2 which
is used as a procedure in Algorithm 1. For each path, the indices in R are used to extract
the acceleration and brake pedal positions while on the traffic light approach path. Finally,
the distances in D are used to resample the pedal position values in equidistant intervals,
providing Np samples from 0 to Lp meters traversed to the stopping point. The re-sampled

values for acceleration and brake pedal positions are kept in 〈ai〉
Np
i=1 and 〈bi〉

Np
i=1 sequences,

respectively, to be used for AH extraction.

Algorithm 1 Finding the set of paths before stopping at red traffic lights during a day for
a vehicle

procedure FINDPATHS(C, S, T)
SP← { i | si ∈ S ∧ si < 1} . All point indices with slow vehicle speed
P← ∅ . P: The set of extracted traffic light paths
for i ∈ SP do

if @ (R, D) ∈ P such that i ∈ R then
t← T(ci) . t: coordinates of the closest traffic light
j← i + 1
while j ≤ N ∧

(
dist(cj−1, t) > dist(cj, t) ∨ dist(cj, t) < 50

)
do

if dist(cj, t) < 5 then
while j /∈ SP do . Go back to the last slow point on the path

j← j− 1
end while
P← P ∪ CREATEPATH(C, j, t)
break

end if
j← j + 1

end while
end if

end for
return P

end procedure

Algorithm 2 Creating a path given its closest point to the traffic light

procedure CREATEPATH(C, j, t)
k← 1
dk ← 0 . dk: Traversed distance to the stopping point at the path’s k-th index
rk ← j . rk: The data point index at the path’s k-th index
while dk < Lp ∧ rk ≥ 0 do

k← k + 1
rk ← rk−1 − 1
dk ← dk−1 + dist(crk , crk−1)

end while
R← 〈r1, r2, . . . , rk〉
D ← 〈d1, d2, . . . , dk〉
if dk ≥ Lp then . If the path’s traversed distance is greater than Lp

return {(R, D)}
else

return ∅
end if

end procedure

2.4. Extraction of Attention Horizon

Let us assume that we have a sequence of timestamped data points for a vehicle as it
is approaching a traffic light before stopping at it. At each point of the sequence we know
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the position (measured in percent, where 0% means fully released and 100% means fully
pressed) for the accelerator and brake pedals. AH is an estimation of the point at which a
driver starts to take action to stop when approaching a red traffic light. It is calculated in
meters and can be in the range between 0 and Lp meters, i.e., the length of extracted paths.

In general, it is of course difficult to precisely define what kind of indicators should
be used to capture a driver’s “decision” in this sense. There is a natural ebb and flow to a
vehicle’s speed in traffic, for example, based on the road topology and distances to other
traffic participants. In this work, we have chosen to be conservative, and consider lack of
acceleration to be an indication of stopping intention. Technically, we define AH as the last
point where the acceleration pedal was pressed before starting to slow down, leading to a
stop. This can be interpreted formally as

AH =
Lp

Np
l , l =

min
i∈E

i if E 6= ∅

Np otherwise
, E = { i | ai ≥ tA ∧ [ ∃ k ≤ i s.t. bk < tB ] }. (1)

Here, tA and tB are the minimal thresholds on the acceleration and brake pedal
positions, respectively. We assume that the pedals are not pressed when their positions are
below these thresholds.

It is also important to note that we exclude from AH calculations those path sequences
that have more than one stopping point before the traffic light position. Situations where
that happens are usually difficult to interpret, and often indicate traffic conditions where
the driver has limited freedom of action. In the end, it leads to significant decrease in the
variance of the calculated AH, as explained by different path conditions.

3. Results

In order to test the link between the fuel consumption rate and attention horizon, we
use heterogeneous naturalistic driving data collected from a fleet of heavy-duty vehicles
collected over a timespan of three months. We set the Lp value to 150 m and Np to 100;
therefore, we resampled and analyzed the brake and acceleration sequences from the 150 m
traversed before stopping at the traffic light with 100 equidistant resampled data points.

