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Abstract: Semantic segmentation of an incoming visual stream from cameras is an essential part of

the perception system of self-driving cars. State-of-the-art results in semantic segmentation have

been achieved with deep neural networks (DNNSs), yet training them requires large datasets, which

are difficult and costly to acquire and time-consuming to label. A viable alternative to training DNNs

solely on real-world datasets is to augment them with synthetic images, which can be easily modified

and generated in large numbers. In the present study, we aim at improving the accuracy of semantic

segmentation of urban scenes by augmenting the Cityscapes real-world dataset with synthetic images

generated with the open-source driving simulator CARLA (Car Learning to Act). Augmentation

with synthetic images with a low degree of photorealism from the MICC-SRI (Media Integration

and Communication Center-Semantic Road Inpainting) dataset does not result in the improvement

of the accuracy of semantic segmentation, yet both MobileNetV2 and Xception DNNs used in the

present study demonstrate a better accuracy after training on the custom-made CCM (Cityscapes-

ﬁ:edcgtfgsf CARLA Mixed) dataset, which contains both real-world Cityscapes images and high-resolution
synthetic images generated with CARLA, than after training only on the real-world Cityscapes
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Hstata Than Axbas 1. Introduction
Received: 17 January 2022 Self-driving cars, also known as robotic cars [1], autonomous vehicles [2,3], and
Accepted: 11 March 2022 driverless vehicles [4], are currently one of the most promising emerging technologies and

Published: 14 March 2022 a lively area of research. Research labs, universities, and companies have been actively

Publisher’s Note: MDPI stays neutral ~ WOTKINg on self-driving cars since the mid-1980s [5]; in the last decade, research on self-
with regard to jurisdictional claims in ~ driving cars and development of their prototypes have been gaining pace with an increasing
published maps and institutional affil-  focus on applying technologies related to data gathering and processing [6]. However, the
iations. task of developing self-driving cars with the highest level of autonomy;, i.e., autonomous
to such an extent that no human intervention is required in any circumstances [7], still

remains an unsolved challenge.
= The architecture of the autonomy system of self-driving cars is typically organised
Copyright: © 2022 by the authors.  jnto two main parts: the perception system and the decision-making system [8]. Some of
Licensee MDPI, Basel, Switzerland.  the tasks that the perception system deals with are object recognition, object localisation,
and semantic segmentation [9]. In particular, semantic segmentation, also known as
scene parsing [10], aims to classify every pixel of the image [11]; in other words, it is an
image classification task at the pixel level [12]. Similar to image classification [13] and
object detection [14], state-of-the-art semantic segmentation results have been achieved
with deep neural networks (DNNs) [15-17], which, therefore, are particularly pertinent
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to the design of the navigation system of self-driving cars [18]. However, despite their
impressive performance on many perceptual tasks, DNNs also have shortcomings: their
inner workings are not transparent, as they operate as black boxes [19,20], they require a
lot of computational power for running inference [9,21], and training them takes a lot of
time, computing resources, especially GPU (graphics processing unit) power, and data [22].
Among these considerations, the need for large training datasets is arguably especially
topical for deep learning, as data acquisition takes a lot of money and person-hours as well
as may be hampered by legal obstacles and privacy concerns. These problems are even
more pertinent to the acquisition of the datasets of street views for semantic segmentation
that are needed for training DNN models for the perception systems of self-driving cars,
as it is expensive and time-consuming to acquire images in the urban setting, and sharing
the acquired data publicly can be legally challenging. Furthermore, pixel-wise labelling
takes a lot of time and effort: thus, for the creation of the Cambridge-driving Labeled Video
Database (CamVid dataset) [23], labelling was reported to take around 1 h per image; in the
case of the Cityscapes dataset [24], fine pixel-level annotation and quality control of a single
image required on average more than 1.5 h. Therefore, it is not surprising that publicly
available urban street view datasets with semantic labelling are comparatively small in
size: CamVid [23] consists of 700 annotated images obtained from a video sequence of 10
min; the pixel-wise labelled subset of DUS (Daimler Urban Segmentation Dataset) [25] is
500 images large; in Cityscapes [24], there are 5000 fine-labelled and 20,000 coarse-labelled
images. The scarcity of semantically labelled data for self-driving cars caused by the “curse
of dataset annotation" [26] and the major problem for training DNN models for semantic
segmentation in general may arguably hinder the development of self-driving cars with a
high degree of autonomy.

