
����������
�������

Citation: Alkahtani, H.; Aldhyani,

T.H.H. Artificial Intelligence

Algorithms for Malware Detection in

Android-Operated Mobile Devices.

Sensors 2022, 22, 2268. https://

doi.org/10.3390/s22062268

Academic Editors:

Leandros Maglaras, Helge Janicke

and Mohamed Amine Ferrag

Received: 12 February 2022

Accepted: 11 March 2022

Published: 15 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Artificial Intelligence Algorithms for Malware Detection in
Android-Operated Mobile Devices
Hasan Alkahtani 1 and Theyazn H. H. Aldhyani 2,*

1 College of Computer Science and Information Technology, King Faisal University, P.O. Box 400,
Al-Ahsa 31982, Saudi Arabia; hsalkahtani@kfu.edu.sa

2 Applied College in Abqaiq, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
* Correspondence: taldhyani@kfu.edu.sa

Abstract: With the rapid expansion of the use of smartphone devices, malicious attacks against
Android mobile devices have increased. The Android system adopted a wide range of sensitive
applications such as banking applications; therefore, it is becoming the target of malware that exploits
the vulnerabilities of the security system. A few studies proposed models for the detection of
mobile malware. Nevertheless, improvements are required to achieve maximum efficiency and
performance. Hence, we implemented machine learning and deep learning approaches to detect
Android-directed malicious attacks. The support vector machine (SVM), k-nearest neighbors (KNN),
linear discriminant analysis (LDA), long short-term memory (LSTM), convolution neural network-
long short-term memory (CNN-LSTM), and autoencoder algorithms were applied to identify malware
in mobile environments. The cybersecurity system was tested with two Android mobile benchmark
datasets. The correlation was calculated to find the high-percentage significant features of these
systems in the protection against attacks. The machine learning and deep learning algorithms
successfully detected the malware on Android applications. The SVM algorithm achieved the highest
accuracy (100%) using the CICAndMal2017 dataset. The LSTM model also achieved a high percentage
accuracy (99.40%) using the Drebin dataset. Additionally, by calculating the mean error, mean square
error, root mean square error, and Pearson correlation, we found a strong relationship between the
predicted values and the target values in the validation phase. The correlation coefficient for the
SVM method was R2 = 100% using the CICAndMal2017 dataset, and LSTM achieved R2 = 97.39%
in the Drebin dataset. Our results were compared with existing security systems, showing that the
SVM, LSTM, and CNN-LSTM algorithms are of high efficiency in the detection of malware in the
Android environment.

Keywords: android applications; malware; machine learning; deep learning; cybersecurity

1. Introduction

In recent years, the popularity of the Android operation system has attracted the
attention of malware developers, whose work has grown rapidly [1,2]. Many malware
developers focus on hacking mobile devices and changing them into bots. This allows
hackers to access the infected device and other connected devices and form botnets. Botnets
are used to execute different malicious attacks, such as distributed denial-of-service (DDoS)
attacks, sending spam, data theft, etc. The malicious botnet attacks are developed with
advanced techniques (e.g., multi-staged payload or self-protection), making it difficult to
identify the malware. This, in turn, poses major threats that require the design of effective
approaches to detect these attacks [3].

Android botnets are used to perform attacks on the targeted devices. DDos attacks
are achieved by flooding the target machine with superfluous requests and blocking
legitimate requests, thus, causing a failure of the targeted system and disruption of the
services [4]. Consequently, to protect against such attacks, machine learning methods are

Sensors 2022, 22, 2268. https://doi.org/10.3390/s22062268 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22062268
https://doi.org/10.3390/s22062268
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1822-1357
https://doi.org/10.3390/s22062268
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22062268?type=check_update&version=2

Sensors 2022, 22, 2268 2 of 26

proven to be effective in detecting and tracking these threats in the internet of things [5,6].
Haystack [7] reported that a third-part of software-development companies manage 70% of
the mobile application and control the personal data of users. According to the AV-TEST
Security Institute [8], malicious programming increased, with 5.7 million malware Android
packages detected by Kaspersky in 2020, three times more than in 2019 (2.1 million). Figure 1
summarize the increase of malware installation packages for smartphone devices in the
last five years. Therefore, signature-based malicious installation packages for the extraction
of malware patterns relying on their characteristics can be an effective strategy to secure
mobile applications.

Figure 1. Malware installation packages for smartphone devices.

Malicious attacks occur in different enrolments with a variety of methods such as
fuzzing, denial of service, DDoS, port scanning, and probing [9]. These attacks can be
threatening to transport, application layers, or different protocols such as internet control
message protocol, file transfer protocol, user datagram protocol, simple mail transfer
protocol, transmission control protocol, hypertext transfer protocol, etc. Network-based
intrusion detection systems can be used to deal with such attacks by scanning the network
and detecting them [10].

Usually, in the Android system, security is in-built, where the sandboxing method
and permission system are designed to reduce the risk of Android applications [11]. The
former was developed using the Linux environment for running Android applications,
which allows users to enable permission for the installation of any Android application [12].
However, when updating or upgrading mobile applications, security and privacy features
such as time permission, background location, storage, etc., are changed, giving a timeframe
for malware attacks. It is possible to exploit Android vulnerabilities during the application
developed by users since the Google Play Store cannot detect malicious attacks after the
publication of the applications [13]. The percentage of Android malware is presented in
Figure 2.

Sensors 2022, 22, 2268 3 of 26

Figure 2. Percentage of Android malware [14].

Intrusion detection systems are developed using machine learning and deep learning
methods. However, the machine learning technique cannot cope with the huge traffic of
data flooding the system. Similarly, deep learning methods fail to provide low general-
ization errors due to the absence of optimization. Fixed Android botnet datasets make it
feasible to design detectors with high detection rates [15], but having complex traffic data
hinders the obtention of an accurate prediction rate. This has motivated the development
of techniques that are based on Android-malware neuro-evolution classification, thus,
providing the number of layers and neurons along with the detection process [16].

The present study aimed to extract static and dynamic features from unknown applica-
tions; these features show if a particular application is “normal” or “attack”. These features
are used to examine the performance of several machine learning and deep learning mod-
els, including the k-nearest neighbors (KNN) [17], support vector machine (SVM) [18],
convolutional neural networks (CNN) [19], dense neural networks [20], gated recurrent
units (GRU), long short-term memory (LSTM) [21], and the hybrid deep learning convolu-
tional neural networks long/short-term memory (CNN-LSTM) and convolutional neural
networks/gated recurrent units CNN-GRU [22] methods.

In this study, we investigated and estimated the performance of various machine
learning and deep learning algorithms in the detection of mobile malware attacks. This
study offers the optimal algorithms for the monitoring of Android applications against
malicious attacks. Thus, our research aims to contribute to this field with the following:

1. The development of intrusion detection in the Android system using various machine
learning and deep learning algorithms.

2. The proposed system was tested and evaluated using two standard Android datasets.
3. A comparison between the tested algorithms and different state-of-the-arts models

is presented.
4. The sensitivity analysis was used to find significant relationships between dataset

features and the proposed classes of the datasets.

2. Background of Study

This section offers an overview of previous research related to intrusion detection
systems, Android malware detection, and standard datasets of Android malicious at-

Sensors 2022, 22, 2268 4 of 26

tacks. Furthermore, it provides an overview of the machine learning and deep learning
approaches applied to the design of cybersecurity systems.

The regular improvement of sophisticated Android malware families, e.g., Chamois
malware, has made the task of detecting malicious attacks daunting. To tackle this, re-
searchers developed machine learning techniques that improved the available systems.
Recently, many studies have applied machine learning models for Android botnet detection,
such as linear regression, KNN [23], SVM, and decision trees (DT) algorithms [24]. Some of
these recent studies [25,26] used deep learning algorithms, although they do not provide a
thorough understanding of their effectiveness. Therefore, the current study compares with
deep learning models to examine their effectiveness in Android botnet detection with the
use of the available installation support center of expertise (ISCX) botnet dataset [27–29].

Kadir et al. [30] used deep learning models to analyze Android botnet attacks in an
attempt to understand the latter’s hidden features. The system was evaluated using the
ISCX Android botnet dataset, which contained 1929 samples. Anwar et al. [31] proposed an
Android botnet detection approach based on static functions. The features of permissions,
MD5 signatures, and broadcast receivers were combined and processed with machine
learning algorithms. The input data collected from the ISCX dataset were 1400 from differ-
ent botnet applications, with the system achieving an accuracy of 95.1% in distinguishing
Android botnet attacks [32].