As previously mentioned, we gathered the anonymized IDs of the vehicles’ drivers
throughout the time period. The IDs were employed to associate drivers with the paths
with traffic light stops used in AH calculation. We also took advantage of the same IDs to
associate drivers with their fuel consumption rate (FCR), i.e., fuel consumed per distance
unit. Only 29 drivers had trajectories with stops at traffic lights that could be used to
calculate the AH metric.

To give some more insight regarding the calculation of AH, we created plots that
show the changes in vehicle speed, and the sequence of positions for the acceleration and
brake pedals, through the 150 m just before the vehicle stops at a traffic light. You can see
examples of these plots from the same traffic light in Figure 2. Furthermore, we present
statistics regarding these parameters at the vehicle approaches to multiple traffic lights in
Figure 3. Different behaviors for different approaches to the traffic light can be observed. It
is also clear that the AH is essentially the moment the driver stops to accelerate before the
last brake.

Our aim in this paper is to show that correlation exists between the AH metric and
the overall driver behavior, more specifically one that is associated with long-term fuel
consumption. We believe we can use this metric to identify inefficient driving patterns,
which would be a very useful service for fleet operators. The operators can then use this
information to provide incentives for more efficient and ecological driving and identify
training needs, among others. However, to ensure that the influence of other important
factors is minimized, we have performed some separate analysis on the AH and FCR values.
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Figure 2. The sequence of acceleration and brake pedal positions, as well as vehicle speeds, just
before stops at traffic lights. Four examples from the same traffic light are presented. The calculated
AH is shown at the dashed vertical line. Brake and acceleration pedal positions have a possible value
range from 0 (fully released) to 100 (fully pressed).
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Figure 3. Density histogram, median and mean for the speed, acceleration pedal position, and brake
pedal position values for the data point on the traffic light approach sequences (all the data used for
determining AH values). Brake and acceleration pedal positions have a possible value range from 0
to 100.

To determine the variability of AH based on different factors, we measured its dis-
tribution across the traffic lights, and also across the drivers. First, we divided our AH
samples based on the driver, and for each driver we calculated their individual average
AH at different traffic lights. We created a box plot, capturing the distribution of the data
for those drivers who have AH samples originating from more than one traffic light; this
way we are showing the distribution of the average calculated AHs across different traffic
lights. These box plots can be seen in Figure 4a. After that, we performed a similar analysis
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for traffic lights by grouping the AHs by traffic light and then calculating the average AH
for different drivers that have stopped at each traffic light. We only created box plots for
traffic lights with samples from more than one driver. The result is shown in Figure 4b.

The comparison of Figure 4a,b shows a clear difference between the variability of
the AH when grouped according to drivers and then averaged for different traffic lights,
as opposed to grouped by traffic lights and then averaged for different drivers. It shows a
significantly larger variability in the AH distribution across traffic lights than across drivers.
Therefore, in the raw data, the influence of local conditions specific to a given traffic light
outweighs the influence of different driving styles. This led us to perform a normalization
of AHs based on traffic lights, since our goal in this paper is to link AH value to the drivers’
behavior specifically.
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Figure 4. The box plots representing the distributions of (a) per traffic light average AHs for each
driver, (b) per driver average AHs for each traffic light, (c) per vehicle FCRs for each driver, and
(d) per driver FCRs for each vehicle. The box plots for IDs with less than two samples are not shown
in this figure.

To perform this normalization, for each traffic light, we collect all its AH samples and
calculate the percentile values for the samples. Then, each AH value is replaced by its
corresponding percentile within its traffic light.

We also analyzed the FCR values in a similar manner as for AHs; however, in this case
our goal was to compare the effect the driver has on FCR versus the effect the vehicle has.
It is obvious that the model, age, and overall condition of the vehicle can have a significant
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impact on the FCR; in order to provide a fair comparison of the performance of a driver
driving it, this should be taken into account. To this end, we wanted to determine how
pronounced this effect is for the vehicles in the fleet analyzed in this study.