One of the approaches to dealing with the problem of the scarcity of real-world images
is to resort to synthetic data, i.e., artificially generated data that are at least to some extent
similar to real-world data. The use of synthetic data not only obviates the need to acquire
real-world data, but also offers further advantages. Thus, a pipeline for the generation
of synthetic images can be modified to produce more diverse data, e.g., by changing the
weather conditions or increasing the number of objects of interest such as cars, pedestrians,
or traffic signs; therefore, it is possible to produce diverse synthetic data on a large scale.
Furthermore, such pipelines usually make it unnecessary to annotate generated images
manually, as the contours of the objects and the background can be obtained automatically
and with a high degree of precision.

Because of these advantages, synthetic images have been successfully used for various
tasks related to self-driving cars including semantic segmentation. Thus, Ros et al. [27] used
synthetic images from their SYNTHIA (SYNTHetic collection of Imagery and Annotations)
dataset, which represents a virtual New York City modelled by the authors with the Unity
platform, to augment real-world datasets and improve semantic segmentation; Richter
et al. [28] extracted synthetic images and the data for generating semantic segmentation
masks from the video game Grand Theft Auto V and used the acquired synthetic dataset to
improve the accuracy of semantic segmentation; Hahner et al. [29] used a custom-made
dataset of synthetic images of foggy street scenes to improve the quality of semantic scene
understanding under foggy road conditions. However, there are still several challenges
in the use of synthetic data for self-driving cars. First, even high-quality synthetic images
are not entirely photorealistic and therefore are less valuable for training than real-world
images; therefore, it is often more reasonable to augment real-world data with synthetic
data rather than to train DNN models on synthetic data alone [30]. Second, generation of
synthetic data can require quite a lot of effort—at least when designing the initial setup:
thus, developing a pipeline for the generation of synthetic images can be challenging in
terms of time and effort involved, while the acquisition of synthetic images from video
games may not be an easy task either, as the internal workings and assets of the games are
usually inaccessible [28].
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A promising alternative path for the generation of synthetic images is to use open-
source sandbox driving simulators such as TORCS (The Open Racing Car Simulator) [31]
or CARLA (Car Learning to Act) [32]. While such simulators are said to lack the extensive
content of the worlds from the top-level video games [28], their open-source nature makes
it easier to access and modify them as well as imposes little (if any) legal constraints on
the use of the eventually generated data. Recently, Berlincioni et al. [33] made use of the
data produced with a driving simulator: the authors generated their MICC-SRI (Media
Integration and Communication Center-Semantic Road Inpainting) dataset with CARLA
to tackle the problem of image inpainting [34,35], i.e., predicting missing or damaged parts
of an image by inferring them from the context. However, it is still an open question
whether the quality of the synthetic images generated with open-source driving simulators
is sufficient to improve the accuracy of DNNs on semantic segmentation, a task with
particularly high requirements for the quality of the training data.