Several machine learning algorithms were proposed to classify normal and abnormal
botnet attacks. In one study, the results indicated that the random forest approach had
0.972% precision and 0.96% recall. In [33], machine learning approaches were proposed for
detecting Android botnets. The ISCX dataset consisted of 1635 benign and 1635 attacks.
The random forest tree model achieved 97%. In another study [34], the DT, Naive Bayes,
and random forest machine learning algorithms were used to detect Android attacks. The
information gain method was used to select the significant features. The random forest
algorithm achieved a 94.6% accuracy. Karim et al. [35] proposed the static analysis approach
to explore the pattern of the features of Android botnet attacks. The features were compared
with the intrusion application using the Drebin dataset [36]. Artificial intelligence (AI)
approaches using a knowledge-based system were used to secure Android mobiles against
malicious attacks [37,38]. Inspired by a meta-heuristic rule and based on fuzzy logic,
intrusion detection and data mining systems were developed [39], while machine learning
approaches were applied in the development of IDS applications [40–42]. The design of
IDS systems employed the artificial bee colony [43], particle swarm optimization [44], grey
wolf optimization [45], and artificial fish swarm [46] algorithms.

Many systems were developed based on signature-based Android malware detection
approaches and behavior-based Android malware intrusion detection approaches [47].
The former is a simple detection method that manages intrusions’ low degree of false
positives. The latter is based on anomaly detection and is a very common method using
AI algorithms to detect malicious attacks. Numerous research articles aimed to detect
and classify Android malware and attacks using machine learning and deep learning
approaches, such as the DT and deep learning approaches [48]. By using the generative
adversarial networks algorithm [49], it was shown that traditional machine learning was
successful in detecting malware in an Android environment [50].

Most of the published studies used datasets from Google Play [51], AndroZoo, An-
droid Permission [52], Andrototal [53], Wandoujia [54], Kaggle [55], and CICMaldroid [56].
The present study aimed at developing a system to detect malware attacks in Android
environments that have an in-built security system. However, there are still many An-
droid applications with design weaknesses and security flaws that can be threatening to
end-users. Therefore, it is crucial to use machine learning and deep learning algorithms to
detect Android malware and vulnerability analysis to prevent the development of malware
and attacks by hackers [57,58].

Sensors 2022, 22, 2268 5 of 26

3. Materials and Methods

In 2008, Android was developed. With the increasing number of Android applications,
companies immediately discussed and built security tools [2]. Nevertheless, the Android
system is suffering from security weaknesses. In the last five years, AI approaches focused
on protecting the Android system, with many researchers studying the appropriate AI
approaches to obtain high accuracy. The framework of the present research is presented
in Figure 3. The machine learning algorithms support vector machine (SVM), k-nearest
neighbors (KNN), linear discriminant analysis (LDA) and the deep learning algorithms
long short-term memory (LSTM), convolution neural network-long short-term memory
(CNN-LSTM), and autoencoder algorithms were used to detect malware and attacks against
Android applications. These algorithms were tested using two standard datasets. The
research questions of this study were:

(1) What are the appropriate machine learning and deep learning algorithms to detect
malware in Android?

(2) What are the validation accuracy, robustness, and efficiency of the proposed machine
learning and deep learning models related to the detection of Android malware?

Figure 3. A generic representation of the models applied for the detection of Android malware.

3.1. Android Dataset

The experiments were conducted with two standard datasets: the Canadian Institute
for Cybersecurity (CICAndMal2017) and Drebin datasets. The percentage of the classes for
the entire CICAndMal201 and Drebin datasets is presented in Figure 4.

3.1.1. CICAndMal2017

The CICAndMal2017 was developed by Canadian Institute; the Cybersecurity dataset
is a standard mobile malware dataset containing static and dynamic features of log files. The
dataset was generated from 80 network flows using CICFlowMeter-V1 and CICFlowMeter-
V3. To examine the proposed system, 667 Android malware packets consisting of 413
features were considered for the injection of malicious and normal packets. The dataset is
available from this link: https://www.kaggle.com/saurabhshahane/android-permission-
dataset, (accessed on 25 November 2021).

https://www.kaggle.com/saurabhshahane/android-permission-dataset
https://www.kaggle.com/saurabhshahane/android-permission-dataset

Sensors 2022, 22, 2268 6 of 26

Figure 4. Percentage of classes of the datasets (a) CICAndMal2017 and (b) Drebin.

3.1.2. The Drebin Dataset

The Drebin dataset was extracted from 15,037 applications of the Drebin project,
which contains 215 features and the injection of 5560 malware and 9476 normal applica-
tions. The dataset was developed by the Drebin project and published as the DroidFusion
paper in the IEEE Transactions on Cybernetics journal [59]. The dataset was generated
with different Android applications and is available through the following link: https:
//www.kaggle.com/shashwatwork/android-malware-dataset-for-machine-learning (ac-
cessed on 25 Novmber 2021).

3.2. Preprocessing

The Android datasets have different formats and characteristics; therefore, preprocess-
ing is very important for managing the dataset.

Min–Max Normalization Method

Normalization is a scaling approach to shift and rescale the values of datasets. The
min–max normalization method was applied to scale the data in the range between 0 and
1. The normalization method was applied for the overlap of the entire dataset using the
following equation:

V́ =
V − xmin

max(A)−min(A)
(new_max(A)− new_min(A)) + new_min(A) (1)

where, min(A) and max(A) are the minimum and maximum data, respectively, new_min(A)
and new_max(A) are the new values of the minimum and maximum used for the scaling
of the data, and V́ is the normalized data.

3.3. Classification Algorithms

In this section, the theoretical description of the machine learning and deep learning
algorithms used in this research is presented.

3.3.1. K-Nearest Neighbors (KNN)

The KNN algorithm is a simple and common machine learning algorithm used to
classify numbers of real-life applications by discovering neighbors. The mechanism of the
KNN algorithm is finding the distance between the classes of normal values and attacks by
selecting object values close to the class k-values. The algorithm starts by loading network
data with the length of input data [60]. KNN is utilized to determine the k-values that
are near a set of specific values in the training dataset. The majority of these k-values fall

https://www.kaggle.com/shashwatwork/android-malware-dataset-for-machine-learning
https://www.kaggle.com/shashwatwork/android-malware-dataset-for-machine-learning

Sensors 2022, 22, 2268 7 of 26

into a confirmed class. Furthermore, the input sample is classified. In this research, the
Euclidean distance function (Ei) was used to find the distance between the object values.
The expression of the Euclidean distance function is as follows:

Ei =

√
(a1 − a2) + (b1 − b2)

2 (2)

where a1, a2, b1, and b2 are variables of the input data.

3.3.2. Support Vector Machine (SVM)

SVM is a supervised machine learning algorithm developed to solve complex problems
in linear and nonlinear applications. It is used to draw the hyperplane between the data
points that are near the hyperplane and calculate the effect of the location and orientation
of the hyperplane, called the support vector (SV) [61]. The good performance of SV is
attained when the distance of the data points is close to the hyperplane. The support
vector machine has a number of functions, linear and non-liner; the RBF is appropriate
for separable patterns because the network data has a complex format. In this research, a
Gaussian radial basis function was proposed to detect Android malware:

K
(
y, y′

)
= exp

(
−||y− y′||2

2σ2

)
(3)

where, y, and y’ are vector features of the training data, ||y− y||2 is the squared Euclidean
distance between the features of the training data, and σ is the parameter.

3.3.3. Linear Discriminant Analysis (LDA)

LDA is a linear machine learning algorithm used to solve applications with high
dimensionality [62]. It is used to model and transform data from a high-space dimension
into a low-space dimension by separating the classes of the data into two groups: normal
and malicious packets. Figure 5 represent the LDA method for analyzing normal and
abnormal packets, where the red line linearly separates the two classes of the data.

Figure 5. The linear discriminant analysis (LDA) method for analyzing datasets.

3.3.4. Deep Learning Models

CNN-LSTM is a fusion model created with the combination of CNN and LSTM; both
are deep learning AI algorithms. In CNN, there are hidden neurons with trainable weights
and bias parameters. It is broadly applied to analyze the data in a grid layout, making it
different from other structures [63]. It is also called a feed-forward network because the
input data stream in one way, from the input to the production layer [64]. Three are the

Sensors 2022, 22, 2268 8 of 26

main components in the CNN structure: the convolutional, pooling, and fully connected
layers. For feature extraction and the reduction of dimensionality, the convolutional and
pooling layers are employed. The fully connected layer is completely folded and attached
to the output of the previous layer. The main architecture of the CNN model for detecting
Android malware applications is displayed in Figure 6.

Figure 6. Structure of the CNN model.