However, FCR is different from AH in the sense that instantaneous samples of it are
essentially useless, since the signal exhibits very high temporal variability and complex
(relatively) long-term dependencies. It is only useful if calculated for a time period, typically
by dividing the total amount of the consumed fuel by the total distance traversed. It is
important to note here that the FCR value can sometimes be misleading. An example could
be when the vehicle’s engine is turned on, for maintenance or other purposes, but it is not
driven. Hence, to have valid FCR values, we do not include FCR data (distance and fuel
consumption) when the speed of the vehicle is below 1 m/s. Another precaution we took
was not to take into account FCR data from days when the vehicle traveled less than 10 km
at speeds over 1 m/s. The number of vehicles in our dataset that had valid FCR values
was 14. The distance limit is intended to exclude short trips. This is because the fleet of the
vehicles in our study is entirely made of city and coach buses. These vehicles operate for
long hours on a daily basis, and even though they might have rare short trips, those are not
representative of their normal usage.

To investigate the effect of the drivers on the FCR, we analyzed this value when the
vehicle was driven by each driver. For each driver, we separately calculated the FCR for
different vehicles. The distribution of these FCR values for each driver can be seen as a box
plot in Figure 4c. On the other hand, the distribution of FCR values for different drivers
when driving a specific vehicle can be seen in the form of a box plot in Figure 4d. We should
mention that only drivers driving more than one vehicle are represented in Figure 4c and
only vehicles driven by more than one driver are represented in Figure 4d.

The comparison of Figure 4c,d shows that, in our data, the variability of FCR values
for different drivers across vehicles is higher than the variability of FCR values for different
vehicles across drivers. This is the reason to normalize the FCR values by vehicle. The way
we normalize FCR depends on the period of time we are calculating the FCR for. For exam-
ple, if we want to determine the FCR for each day, we calculate the total distance and fuel
consumption for each eligible day of each driver–vehicle pair. Then, all these values are
grouped based on the vehicle, and their percentile values are calculated for that specific
vehicle. Finally, those FCR values are replaced by their percentile index equivalents. If we
want to calculate the FCR of a driver regardless of the vehicle, for a period of time (e.g., a
day), we obtain the average FCR percentile index for different vehicles for that period of
time and driver and then we compute their average, weighted by the distance traveled by
each vehicle.

After these normalization steps, we are finally able to investigate the effect of AH on
FCR through time, for each driver. In particular, we expect that if a driver has a relatively
high (i.e., good) AH during a period of time, it will correspond to a relatively lower FCR.
For this reason, for every driver, we took into account normalized FCR and AH values
during each day, as described before. Then, we collected these values for all the days
and obtained a single correlation value across days between FCR and AH. Since we are
calculating correlations, we require drivers with at least two days for which FCR and AH
values exist.

We perform the same procedure across weeks and also months to know how long
the time period needs to be in order to obtain a good correlation between AH and FCR.
We calculated the histograms of these per-driver correlation values and the results are
shown in Figure 5. In this figure, we show different histograms when FCR and AH are
obtained for calendar days, calendar weeks, or calendar months. The histogram generated
for calendar days shows that most of the drivers’ correlations are very close to the value 0.
This means that it is not readily possible to connect the normalized AH value of a day to its
normalized FCR value for a driver. Too many different factors affect both these measures,
apparently. However, as we increase the length of the time period to weeks and months,
the histograms show that the correlations progressively shift towards clearly negative
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values. In fact, the longer the time periods are, the more negative the correlation coefficients
become. A negative correlation means that the larger the AH becomes for a person, i.e., the
sooner they react to a red traffic light, the lower their overall FCR is.