The present study is concerned with improving the quality semantic segmentation of
urban scenes by means of augmenting a dataset of real-world images with synthetic images.
In particular, the goal of the study is to investigate whether it is possible to achieve improve-
ment in the accuracy of semantic segmentation by using synthetic data generated with the
open-source driving simulator CARLA [32], which can be done in a relatively simple and
fast manner. While the need for a lot of computation time for training the DNN models still
remains a challenge, we dramatically decrease the time (i.e., the person-hours) needed for
the generation of the synthetic data. We perform experiments with DNNs from the DeepLab
model library [36]; the source dataset of the real-world images is Cityscapes [24], currently
the default benchmark dataset for semantic segmentation [37-40]. In the first series of
experiments, we augment Cityscapes with the already available CARLA-generated images
from the MICC-SRI dataset [33] and train MobileNetV2 [41] and Xception [42] DNNs on
the augmented dataset. To provide a baseline for the assessment of the performance of the
models trained on the augmented dataset, we also train MobileNetV2 and Xception models
on the original Cityscapes real-world images alone. For the second series of experiments,
we create our own CCM (Cityscapes-CARLA Mixed) dataset, the real-world part of which
consists of Cityscapes images, whereas the synthetic part of it is generated with CARLA. As
we use a more recent (v0.9.12 vs. v(.8.2) version of CARLA than in [33], we generate images
with higher resolution, improved photorealism, and more diverse assets—both static (e.g.,
buildings, traffic signs) and dynamic (e.g., cars and pedestrians)—than in the MICC-SRI
dataset. We train both MobileNetV2 and Xception on the CCM dataset as well as (again,
to provide a baseline for the comparison) on the original Cityscapes real-world images
alone. Furthermore, to investigate the relation between the amount of synthetic data used
for augmentation and the accuracy of the semantic segmentation, we train MobileNetV2
and Xception on several splits of the CCM dataset, each of which contains all real-world
Cityscapes images and a varying part (100, 50, and 25 percent) of the available synthetic
images. As a result of experiments on the augmented CCM datasets, we obtain DNN
models with MobileNetV2 and Xception architectures that perform semantic segmentation
better than their counterparts trained solely on the real-world Cityscapes images; these
models can be used for the development of the prototype of a self-driving car. Furthermore,
we demonstrate that it is possible to improve the quality of semantic segmentation of
street views by rather simple means, as running a simulation of driving along the streets
and saving the frames of the video stream in CARLA is obviously much easier than vir-
tually recreating parts of New York [27] or San Francisco [43], or acquiring the frames
by intercepting communication between the software program of a video game and its
hardware [28,37,44]. Finally, our findings also bear relevance to the general methodology
of the use of synthetic data for augmentation, as they demonstrate that a larger amount of
synthetic data does not necessarily result in better semantic segmentation.

The rest of the paper is organised as follows. Section 2 describes materials and methods
of the present study; Section 3 is concerned with its main results and their discussion; finally,
Section 4 presents the conclusions.
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2. Materials and Methods
2.1. Datasets

Three datasets were used in the present study: the Cityscapes dataset [24] of real-
world images, the MICC-SRI dataset [33] composed of synthetic images generated with the
CARLA simulator, and our custom-made CCM dataset. These three datasets are described
in detail in the following; sample images from each dataset and their segmentation masks
are shown in Figure 1.

[

Figure 1. Sample images and their segmentation masks from the datasets: (a) Cityscapes dataset;
(b) MICC-SRI (Media Integration and Communication Center-Semantic Road Inpainting) dataset;
(c) CCM (Cityscapes-CARLA Mixed) dataset. Note that (a,c) are not to scale with respect to (b), as
the actual resolution of (a) and (a) is 1024 x 2048 pixels vs. 600 x 800 pixels for (b).