Hochreiter et al. [65] introduced the LSTM algorithm for learning long-term data
dependency. The LSTM is one type of recurrent neural network (RNN). The distinction
between the LSTM and RNN techniques is the memory cells present in the LSTM structure.
Every memory cell comprises four gates: the input, candidate, forget, and output gates.
The forget gate categorizes the input features as to whether they must be discarded or kept.
The input gate revives the memory cells in the LSTM structure, and the hidden state is
always controlled by the output gate. Furthermore, LSTM uses an embedded memory block
and gate mechanism that enables it to address complications related to the disappearing
gradient and the explosion gradient present in the RNN learning [66]. The structure of the
LSTM model is presented in Figure 7. Table 1 show the parameters of the LSTM model. It
is investigated that these parameter values were significant for obtaining high performance
to detect the android malware. The kernel size of convolution was 4, the max pool size
id 4 for selecting significant features from the filter layer. The drop out value was 0.50
for preventing the model from overfitting; in order to optimize the model, the RSMprop
optimizer function is presented. The error gradient is used batch size 150. The equations
for the LSTM-related gates are defined as follows:

ft = σ
(

W f . Xt + W f . ht−1 + b f

)
(4)

it = σ(Wi. Xt + Wi . ht−1 + bi) (5)

St = tan h(Wc. Xt + Wc . ht−1 + bc) (6)

Ct = (it ∗ St + ft ∗ St−1) (7)

ot = σ(Wo + Xt + Wo . ht−1 + Vo .Ct + bo) (8)

ht = ot + tan h(Ct) (9)

where Xt is the vector of the input features sent to the memory cell at a time t. Wi, W f ,
Wc, Wo, and VO represent the weight matrices, bi, b f , bc, and bo indicate the bias vectors,
ht is the point of the stated value of the memory cell at a time t, St and Ct are the defined
values of the candidate state of the memory cell and the state of the memory cell at time t,
respectively. σ and tanh are activation functions, and it, ft, and ot are obtained values for
the input gate, the forget gate, and the output gate at time t, respectively. ht−1 represents
the short memory vector.

Sensors 2022, 22, 2268 9 of 26

Figure 7. The structure of the LSTM technique.

Table 1. Parameters of the LSTM model.

Parameters Values

Kernel size 4
Max pooling size 4

Drop out 0.50
Fully connected layer 32
Activation function Relu

Optimizer RSMprop
Epochs 10, 20

Batch size 20

The CNN-LSTM model was built, as shown in Figure 8. It was trained using the
training dataset, and its hyperparameters were adjusted using the Adam optimizer and
the validation dataset. The CNN-LSTM model was next implemented on the test dataset,
including features of each testing record to its real class: normal or a particular class of
attack [67]. The training and optimization processes of the CNN-LSTM model consisted of
two one-dimensional convolution layers that cross the input vectors with 32 filters and a
kernel size of 4, two fully connected dense layers composed of 256 hidden neurons, and
an output layer that applies the nonlinear SoftMax activation function used for multiclass
classification tasks. To overcome the model’s overfitting, the global max-pooling and
dropout layers were applied. The global max-pooling layer prevents overfitting of the
learned features by captivating the maximum value, while the dropout layer is used to
deactivate a set of specific neurons in the CNN-LSTM network. The Adam optimizer
updates the weights and improves the cross-entropy loss of function. Table 2 show the
parameters of the CNN-LSTM model.

Sensors 2022, 22, 2268 10 of 26

Figure 8. The structure of the CNN-LSTM model.

Table 2. Parameters of the CNN-LSTM model.

Parameters Values

Kernel size 4
Max pooling size 4

Drop out 0.50
Fully connected layer 32
Activation function Relu

Optimizer RSMprop
Epochs 20

Batch size 150

3.3.5. Autoencoder (AE)

AE is a type of AI algorithm based on deep neural networks that use unsupervised
learning for encoding and decoding the input data and are commonly utilized for feature
extraction and denoising [68]. Two different processes are performed by AE: encoding
and decoding. Hence, its structure is symmetrical. The input data are passed through
three different layers: the input, latent, and output layers. These layers make up the AE
architecture (Figure 9). The input and output layers have the same size, and the latent layer
has a smaller size than the input layer [69]. Encoding and decoding are achieved with the
following equations, respectively:

e = fθ(x) = s(Wx + b) (10)

x̃= g θ ′(e) = s
(
W ′e + b′

)
(11)

where x is the input vector, e ∈ [0, 1] d represents the latent vector, and x̃ ∈ [0, 1] D is
the produced vector. From the input layer to the latent layer, the encoding process is
repeated. Next, the decoding process is repeated from the latent layer to the output layer.
W and W ′ represent the weight from the input to the latent and from the latent to the
output layers, respectively. b and b′ denote the bias vectors of the input layer and the latent
layer. The activation functions of the latent layer neurons and the output layer neurons are
represented with fθ and g θ ′ , respectively. The weight and bias parameters are learned in

Sensors 2022, 22, 2268 11 of 26

the AE structure after reducing the reconstruction error. Equation (12) is used to measure
the error between the reconstructed x̃ and the input data x for individual instances:

J
(
W, b′, x, x̃

)
=

1
2
‖hw,b(x)− x̃ ‖2 (12)

Figure 9. The structure of the auto-encoder (AE) model.

In a training dataset including D instances, the cost function is defined as follows:

∑nl −1
l=1 ∑sl

i=1 ∑sl +1
j=1 (W(l)

ji)
2
=

[
1
D ∑D

i=1(
1
2
‖hw,b

(
x(i) − x̃(i)

)
‖2)

]
+

λ

2 ∑nl −1
l=1 ∑sl

i=1 ∑sl +1
j=1 (W(l)

ji)
2

(13)

where D refers to the total number of instances, s to the number of neurons in layer l, λ
represents the weight attenuation parameter, and the square error is the reconstruction
error of each training instance.

3.4. Performance Measurements

The statistical analysis included the calculation of the mean square error (MSE),
Pearson’s correlation coefficient (R), and the root-mean-square error (RMSE) to test the
proposed algorithms’ efficiency in detecting Android malware. The equations of these
parameters are presented below:

MSE =
1
n ∑n

i=1

(
yi,exp − yi, pred

)2
(14)

RMSE =

√√√√
∑n

i=1

(
yi,exp − yi,pred

)2

n
(15)

R% =
n
(

∑n
i=1 yi,exp × yi, pred

)
−
(
∑n

i=1 yi,exp
)(

∑n
i=1 yi, pred

)
√[

n
(
∑n

i=1 yi,exp
)2 −

(
∑n

i=1 yi,exp
)2
][

n
(

∑n
i=1 yi,pred

)2
−
(

∑n
i=1 yi,pred

)2
] × 100 (16)

R2 bn1−
∑n

i=1 (yi, exp − yi, pred)
2

∑n
i=1 (yi, exp − yavg, exp)

2 (17)

Accuracy =
TP + TN

TP + FP + FN + TN
× 100% (18)

Speci f icity =
TN

TN + FP
× 100% (19)

Sensors 2022, 22, 2268 12 of 26

Sensitivity =
TP

TP + FN
× 100% (20)

Precision =
TP

TP + FP
× 100% (21)

Fscore =
2 ∗ preision ∗ Sensitivity

preision + Sensitivity
× 100% (22)

where yi,exp is the experimental value of the data point i, yi,pred is the predicted value of the
data point i, yavg,exp is the average of the experimental values, R is Pearson’s correlation
coefficient, yi,exp are the Android network packets of the input data i, yi,class are the classes
of Android malware and normal input data i, n is the total number of the input data, the
true positive (TP) represents the total number of samples that are successfully classified as
positive sentiment, false positive (FP) is the total number of samples that are incorrectly
classified as negative sentiments, true negative (TN) denotes the total number of samples
that are successfully classified as negative sentiment, and false negative (FN) represents the
total number of samples that are incorrectly classified as positive sentiments.

4. Results

The investigation of the effect of the proposed models on the standard Android
malware datasets was conducted using the Python programing language. The statistical
analysis evaluated the results of the proposed models.

4.1. Splitting the Data

The datasets were divided into 70% training and 30% testing data. The random
function for splitting the training and testing was proposed. The training phase was
applied to fit the models using the Android malware datasets. The test phase was designed
to validate the proposed models using new data. Table 3 show the datasets’ volume.

Table 3. Volume of datasets.

Datasets Total Volume Training Testing

CICAndMal2017 676 473 203
Drebin 15,031 10,521 4510

4.2. Experimental Environments

The platform used to detect intrusion in Android applications is presented in Table 4.

Table 4. Environment requirements of the proposed model.

Hardware Software

RAM size 8 GB Python Version 3.6
C.P.U. Numpy Version 1.18.1

TensorFlow library Version 2.10
Keras library Version 2.3.1

Matplotlib Version 3.2.0
NumPy library Version 1.01

4.3. Model Performance

The highly efficient performance of machine learning and deep learning models
guarantees the detection of Android malicious applications. The algorithms for intru-
sion detection were tested using two standard malware mobile datasets. The Drebin
dataset contained 10,525 Android applications, and the CICAndMal2017 dataset contained
676 injections of various attack and normal packets.

Sensors 2022, 22, 2268 13 of 26

4.3.1. Performance of the Machine Learning Models

In this work, the SVM, KNN, and LDA models were applied to identify Android
malicious packets. The SVM algorithm achieved maximum accuracy (100%) with respect
to all the performance measurements in the CICAndMal2017 dataset (Table 5). However, it
achieved lower accuracy (80.71%) with the Drebin dataset.