For extra visualization, we also fitted a normal distribution to the samples of the
drivers’ correlation values in each histogram. It can be seen that the standard deviation of
the correlation values increases by increasing the length of the time periods. The reason for
this could be that more data points become concentrated at the lower end of the possible
values’ interval (i.e., −1). Another explanation can be that other factors exist that we have
not taken into account. Finally, mean and median of the correlation values are also overlaid
on each histogram. The mean and median values for different time periods are additionally
shown in Table 1.

Table 1. Mean and median of correlations between AH and FCR through time for different drivers
when AH and FCR are calculated for calendar days, calendar weeks, and calendar months.

Time Periods for AH and FCR Calculation

Calendar Days Calendar Weeks Calendar Months

Mean Correlation 0.057 −0.200 −0.213
Median Correlation 0.047 −0.156 −0.402

It can be seen that both mean and median move closer to −1 the larger the time period
becomes. The median of the correlations appears to be decreasing even more than the mean
when using months as time period. This, again, can be explained by the fact that the whole
distribution of the correlation samples moves to the left for larger time periods; however,
since the minimum possible value is −1, the samples become concentrated at the lower
end of the possible interval.

In the next section, we discuss our results in more depth.
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Figure 5. Histogram of correlations between fuel consumption rate (FCR) percentile and attention
horizon (AH) percentile through time for individual drivers; these parameters are obtained for days
(leftmost), weeks (middle), and months (rightmost plot).

4. Discussion

In the Results section, we showed that the variability of AH caused by different
traffic lights is higher than the one caused by different drivers. The difference was so
significant that we had to replace the AH values by their corresponding percentile indices
within each traffic light. We hypothesize that this high cross-light variability is caused
by the different environmental aspects surrounding traffic lights. This could be due to
differences in, for example, the visibility of the light on the road, the speed limit before the
crossing, the dimensions of the road, its slope, traffic conditions in the area, or any other
environmental aspect. Because of this, we believe that normalization based on traffic light
is a very important step to make the AH values usable. An interesting path for future work
can be investigating the effect of different environmental factors on the AH values.
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As we have shown before, the correlation between AH and FCR turns out to be mostly
negative for drivers across weeks or months. In other words, a large AH seems to be a
predictor of a small FCR within these periods. We suggest that a large AH is a quantitative
way of measuring how careful or aware the driver is just before stopping at a traffic light.
In this way, AH can be regarded as a metric of general driving efficiency. We found a
relationship between AH and FCR, but we would like to propose that AH might also have
correlations with other aspects of driving quality. For example, this could include the
impact of the driving style on the vehicle’s components wear rate or the frequency of traffic
accidents for the driver. This is a very interesting aspect for future research on related
driving quality metrics other than FCR.

We have also established that for bigger periods of time (months and weeks rather
than days), there are stronger correlations between AH and FCR. We suspect that this
happens due to the impact of uncontrolled variables that change in shorter timescales,
i.e., noise; as we increase the timescales, the impact of those variables is reduced under
the law of large numbers. In this paper, we discovered that we should normalize AH by
traffic light and FCR by vehicle. However, there might be other variables that also need to
be controlled for in order to improve the AH or FCR calculations. This is another direction
of future work for obtaining more precise values for these parameters.

It should also be noted that although for larger time periods the AH-FCR correlation
becomes more strongly negative for most of the samples, there are still drivers with positive
correlation values. This is an indication that for these drivers, there are still factors whose
impact is not smoothed out even when estimating the FCR or AH for timescales of a week
or a month. Identifying these factors is another category of future work; in particular, there
appear to be some systematic bias factors that are important to understand. This is closely
related, but inherently different, from understanding the unknown factors that actually do
smooth out during a week or month.

A different avenue for research could be the study of variance in AH value during
time. Two drivers could have the same average AH in a period of time but one of them can
have much more variance. This could potentially lead to higher fuel consumption for one
of them compared to the other one. Considering the variance of AH is another potentially
interesting subject to focus on for future work.