Cityscapes [24] is one of the most well-known datasets of urban landscapes for self-
driving cars. It comprises a diverse set of images with the resolution of 1024 by 2048
pixels taken in the streets of 50 different European (predominantly German) cities while
driving a specially equipped car. Coarse semantic segmentation annotations are available
for 20,000 of these images, and fine (pixel-level) annotations are available for 5000 images.
In the present study, we used only those Cityscapes images for which fine annotations are
available. Furthermore, we had to change the split of the original dataset into training,
validation, and test sets, as due to relabelling of the segmentation masks (see Section 2.2)
to ensure compatibility of Cityscapes images with the synthetic images generated with
CARLA, it was not possible to benchmark our models on the Cityscapes test set, which is
withheld from the public access to ensure impartial benchmarking. Our custom split of the
original Cityscapes dataset was as follows: out of 3475 Cityscapes fine-annotated images
available in public access, we used 2685 images for training, 290 images for validation,
and 500 images for the final testing of the DNN models we trained. As in the original
Cityscapes data split reported by its authors [24], images from a particular location would
appear only in one of the sets, i.e., in training, or validation, or test set, but not in two or
all three of them. The purpose of that was to ensure a strict separation between the data
in each of the three subsets, which was necessary to prevent a methodologically unsound
situation when a DNN model would be tested on the data too similar to the data it was
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trained on. More specifically, we used images taken in Frankfurt, Lindau, and Miinster
locations for the test dataset, images taken in Bochum, Krefeld, and Ulm locations for the
validation dataset, and the rest of the images for the training dataset.

The MICC-SRI dataset [33] consists of 11,913 synthetic RGB frames of urban driving
footage with the resolution of 600 by 800 pixels generated with the CARLA simulator [32];
for all RGB frames, semantic segmentation annotations are provided. The dataset was
originally created for semantic road inpainting tasks, and RGB images in it are not photore-
alistic (cf. Figure 1b). As Berlincioni et al. [33] report, the frames for the MICC-SRI dataset
were collected by running a different simulation for 1000 frames from each spawning point
of the two available maps in the most recent CARLA version at the time of conducting
the study, v0.8.2. Simulations were run at 3 FPS; to ensure diversity of the generated data,
the simulations were subsampled to take an image every 3 s. Further processing of the
generated data reported by the authors [33] included removing occasional misalignment
between the RGB frames and segmentation masks. RGB frames and corresponding seman-
tic segmentation annotations in the MICC-SRI dataset are available in two versions, the one
with the static objects only, and the one with both static and dynamic (cars and pedestrians)
objects. For the purpose of our study, we used only the RGB images and segmentation
masks with both static and dynamic objects in them.

Our custom-made CCM dataset consists of 2685 Cityscapes images as well as 46,935
synthetic images that we generated with the CARLA simulator. The resolution of the
synthetic images is 1024 by 2048 pixels (i.e., matching Cityscapes’s image resolution); the
images were collected by running simulations of several maps available in the latest stable
release of CARLA (v0.9.12), namely, Town 1, Town 2, Town 3, Town 4, and Town 10. The
simulations were run at 1 FPS; an RGB image and its respective segmentation mask were
saved every second. To make the settings more diverse, simulation in Town 1 was run with
the weather set to “Clear Noon”, whereas simulation in Town 10 was run with the setting
“Cloudy Noon”; on the rest of the maps, the simulations were run with default settings. To
acquire images with a large number of dynamic objects in them, the simulations were run
with the number of vehicles spawned in them set to 100, and the number of pedestrians
spawned in them set to 200. All in all, the number of acquired images in different locations
was as follows: in Town 1, 7866 images; in Town 2, 3838 images; in Town 3, 11,124 images; in
Town 4, 11,484 images; in Town 10, 13,049 images. The overall time of running simulations
for image acquisition was approximately 96 h on a desktop PC with OS Windows 10, Intel
i5-6400 CPU, and NVIDIA 1060 GPU.

2.2. Data Preprocessing

Data preprocessing consisted of relabelling the semantic segmentation masks, resiz-
ing images, and augmenting real-world Cityscapes data with synthetic data. All these
procedures are described in the following.

A relabelling of the semantic segmentation masks was done to ensure compatibility
between the annotation labels of Cityscapes images and CARLA images in the MICC-SRI
dataset as well as between annotation labels of the Cityscapes images and CARLA images
in the CCM dataset. It was necessary to use different label mappings for the former and the
latter case, because CARLA images in the MICC-SRI dataset were generated with CARLA
v0.8.2, which has fewer labels than the more recent CARLA v0.9.12, which was used for
generating synthetic data for the CCM dataset. Mapping between labels in Cityscapes
and MICC-SRI was the same as in experiments in [33]; as it is not reported in detail in the
original publication [33], we provide it in Table 1.