Table 5. Results of the SVM method.

CICAndMal2017 Dataset

Metrics Precision (%) Recall (%) F1-score (%)
Normal 100 100 100
Attacks 100 100 100

Accuracy 100
Weighted average 100 100 100

Drebin dataset
Metrics Precision (%) Recall (%) F1-score (%)
Normal 0.97 0.51 0.67
Attacks 0.77 0.99 0.86

Accuracy 80.71
Weighted average 0.84 0.81 0.79

The SVM method showed the efficiency performance with the CICAndMal2017 dataset
and satisfying results in the Drebin dataset. The confusion metrics of the SVM method
are presented in Figure 10. In the CICAndMal2017 dataset, the percentage of the normal
data classified as true negative was 45.81%, whereas the true positive represented 54.19%
and were classified as malware attacks. Furthermore, the false positive and false negative
data were 0, indicating that the SVM method successfully detected malicious attacks in the
Drebin dataset. The confusion metrics of the SVM approach applied on the Drebin dataset
were as follows: 61.56% were classified as abnormal applications, 19.15% true negatives
were classified as normal applications, whereas the true positive and false negatives were
18.62% and 0.67%, respectively. We conclude that the performance of the SVM method is
good since the false positive is low.

Figure 10. The confusion metrics of the SVM method using the (a) CICAndMal2017 and (b) Drebin
datasets.

Table 6 summarize the performance of the KNN method in the detection of malware
attacks in both datasets. We considered the scope of the KNN method with (k = 5). In the
CICAndMal2017 dataset, the KNN method achieved high accuracy (90%), contrary to the
Drebin dataset (81.57%).

Sensors 2022, 22, 2268 14 of 26

Table 6. Results of KNN algorithm.

CICAndMal2017

Metrics Precision (%) Recall (%) F1-score (%)
Normal 0.89 0.89 0.89
Attacks 0.91 0.91 0.91

Accuracy 0.90
Weighted average 0.90 0.90 0.90

Drebin dataset
Metrics Precision (%) Recall (%) F1-score (%)
Normal 0.96 0.53 0.68
Attacks 0.78 0.99 0.87

Accuracy 81.57
Weighted average 0.85 0.82 0.80

Figure 11 show the confusion metrics for the KNN method. In the CICAndMal2017
dataset, 40.89% of the dataset was classified as true negative (normal applications), 49.26%
as malware, and 4.93% as false positives (normal data classified as attacks). In the Drebin
dataset, the KNN method classified 61.87% of the dataset as true positives (attacks), 19.71%
as true negatives (normal), and the false positives were <0.80%. Overall, the KNN method
achieved higher accuracy in the CICAndMal2017 dataset than in the Drebin dataset.

Figure 11. The confusion metrics of the KNN method using the (a) CICAndMal2017 and (b) Drebin
datasets.

The results of the LDA method are presented in Table 7. Overall, the results were not
adequate due to the complexity of the network dataset. The nonlinear algorithms are not
appropriate for the analysis of network datasets. The accuracy of LDA was 45.32% in the
CICAndMal201 dataset, a percentage that reached 81% in the case of the Drebin dataset.

Sensors 2022, 22, 2268 15 of 26

Table 7. Results of the LDA method.

CICAndMal201

Metrics Precision (%) Recall (%) F1-Score (%)

Normal 0.46 0.98 0.62
Attacks 0.33 0.01 0.02

Accuracy 45.32
Weighted average 0.39 0.45 0.29

Drebin Dataset

Metrics Precision (%) Recall (%) F1-score (%)

Normal 0.95 0.53 0.68
Attacks 0.78 0.98 0.87

Accuracy 81.35
Weighted average 84 0.81 0.82

The confusion metrics of the LDA method are presented in Figure 12. The percentage
of true positives was high (49%), whereas that of true negatives (classified as normal
applications) was low (44.83%) in the CICAndMal2017 dataset. The percentage of false
positives was high (53.69%), showing that the LDA model is not appropriate for this dataset.
In the Drebin dataset, the confusion metrics showed that 19.15% were true negatives and
1.02% false positives, classifying normal applications as malware. Overall, the LDA method
had good performance with the Drebin dataset.

Figure 12. The confusion metrics for the (a) CICAndMal2017 and (b) Drebin datasets.

4.3.2. Performance of the Deep Learning Models

In this section, the results of the deep learning algorithms, namely LSTM, CNN-LSTM,
and AE, are presented. The dataset was divided into 70% training and 30% test data.
Table 8 show the results of the LSTM, CNN-LSTM, and AE models. The performance of
the CNN-LSTM model achieved high accuracy (95.07%) compared with the LSTM and AE
models in the CICAndMal2017 dataset.

Table 8. Results of the deep learning algorithms in the CICAndMal2017 dataset.

Models Loss Accuracy (%) Precision (%) Recall (%) F1 Score (%)

LSTM 0.20 94.58 95.41 94.54 94.97
CNN-LSTM 0.16 95.07 97.16 93.63 95.53

AE 1.43 75.79 92.15 66.78 77.44

Figure 13 show the accuracy performance of the LSTM, CNN-LSTM, and AE algo-
rithms using the CICAndMal2017 dataset. The performance plots show that the CNN-
LSTM model achieved an accuracy of 99.9% in the training phase, and in the validation

Sensors 2022, 22, 2268 16 of 26

phase, the initial 75% accuracy reached 95.07%. The LSTM model achieved good perfor-
mance in the training phase (99%) and the validation phase it reached 94.58%.

Figure 13. Performance of the deep learning models with the CICAndMal2017 dataset. (a) LSTM. (b)
CNN-LSTM.

The binary_crossentropy method was used to calculate the accuracy loss in the training
and testing phases. Figure 14 show the validation accuracy of the deep learning models.
The accuracy loss of the LSTM model in the validation phase changed from 0.5 to 0.2, while
in the case of the CNN-LSTM model, this changed from 0.6 to 0.2.

Figure 14. Accuracy loss of the deep learning models in the CICAndMal2017 dataset. (a) LSTM. (b)
CNN-LSTM.

Table 9 show the results of the LSTM, CNN-LSTM, and AE models using the Drebin
dataset. The LSTM model achieved high accuracy (99.40%). Furthermore, the CNN-
LSTM model showed high accuracy of 97.20%, and the performance of the AE model
was satisfying.

Table 9. Results of the deep learning models using the Drebin dataset.

Models Loss Accuracy (%) Precision (%) Recall (%) F1 Score (%)

LSTM 0.05 99.40 99.32 99.74 99.53
AE 3.65 56.65 41.18 65.71 51.11

CNN-LSTM 0.09 97.20 97.72 97.92 97.82

Sensors 2022, 22, 2268 17 of 26

Figure 15 show the accuracy performance of the deep learning models. The validation
accuracy of the LSTM model started from 97% and reached 99.40% with 20 Epochs. The
LSTM model in the training phase achieved an accuracy of 100%. The performance of the
CNN-LSTM model was 97.20% in the validation phase.

Figure 15. Performance of the deep learning models in the CICAndMal2017 dataset. (a) LSTM.
(b) CNN-LSTM.

Figure 16 show the validation loss of the deep learning models. In the LSTM model,
the validation loss changed from 0.10 to 0.7, whereas for the CNN-LSTM model, it changed
from 0.7 to 0.1 with 20 Epoch.

Figure 16. Accuracy loss of the deep learning models in the CICAndMal2017 dataset. (a) LSTM.
(b) CNN-LSTM.

The accuracy performance of the AE model using the CICAndMal2017 and Drebin
datasets is presented in Figure 17. The performance of AE was not satisfying, with the
accuracy in the training phase being 79% and in the validation phase 75.79% for the
CICAndMal2017 dataset. For the Drebin dataset, the accuracy in the validation phase was
56%. The accuracy percentage of the LSTM and CNN-LSTM models outperformed the
AE model.

Sensors 2022, 22, 2268 18 of 26

Figure 17. Accuracy of the AE model in the (a) CICAndMal2017 and (b) Drebin datasets.

Figure 18 display the accuracy loss of the AE model in both datasets. The accuracy loss
was high (from 0.70 to 0.55) for the CICAndMal2017 dataset. Furthermore, the validation
loss changed from 0.9 to 0.4 in the case of the Drebin dataset. Overall, the validation loss of
the AE model was high; therefore, the AE model’s performance is not appropriate for the
detection of Android malicious attacks.

Figure 18. Accuracy loss of the autoencoder model in the (a) CICAndMal2017 and (b) Drebin datasets.

4.4. Sensitivity Analysis

Sensitivity analysis is an approach used to measure the influence of uncertainties of
the input data variables. Analyzing the input data is very useful in extracting the patterns
from the dataset. The Pearson’s correlation coefficient was applied to find the correlation
between the input features and the classes. Some features had significant relationships
between the classes (normal and attacks) [70,71].