Another research direction is investigating the impact of even longer time periods in
the AH metric. In this study, we had access to data with anonymized driver IDs for only
three months. However, it could be very interesting to know what we could discover if we
had data over the period of several years, allowing us to understand how the driving style
evolves in the longer time perspective, based on experience.

The scale of the research could be increased in other dimensions, too. One possibility
could be, for example, to investigate the impact of a bigger population of drivers and
vehicles to see if the correlation values hold up. This might also smooth out even more
noise and give a higher quality AH to work with. Another possible research avenue
is to compare the extent to which AH explains different driving quality factors across
populations, drivers, and vehicles. This implies measuring, for instance, how strong a
predictor the AH is when one type of vehicle is used, as opposed to another type. Another
option could be to compare the information value of AH across different populations of
drivers, e.g., from different areas, occupations, or training background.

Another facet that could be improved about our work is to look for a nonlinear
relationship between AH and FCR. Correlation coefficients can only capture the linear
component of relationships. Exploring the extraction of nonlinear components between
AH and other driver quality metrics is a possible approach for future work.

Finally, it is possible to work on a more sophisticated approach for calculating the AH,
e.g., by involving other types of data into its determination. We found our approach to
be effective enough but it does not exclude further research in this area. More specifically,
in this first work we did not take advantage of machine learning techniques to analyze the
data. The definition of attention horizon we used is, intentionally, very simple in order to
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be interpretable and intuitively understandable. However, using the power of machine
learning to mine the available data, one will likely be able to much more precisely pinpoint
the elusive point where the driver makes the decision to stop at a red light.

5. Conclusions

In this paper, we introduced a new metric to analyze drivers’ behavior. We called it
attention horizon (AH), since it is inspired by the concept of driver awareness, i.e., how
early the driver starts to react when forced to stop at a red traffic light. We presented
an algorithm to automatically extract the AH ofgiven positions of red traffic lights in the
driving trajectory. The algorithm only needs data points with speed, acceleration and
brake pedal positions, and geographical coordinates recorded at regular intervals. Past
research on complex notions such as “awareness” typically required highly sensitive data
from cameras and detailed human interpretations, while we demonstrate that it is, at least
partially, possible to manage at scale with readily-available IoT data.

With simple statistics and without the need for complex tools, we demonstrated that
there is a correlation between the AH and fuel consumption rate (FCR) of the drivers in the
timescale of weeks and months. This can be used to rank drivers, for example, in terms of
their performance.

Furthermore, we demonstrated the necessity of statistical normalization of AH for
different traffic lights and normalization of the FCR by vehicle. We presented evidence that
the absolute value of the median correlation grows by increasing length of the time periods
for which the AH is calculated. In particular, it grows from 0.156 to 0.402 when moving
from weekly to monthly periods. We also proposed that the AH could be a general driving
quality metric; however, proving that remains to be achieved in future work.

Such a metric as AH that is easy to calculate and straightforward to interpret could
be employed as a tool to quantify drivers’ awareness. This can be useful, especially when
driving style alone has been shown to account for at least 6% of fuel consumption [38,39],
reduced driver vigilance contributes to 35% of motorway crashes [40], and inattentiveness
after speeding is the biggest human error in road crashes [27].

In this work, our main focus was to establish AH as a well-founded metric. However,
many interesting future research avenues exist based on the proposed AH metric, such
as evaluating variance against consistency of the drivers, or analyzing how the AH of an
individual driver changes over time, and more. In addition to that, metrics such as the
one presented in this paper can be combined with other similar metrics, quantifying driver
behavior to create a better driver ranking algorithm. It is important that each of those
metrics is as unbiased as possible, and that they have a clear correlation with a desired
outcome, e.g., lower fuel consumption, in the case of this paper. Future work can also
include developing more of these metrics, capturing other aspects important to driver
ranking as well as investigating ways to combine these metrics into a fair driver score.
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