We selected the features that had a relationship >50% between the class. Figure 19
show the features that have a significant correlation with the classes variables in the CI-
CAndMal2017 dataset. We considered four features with correlation >50%. The correlation
coefficient results for the Drebin dataset are presented in Figure 20. It was observed that the
Drebin dataset revealed a strong correlation between classes, while in the CICAndMal2017
dataset, they were <50%.

Sensors 2022, 22, 2268 19 of 26

Figure 19. The correlation coefficient results using the CICAndMal2017 dataset.

Figure 20. The correlation coefficient for the Drebin dataset.

We applied the statistical metrics mean absolute error (MAE), MSE, RMSE, and R2

to identify the prediction error between the target class and the predicted values. The
prediction error of the machine learning algorithms is presented in Table 10. The SVM
algorithm displayed fewer prediction errors, and the R2 between the predicted values and
the target values was 100% for the CICAndMal2017dataset. The KNN method showed
fewer prediction errors (MSE = 0.1842), and the relationship between the predicted and
target values was 33.35%.

Sensors 2022, 22, 2268 20 of 26

Table 10. Statistical analysis of the machine learning algorithms’ results using the CICAndMal2017
dataset.

Models MAE MSE RMSE R2 (%)

SVM 0.00 0.0 0.0 100
KNN 0.0985 0.09852 0.313 63.31
LDA 0.429 0.4189 0.647 53.68

Table 11 show the prediction potential of the SVM, KNN, and LDA methods. The
prediction performance of the KNN method was R2 = 33.35, achieving the best correlation
between the predicted and target values in the Drebin dataset. Overall, the prediction
results of the machine learning algorithms were satisfactory.

Table 11. Statistical analysis of the machine learning models using the Drebin dataset.

Models MAE MSE RMSE R2 (%)

SVM 0.1915 0.1915 0.437 31.57
KNN 0.1842 0.1842 0.429 33.35
LDA 0.1864 0.1864 0.431 32.09
SVM 0.1915 0.1915 0.437 31.57

The prediction errors of the deep learning algorithms are summarized in Table 12.
The LSTM model achieved lower prediction levels (MSE = 0.0054), and the correlation
between the predicted and target values was 88.25% in the CICAndMal2017 dataset. In the
Drebin dataset, the LSTM model showed lower prediction levels (MSE = 0.0059) and high
correlation (R2 = 97.39%). The prediction performance of LSTM was good in both datasets.

Table 12. Statistical analysis of the deep learning models.

CICAndMal2017 Dataset

Models MAE MSE RMSE R2 (%)

LSTM model 0.0054 0.0541 0.232 88.25
Autoencoder

model 0.339 0.339 0.5830 31.74

CNN-LSTM 0.049 0.049 0.221 80.31

Drebin dataset

Models MAE MSE RMSE R2 (%)
LSTM model 0.0059 0.0059 0.077 97.39
Autoencoder

model 0.2425 0.2279 0.177 17.91

CNN-LSTM 0.027 0.027 0.1671 87.84

5. Discussion

With rapidly developing technology, the use of smartphones with new features and
associated Android applications has increased. Statista reported that 1.3 billion smart-
phones will be used by 2023. This also brings challenges for the researchers and developers
of security mechanisms for these applications, originating in the new complexities and
vulnerabilities of the Android applications that hackers can quickly exploit.

Considering that Android applications of digital e-commerce, e-business, savings, and
online banking are associated with confidential and appreciated information communicated
within the mobile network, it is important to evaluate the application data in terms of
accomplishing proper security. Machine and deep learning algorithms are used to monitor
the detection of malicious attacks against Android applications to ensure that security
openings do not occur within this network. The present research contributes to the area

Sensors 2022, 22, 2268 21 of 26

of cybersecurity by developing a system based on machine learning and deep learning
algorithms to detect anomalies in signature databases, thus, permitting the system to detect
unknown attacks.

As we know, the network has a very complex format; in this study, nonlinear models
were proposed to achieve high accuracy, whereas linear, namely LDA and KNN, models
achieved slightly worse performance. The accuracy performance of LDA was 45.32% in
the CICAndMal2017 dataset, and the accuracy performance improved to 81.35% using the
Drebin dataset. It was observed that the KNN model achieved little accuracy, 81.57%, using
the Drebin dataset. We observed that the LDA and KNN algorithms are not appropriate
for detecting Android malware. In deep learning models, the AE mode results were not
satisfactory for detecting the mobile attacks. The AE achieved 75.79% and 56.65% with
respect to the CICAndMal2017 and Drebin datasets. The AE is composed of the encoder
and decoder models; the encoder compresses the input data, whereas the decoder is used
to recreate the input from the encoder. Overall, we observed that these models did not
achieve good results due to the research datasets being binary data.

Furthermore, using the support vector machine, LSTM and CNN-LSTM algorithms
achieved high accuracy performance for developing an appropriate system that can support
the security of smartphones against malware. Two standard datasets were used. The SVM
model achieved an accuracy of 100% using the CICAndMal2017 dataset and the LSTM
algorithm achieved 99.40% using the Drebin dataset.

Our system was compared with existing systems of machine learning and deep learn-
ing models that detect malware for the security of Android applications. The mechanism
of the proposed system is based on the pattern of dataset behavior for detecting the attacks.
The LSTM model had an accuracy of 99.40% in the case of the Drebin dataset, indicating
that it is a robust model to handle Android security vulnerabilities. Recently, by employing
a CNN model on an Android platform, the system was found to achieve high accuracy;
however, our system is more accurate against all systems. Table 13 show the results of our
system against existing security systems using the same dataset. The graphic representation
of our system and other existing systems’ results with respect to the accuracy metrics is
presented in Figure 21. Overall, the system we propose achieved the highest accuracy.

Table 13. Results of the proposed system against existing security systems using the Drebin dataset.

Reference Year Datasets Model Accuracy (%)

Ref. [72] 2021 Drebin CNN 91

Ref. [73] 2018 Drebin

RF, J.48, NB, Simple Logistic,
BayesNet TAN, BayesNet K2,
SMO PolyKernel, IBK, SMO

NPolyKernel

88–96

Ref. [74] 2021 Drebin CBR, SVM, DT 95
Ref. [75] 2019 Drebin Random forest tree 96.7
Ref. [76] 2018 Drebin DT 97.7
Ref. [77] 2019 Drebin RF with 1000 decision trees 98.7
Ref. [78] 2019 Drebin SVM 93.7
Ref. [79] 2019 Drebin Random forest tree 94
Ref. [80] 2019 Drebin Random forest tree 96
Ref. [81] 2016 Drebin Random forest tree 97
Ref. [82] 2021 Drebin CNN 98.2

Proposed model 2022 Drebin LSTM
CNN-LSTM

99.40
97.82

Sensors 2022, 22, 2268 22 of 26

Figure 21. Comparative performance of the proposed system against existing systems in the detection
of malware against Android applications using the Drebin dataset.

Table 14 display the results of the proposed system and other existing Android cyber-
security systems that use the machine and deep learning algorithms applied to different
Android datasets. To confirm the results of the proposed system against other Android
security systems, we compared recent systems’ results with ours, with the latter achieving
high accuracy. The graphic representation of these results is presented in Figure 22.

Table 14. Results of the proposed system against existing security systems using different Andriod
datasets.

Reference Year Datasets Model Accuracy (%)

Ref. [83] 2019 MalGenome, Kaggle,
Androguard

Random forest
tree 93

Ref. [84] 2018 Google Play, VirusShare,
MassVet LSTM 97.4

Ref. [85] 2017 Genome, IntelSecurity,
MacAfee, Google Play Deep CNN 87

2022 Drebin LSTM
CNN-LSTM

99.40
97.82

Figure 22. Comparative performance of the proposed system against existing systems in the detection
of malware against Android applications using different datasets.

Sensors 2022, 22, 2268 23 of 26

6. Conclusions

Smartphones are becoming more and more popular, constituting a profitable target
for hackers due to their susceptibility to security breaches. Android is an open gate
for attackers who exploit it with malicious applications, benefiting from the system’s
security flaws. An emerging method for signature-based malicious attack detection is
the antivirus applications against new malware, created with AI, machine learning, and
deep learning algorithms that predict malware. In this study, a security system was built
and designed based on the support vector machine (SVM), k-nearest neighbors (KNN),
linear discriminant analysis (LDA), long short-term memory (LSTM), convolution neural
network-long short-term memory (CNN-LSTM), and autoencoder algorithms. According
to the promising results of the present research, the following conclusions can be drawn:

The proposed system was evaluated and examined using two standard Android
malware applications datasets: CICAndMal2017 and Drebin. The SVM, KNN, and LDA
methods proved to be efficient machine learning algorithms and successfully detected mal-
ware, with SVM being the most effective. The LSTM and CNN-LSTM models are proposed
to detect malicious applications, with the LSTM model being more efficient for developing
Android security. Sensitive analysis examining the metrics MSE, RMSE, and R2 revealed
the errors between the predicted output and the target values in the validation phase. The
LSTM and CNN-LSTM algorithms achieved fewer prediction errors in the Drebin dataset,
while the SVM method was more effective in the case of the CICAndMal2017 dataset.
The validation phase results of the machine learning and deep learning methods were
satisfying, with the LSTM and SVM models achieving superior performance. The results of
the present study were compared with recent research findings, confirming the robustness
and effectiveness of our results. We implemented machine learning and deep learning
algorithms and experimented with them to obtain optimal malware detection. Both of the
proposed classifiers achieved good accuracy, but the LSTM accuracy was 99.40%, indicating
it can outperform other state-of-the-art models.

Author Contributions: Conceptualization, T.H.H.A. and H.A.; methodology, T.H.H.A.; software,
T.H.H.A.; validation, T.H.H.A. and H.A.; formal analysis, T.H.H.A. and H.A.; investigation, T.H.H.A.
and H.A.; resources, T.H.H.A.; data curation, T.H.H.A. and H.A.; writing—original draft preparation,
T.H.H.A. and H.A.; writing—review and editing, H.A.; visualization, T.H.H.A. and H.A.; supervision,
T.H.H.A.; project administration, T.H.H.A. and H.A.; funding acquisition, T.H.H.A. and H.A. All
authors have read and agreed to the published version of the manuscript.

Funding: This research and the APC were funded by the Deanship of Scientific Research at King
Faisal University for financial support under grant No. NA00036.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available here: https://www.
kaggle.com/saurabhshahane/Android-permission-dataset; https://www.kaggle.com/shashwatwork/
android-malware-dataset-for-machine-learning (accessed on 25 Novmber 2021).

Acknowledgments: The authors extend their appreciation to the Deanship of Scientific Research at
King Faisal University for funding this research work through project number NA00038.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. McAfee Mobile Threat Report Q1. 2020. Available online: https://www.mcafee.com/en-us/consumer-support/2020

-mobilethreat-report.html (accessed on 2 December 2021).
2. Yerima, S.Y.; Khan, S. Longitudinal Performance Analysis of Machine Learning based Android Malware Detectors. In Proceedings of

the 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), Oxford, UK, 3–4 June 2019.
3. Grill, B.B.; Ruthven, M.; Zhao, X. “Detecting and Eliminating Chamois, a Fraud Botnet on Android” Android Developers Blog.

March 2017. Available online: https://android-developers.googleblog.com/2017/03/detecting-and-eliminating-chamois-fraud.
html (accessed on 12 December 2021).

https://www.kaggle.com/saurabhshahane/Android-permission-dataset
https://www.kaggle.com/saurabhshahane/Android-permission-dataset
https://www.kaggle.com/shashwatwork/android-malware-dataset-for-machine-learning
https://www.kaggle.com/shashwatwork/android-malware-dataset-for-machine-learning
https://www.mcafee.com/en-us/consumer-support/2020-mobilethreat-report.html
https://www.mcafee.com/en-us/consumer-support/2020-mobilethreat-report.html
https://android-developers.googleblog.com/2017/03/detecting-and-eliminating-chamois-fraud.html
https://android-developers.googleblog.com/2017/03/detecting-and-eliminating-chamois-fraud.html

Sensors 2022, 22, 2268 24 of 26

4. Clarke, E.; Emerson, E.; Sistla, A. Automatic verification of finite-state concurrent systems using temporal logic specifications.
ACM Trans. Program. Lang. Syst. 1986, 8, 244–263. [CrossRef]

5. Andersen, J.R.; Andersen, N.; Enevoldsen, S.; Hansen, M.M.; Larsen, K.G.; Olesen, S.R.; Srba, J.; Wortmann, J.K. CAAL:
Concurrency workbench, Aalborg edition. In Proceedings of the Theoretical Aspects of Computing—ICTAC 2015—12th
International Colloquium, Cali, Colombia, 29–31 October 2015; Springer: Cham, Switzerland, 2015; pp. 573–582.

6. Alothman, B.; Rattadilok, P. Android botnet detection: An integrated source code mining approach. In Proceedings of the 12th
International Conference for Internet Technology and Secured Transactions (ICITST), Cambridge, UK, 11–14 December 2017; pp.
111–115.

7. Haystack. Mobile Issues. Available online: https://safeguarde.com/mobile-apps-stealing-your-information/ (accessed on 14
January 2022).

8. AV-TEST. Security Institute. Available online: https://www.av-test.org/en/statistics/malware/ (accessed on 14 January 2022).
9. Alzahrani, A.J.; Ghorbani, A.A. Real-Time Signature-Based Detection Approach For Sms Botnet. In Proceedings of the 2015 13th

Annual Conference on Privacy, Security and Trust (PST), Izmir, Turkey, 21–23 July 2015; pp. 157–164.
10. Girei, D.A.; Shah, M.A.; Shahid, M.B. An Enhanced Botnet Detection Technique For Mobile Devices Using Log Analysis. In

Proceedings of the 2016 22nd International Conference on Automation and Computing (ICAC), Colchester, UK, 7–8 September
2016; pp. 450–455.

11. Gilski, P.; Stefanski, J. Android OS: A Review. Tem. J. 2015, 4, 116. Available online: https://www.temjournal.com/content/41/1
4/temjournal4114.pdf (accessed on 19 May 2021).

12. Android Developers. Privacy in Android 11. Available online: https://developer.android.com/about/versions/11/privacy
(accessed on 10 January 2022).

13. Syarif, A.R.; Gata, W. Intrusion Detection System Using Hybrid Binary PSO and K-Nearest Neighborhood Algorithm. In
Proceedings of the 2017 11th International Conference on Information & Communication Technology and System (ICTS),
Surabaya, Indonesia, 31 October 2017; pp. 181–186.

14. Huanran., W.; Hui, H.; Weizhe, Z. Demadroid: Object Reference Graph-Based Malware Detection in Android. Secur. Commun.
Netw. 2018, 2018, 7064131.

15. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
16. Liu, K.; Xu, S.; Xu, G.; Zhang, M.; Sun, D.; Liu, H. A Review of Android Malware Detection Approaches Based on Machine

Learning. IEEE Access 2020, 8, 124579–124607. [CrossRef]
17. Goeschel, K. Reducing False Positives In Intrusion Detection Systems Using Data-Mining Techniques Utilizing Support Vector

Machines, Decision Trees, And Naive Bayes for Off-Line Analysis. In Proceedings of the SoutheastCon 2016, Norfolk, VA, USA,
30 March–3 April 2016; pp. 1–6.

18. Kuttranont, P.; Boonprakob, K.; Phaudphut, C.; Permpol, S.; Aimtongkhamand, P.; KoKaew, U.; Waikham, B.; So-In, C. Parallel
KNN and Neighborhood Classification Implementations on GPU for Network Intrusion Detection. J. Telecommun. Electron.
Comput. Eng. (JTEC) 2017, 9, 29–33.

19. Mehedi, S.T.; Anwar, A.; Rahman, Z.; Ahmed, K. Deep Transfer Learning Based Intrusion Detection System for Electric Vehicular
Networks. Sensors 2021, 21, 4736. [CrossRef]

20. Kalash, M.; Rochan, M.; Mohammed, N.; Bruce, N.D.B.; Wang, Y.; Iqbal, F. Malware Classification with Deep Convolutional
Neural Networks. In Proceedings of the 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS),
Paris, France, 26–28 February 2018; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2018; pp. 1–5.

21. Diro, A.; Chilamkurti, N. Leveraging LSTM networks for attack detection in fog-to-things communications. IEEE Commun. Mag.
2018, 56, 124–130. [CrossRef]

22. Čeponis, D.; Goranin, N. Investigation of Dual-Flow Deep Learning Models LSTM-FCN and GRU-FCN Efficiency against
Single-Flow CNN Models for the Host-Based Intrusion and Malware Detection Task on Univariate Times Series Data. Appl. Sci.
2020, 10, 2373. [CrossRef]

23. Alrawashdeh, K.; Purdy, C. Toward an Online Anomaly Intrusion Detection System Based On Deep Learning. In Proceedings
of the 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), Anaheim, CA, USA, 18–20
December 2016; pp. 195–200.

24. Hojjatinia, S.; Hamzenejadi, S.; Mohseni, H. Android Botnet Detection using Convolutional Neural Networks. In Proceedings of
the 2020 28th Iranian Conference on Electrical Engineering (ICEE), Tabriz, Iran, 4–6 August 2020.

25. Farnaaz, N.; Jabbar, M. Random forest modeling for network intrusion detection system. Procedia Comput. Sci. 2016, 89, 213–217.
[CrossRef]

26. Alkahtani, H.; Aldhyani, T.H.H. Botnet Attack Detection by Using CNN-LSTM Model for Internet of Things Applications. Secur.
Commun. Netw. 2021, 2021, 3806459. [CrossRef]

27. Min, E.; Long, J.; Liu, Q.; Cui, J.; Chen, W. TR-IDS: Anomaly-based intrusion detection through text-convolutional neural network
and random forest. Secur. Commun. Netw. 2018, 2018, 4943509. [CrossRef]

28. Zeng, Y.; Gu, H.; Wei, W.; Guo, Y. Deep—Full—Range: A Deep Learning Based Network Encrypted Traffic Classification and
Intrusion Detection Framework. IEEE Access 2019, 7, 45182–45190. [CrossRef]

29. Alkahtani, H.; Aldhyani, T.; Al-Yaari, M. Adaptive anomaly detection framework model objects in cyberspace. Appl. Bionics
Biomech. 2020, 2020, 6660489. [CrossRef] [PubMed]

http://doi.org/10.1145/5397.5399
https://safeguarde.com/mobile-apps-stealing-your-information/
https://www.av-test.org/en/statistics/malware/
https://www.temjournal.com/content/41/14/temjournal4114.pdf
https://www.temjournal.com/content/41/14/temjournal4114.pdf
https://developer.android.com/about/versions/11/privacy
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://doi.org/10.1109/ACCESS.2020.3006143
http://doi.org/10.3390/s21144736
http://doi.org/10.1109/MCOM.2018.1701270
http://doi.org/10.3390/app10072373
http://doi.org/10.1016/j.procs.2016.06.047
http://doi.org/10.1155/2021/3806459
http://doi.org/10.1155/2018/4943509
http://doi.org/10.1109/ACCESS.2019.2908225
http://doi.org/10.1155/2020/6660489
http://www.ncbi.nlm.nih.gov/pubmed/33376505

Sensors 2022, 22, 2268 25 of 26

30. Kadir, A.F.A.; Stakhanova, N.; Ghorbani, A.A. Android Botnets: What Urls Are Telling Us. In Proceedings of the International
Conference on Network and System Security, New York, NY, USA, 3–5 November 2015; Springer: New York, NY, USA, 2015; pp. 78–91.

31. Anwar, S.; Zain, J.M.; Inayat, Z.; Haq, R.U.; Karim, A.; Jabir, A.N. A Static Approach Towards Mobile Botnet Detection. In
Proceedings of the 2016 3rd International Conference on Electronic Design (ICED), Phuket, Thailand, 11–12 August 2016; pp.
563–567.

32. Alqatawna, J.F.; Faris, H. Toward a Detection Framework for Android Botnet. In Proceedings of the 2017 International Conference
on New Trends in Computing Sciences (ICTCS), Amman, Jordan, 11–13 October 2017; pp. 197–202.

33. Abdullah, Z.; Saudi, M.M.; Anuar, N.B. ABC: Android botnet classification using feature selection and classification algorithms.
Adv. Sci. Lett. 2017, 23, 4717–4720. [CrossRef]

34. Toldinas, J.; Venčkauskas, A.; Damaševičius, R.; Grigaliūnas, Š.; Morkevičius, N.; Baranauskas, E. A Novel Approach for Network
Intrusion Detection Using Multistage Deep Learning Image Recognition. Electronics 2021, 10, 1854. [CrossRef]

35. Karim, A.; Rosli, S.; Syed, S. DeDroid: A Mobile Botnet Detection Approach Based on Static Analysis. In Proceedings of the 7th
International Symposium on UbiCom Frontiers Innovative Research, Systems and Technologies, Beijing, China, 10–14 August 2015.

36. The Drebin Dataset. Available online: https://www.sec.cs.tu-bs.de/~{}danarp/drebin/index.html (accessed on 28 December
2021).

37. Deng, L. A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Trans. Signal Inf. Process. 2014,
3, e2. [CrossRef]

38. Berman, D.S.; Buczak, A.L.; Chavis, J.S.; Corbett, C.L. A survey of deep learning methods for cyber security. Information 2019, 10,
122. [CrossRef]

39. Yilmaz, S.; Sen, S. Early Detection of Botnet Activities Using Grammatical Evolution. In Applications of Evolutionary Computation;
Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 395–404.

40. Yu, Y.; Long, J.; Liu, F.; Cai, Z. Machine Learning Combining with Visualization For Intrusion Detection: A survey. In Proceedings
of the International Conference on Modeling Decisions for Artificial Intelligence, Sant Julià de Lòria, Andorra, 19–21 September
2016; pp. 239–249.

41. Ahmed, A.A.; Jabbar, W.A.; Sadiq, A.S.; Patel, H. Deep learning-based classification model for botnet attack detection. J. Ambient.
Intell. Humaniz. Comput. 2020, 2020, 1–10. [CrossRef]

42. Alauthman, M.; Aslam, N.; Al-kasassbeh, M.; Khan, S.; Al-Qerem, A.; Raymond Choo, K. An efficient reinforcement learning-
based Botnet detection approach. J. Netw. Comput. Appl. 2020, 150, 102479. [CrossRef]

43. Mazini, M.; Shirazi, B.; Mahdavi, I. Anomaly network-based intrusion detection system using a reliable hybrid artificial bee
colony and AdaBoost algorithms. J. King Saud Univ. Comput. Inf. Sci. 2019, 31, 541–553. [CrossRef]

44. Asadi, M.; Jabraeil Jamali, M.A.; Parsa, S.; Majidnezhad, V. Detecting botnet by using particle swarm optimization algorithm
based on voting system. Future Gener. Comput. Syst. 2020, 107, 95–111. [CrossRef]

45. Al Shorman, A.; Faris, H.; Aljarah, I. Unsupervised intelligent system based on one class support vector machine and Grey Wolf
optimization for IoT botnet detection. J. Ambient Intell. Humaniz. Comput. 2020, 11, 2809–2825. [CrossRef]

46. Lin, K.C.; Chen, S.Y.; Hung, J.C. Botnet Detection Using Support Vector Machines with Artificial Fish Swarm Algorithm. J. Appl.
Math. 2014, 2014, 986428. [CrossRef]

47. Chen, T.; Mao, Q.; Yang, Y.; Lv, M.; Zhu, J. TinyDroid: A lightweight and efficient model for Android malware detection and
classification. Mob. Inf. Syst. 2018, 2018, 4157156. [CrossRef]

48. Nisa, M.; Shah, J.H.; Kanwal, S.; Raza, M.; Khan, M.A.; Damaševičius, R.; Blažauskas, T. Hybrid malware classification method
using segmentation-based fractal texture analysis and deep convolution neural network features. Appl. Sci. 2020, 10, 4966.
[CrossRef]

49. Amin, M.; Shah, B.; Sharif, A.; Ali, T.; Kim, K.l.; Anwar, S. Android malware detection through generative adversarial networks.
Trans. Emerg. Telecommun. Technol. 2019, 33, e3675. [CrossRef]

50. Arp, D.; Spreitzenbarth, M.; Hubner, M.; Gascon, H.; Rieck, K.; Siemens, C. Drebin: Effective and Explainable Detection Of
Android Malware In Your Pocket. In Proceedings of the 2014 Network and Distributed System Security Symposium, San Diego,
CA, USA, 23–26 February 2014.

51. Google Play. Available online: https://play.google.com/ (accessed on 2 January 2022).
52. VirusShare. Available online: https://virusshare.com/ (accessed on 2 January 2022).
53. Intel Security/MacAfee. Available online: https://steppa.ca/portfolio-view/malware-threat-intel-datasets/ (accessed on 20

December 2021).
54. Wandoujia App Market. Available online: https://www.wandoujia.com/apps (accessed on 2 January 2022).
55. Google Playstore Appsin Kaggle. Available online: https://www.kaggle.com/gauthamp10/google-playstore-apps (accessed on

2 January 2022).
56. CICMaldroid Dataset. Available online: https://www.unb.ca/cic/datasets/maldroid-2020.html (accessed on 2 January 2022).
57. Alkahtani, H.; Aldhyani, T.H. Intrusion Detection System to Advance Internet of Things Infrastructure-Based Deep Learning

Algorithma. Complexity 2021, 2021, 5579851. [CrossRef]
58. Odusami, M.; Abayomi-Alli, O.; Misra, S.; Shobayo, O.; Damasevicius, R.; Maskeliunas, R. Android Malware Detection: A Survey.

In Communications in Computer and Information Science, Proceedings of the International Conference on Applied Informatics, Bogota,
Colombia, 1–3 November 2018; Springer: Cham, Switzerland, 2018; pp. 255–266.

http://doi.org/10.1166/asl.2017.8994
http://doi.org/10.3390/electronics10151854
https://www.sec.cs.tu-bs.de/~{}danarp/drebin/index.html
http://doi.org/10.1017/atsip.2013.9
http://doi.org/10.3390/info10040122
http://doi.org/10.1007/s12652-020-01848-9
http://doi.org/10.1016/j.jnca.2019.102479
http://doi.org/10.1016/j.jksuci.2018.03.011
http://doi.org/10.1016/j.future.2020.01.055
http://doi.org/10.1007/s12652-019-01387-y
http://doi.org/10.1155/2014/986428
http://doi.org/10.1155/2018/4157156
http://doi.org/10.3390/app10144966
http://doi.org/10.1002/ett.3675
https://play.google.com/
https://virusshare.com/
https://steppa.ca/portfolio-view/malware-threat-intel-datasets/
https://www.wandoujia.com/apps
https://www.kaggle.com/gauthamp10/google-playstore-apps
https://www.unb.ca/cic/datasets/maldroid-2020.html
http://doi.org/10.1155/2021/5579851

Sensors 2022, 22, 2268 26 of 26

59. Yerima, S.Y.; Sezer, S. DroidFusion: A Novel Multilevel Classifier Fusion Approach for Android Malware Detection. IEEE Trans.
Cyber. 2019, 49, 453–466. [CrossRef]

60. Liu, G.; Zhao, H.; Fan, F.; Liu, G.; Xu, Q.; Nazir, S. An Enhanced Intrusion Detection Model Based on Improved kNN in WSNs.
Sensors 2022, 22, 1407. [CrossRef]

61. Aldallal, A.; Alisa, F. Effective Intrusion Detection System to Secure Data in Cloud Using Machine Learning. Symmetry 2021, 13,
2306. [CrossRef]

62. Zheng, D.; Hong, Z.; Wang, N.; Chen, P. An Improved LDA-Based ELM Classification for Intrusion Detection Algorithm in IoT
Application. Sensors 2020, 20, 1706. [CrossRef] [PubMed]

63. Yann, L.; Yoshua, B. Convolutional Networks for Images, Speech, and Time-Series. Handb. Brain Theory Neural Netw. 1995, 10,
2571–2575.

64. Rawat, W.; Wang, Z. Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural Comput.
2017, 29, 2352–2449. [CrossRef]

65. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
66. Aldhyani, T.H.H.; Alkahtani, H. Attacks to Automatous Vehicles: A Deep Learning Algorithm for Cybersecurity. Sensors 2022, 22,

360. [CrossRef]
67. Khan, M.A.; Khan, M.A.; Jan, S.U.; Ahmad, J.; Jamal, S.S.; Shah, A.A.; Pitropakis, N.; Buchanan, W.J. A Deep Learning-Based

Intrusion Detection System for MQTT Enabled IoT. Sensors 2021, 21, 7016. [CrossRef]
68. Tang, C.; Luktarhan, N.; Zhao, Y. SAAE-DNN: Deep Learning Method on Intrusion Detection. Symmetry 2020, 12, 1695. [CrossRef]
69. Kunang, Y.N.; Nurmaini, S.; Stiawan, D.; Zarkasi, A.; Jasmir, F. Automatic Features Extraction Using Autoencoder in Intrusion

Detection System. In Proceedings of the International Conference on Electrical Engineering and Computer Science (ICECOS),
Pangkal Pinang, Indonesia, 2–4 October 2018; pp. 219–224.

70. Ginocchi, M.; Ponci, F.; Monti, A. Sensitivity Analysis and Power Systems: Can We Bridge the Gap? A Review and a Guide to
Getting Started. Energies 2021, 14, 8274. [CrossRef]

71. Nasirzadehdizaji, R.; Balik Sanli, F.; Abdikan, S.; Cakir, Z.; Sekertekin, A.; Ustuner, M. Sensitivity Analysis of Multi-Temporal
Sentinel-1 SAR Parameters to Crop Height and Canopy Coverage. Appl. Sci. 2019, 9, 655. [CrossRef]

72. Millar, S.; McLaughlin, N.; del Rincon, J.M.; Miller, P. Multi-view deep learning for zero-day Android malware detection. J. Inf.
Secur. Appl. 2021, 58, 102718. [CrossRef]

73. Kapratwar, A.; Di Troia, F.; Stamp, M. Static and Dynamic Analysis of Android Malware; ICISSP: Porto, Portugal, 2017; pp. 653–662.
74. Qaisar, Z.H.; Li, R. Multimodal information fusion for android malware detection using lazy learning. Multimed. Tools Appl. 2021,

2021, 1–15. [CrossRef]
75. Salehi, M.; Amini, M.; Crispo, B. Detecting Malicious Applications Using System Services Request Behavior. In Proceedings of

the 16th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, Houston, TX,
USA, 12–14 November 2019; pp. 200–209.

76. Koli, J. RanDroid: Android Malware Detection Using Random Machine Learning Classifiers. In Proceedings of the 2018
Technologies for Smart-City Energy Security and Power (ICSESP), Bhubaneswar, India, 28–30 March 2018; pp. 1–6.

77. Kabakus, A.T. What static analysis can utmost offer for Android malware detection. Inf. Technol. Control 2019, 48, 235–249.
[CrossRef]

78. Lou, S.; Cheng, S.; Huang, J.; Jiang, F. TFDroid: Android Malware Detection By Topics And Sensitive Data Flows Using Machine
Learning Techniques. In Proceedings of the 2019 IEEE 2nd International Conference on Information and Computer Technologies
(ICICT), Kahului, HI, USA, 14–17 March 2019; pp. 30–36.

79. Onwuzurike, L.; Mariconti, E.; Andriotis, P.; Cristofaro, E.D.; Ross, G.; Stringhini, G. MaMaDroid: Detecting Android malware by
building Markov chains of behavioral models (extended version). ACM Trans. Priv. Secur. (TOPS) 2019, 22, 1–34. [CrossRef]

80. Zhang, H.; Luo, S.; Zhang, Y.; Pan, L. An efficient Android malware detection system based on method-level behavioral semantic
analysis. IEEE Access 2019, 7, 69246–69256. [CrossRef]

81. Meng, G.; Xue, Y.; Xu, Z.; Liu, Y.; Zhang, J.; Narayanan, A. Semantic Modelling Of Android Malware For Effective Malware
Comprehension, Detection, and Classification. In Proceedings of the 25th International Symposium on Software Testing and
Analysis, Saarbrücken, Germany, 18–20 July 2016; pp. 306–317.

82. Vu, L.N.; Jung, S. AdMat: A CNN-on-Matrix Approach to Android Malware Detection and Classification. IEEE Access 2021, 9,
39680–39694. [CrossRef]

83. Jannat, U.S.; Hasnayeen, S.M.; Shuhan, M.K.B.; Ferdous, M.S. Analysis and Detection Of Malware in Android Applications Using
Machine Learning. In Proceedings of the 2019 International Conference on Electrical, Computer and Communication Engineering
(ECCE), Cox’sBazar, Bangladesh, 7–9 February 2019; pp. 1–7.

84. Xu, K.; Li, Y.; Deng, R.H.; Chen, K. Deeprefiner: Multi-Layer Android Malware Detection System Applying Deep Neural
Networks. In Proceedings of the 2018 IEEE European Symposium on Security and Privacy (EuroS&P), London, UK, 24–26 April
2018; pp. 473–487.

85. McLaughlin, N.; Martinez del Rincon, J.; Kang, B.; Yerima, S.; Miller, P.; Sezer, S.; Safaei, Y.; Trickel, E.; Zhao, Z.; Doupé, A.; et al.
Deep Android Malware Detection. In Proceedings of the Seventh ACM on Conference on Data and Application Security and
Privacy, Scottsdale, AZ, USA, 22–24 March 2017; pp. 301–308.

http://doi.org/10.1109/TCYB.2017.2777960
http://doi.org/10.3390/s22041407
http://doi.org/10.3390/sym13122306
http://doi.org/10.3390/s20061706
http://www.ncbi.nlm.nih.gov/pubmed/32204314
http://doi.org/10.1162/neco_a_00990
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.3390/s22010360
http://doi.org/10.3390/s21217016
http://doi.org/10.3390/sym12101695
http://doi.org/10.3390/en14248274
http://doi.org/10.3390/app9040655
http://doi.org/10.1016/j.jisa.2020.102718
http://doi.org/10.1007/s11042-021-10749-8
http://doi.org/10.5755/j01.itc.48.2.21457
http://doi.org/10.1145/3313391
http://doi.org/10.1109/ACCESS.2019.2919796
http://doi.org/10.1109/ACCESS.2021.3063748

	Introduction
	Background of Study
	Materials and Methods
	Android Dataset
	CICAndMal2017
	The Drebin Dataset

	Preprocessing
	Classification Algorithms
	K-Nearest Neighbors (KNN)
	Support Vector Machine (SVM)
	Linear Discriminant Analysis (LDA)
	Deep Learning Models
	Autoencoder (AE)

	Performance Measurements

	Results
	Splitting the Data
	Experimental Environments
	Model Performance
	Performance of the Machine Learning Models
	Performance of the Deep Learning Models

	Sensitivity Analysis

	Discussion
	Conclusions
	References