The mapping between Cityscapes labels and CARLA v0.9.12 labels that was designed
in order to create the CCM dataset is reported in Table 2.

Image resizing was required for the experiments on the Cityscapes and MICC-SRI
datasets, as the images in these datasets were of different size (1024 x 2048 pixels vs.
600 x 800 pixels, respectively), whereas the input to a DNN should typically be of a
uniform size. One possible solution was to upscale MICC-SRI images; however, as they
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have different height-to-width ratios than the Cityscapes dataset (0.75:1 vs. 0.5:1), that
would result in a notable distortion of the images and would likely lead to a decrease in
the accuracy of the semantic segmentation. Therefore, we used the opposite approach and
split each Cityscapes image into 9 smaller images with the size of 600 x 800 pixel, i.e., the
same as the images in the MICC-SRI dataset. There was no need for such resizing for the
experiments involving the CCM and Cityscapes datasets, because synthetic images in the
former dataset were generated with the same size as images in the latter dataset.

Table 1. Labelling for experiments with MICC-SRI dataset.

Cityscapes Labels MICC-SRI Label

Labels for Augmented
Dataset

Unlabelled, ego vehicle, rectification bor-

der, out of RO, static, dynamic, rail track, None, other Other
sky, license plate
Road Road lines, roads  Roads
Ground, sidewalk, parking Sidewalk Sidewalk
Building Buildings Buildings
Wall, fence, guard rail, bridge, tunnel Fences, walls Fences, walls
Pole, pole group, traffic light, traffic sign  Poles, traffic signs  Poles, traffic signs
Vegetation, terrain Vegetation Vegetation
Person, rider Pedestrian Human
Car, truck, bus, caravan, trailer, train, mo- . .
. Vehicles Vehicles
torcycle, bicycle
Table 2. Labelling for experiments with CCM dataset.
Cityscapes Label CARLA (v0.9.12) Labels CCM Dataset Labels
Unlabelled, ego vehicle, rectifica- Unlabelled Unlabelled
tion border
building Building Building
Fence Fence Fence
Tunnel, pole group Other Other
Pedestrian, rider Pedestrian, bike rider Pedestrian and rider
Pole Pole Pole
Road Road, roadline Road
Sidewalk, parking Sidewalk Sidewalk and parking
Vegetation Vegetation Vegetation
Cap truck, bus, ca}ravan, trailer, Vehidles Vehicles
train, motorcycle, bicycle
Wall Wall Wall
Traffic sign Traffic sign Traffic sign
Sky Sky Sky
Ground Ground Ground
Bridge Bridge Bridge
Rail track Rail track Rail track
Guardrail Guardrail Guardrail
Traffic light Traffic light Traffic light
Static Static Static
Dynamic Dynamic Dynamic
Terrain Water, terrain Water and terrain

Finally, to investigate how the amount of the synthetic data used for augmentation
affected the accuracy of the semantic segmentation, we created three splits of the CCM
dataset, each of which included all Cityscapes real-world images designated for training
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and, respectively, 100, 50, and 25 percent of synthetic images that we generated with the
CARLA simulator. Synthetic images for splits were selected randomly; to avoid unnecessary
verbosity, we henceforth refer to these splits as CCM-100, CCM-50, and CCM-25.

2.3. DNN' s for Semantic Segmentation and Training Procedure

We conducted semantic segmentation experiments with two DNN models from the
DeepLab library [36], MobileNetV2 [41] and Xception [42], both pretrained on the PASCAL
VOC 2012 dataset [45]. The DeepLab library is a well-known state-of-the-art library for
semantic segmentation; we chose these two particular models from it, as MobileNetV2
is a compact and fast convolutional neural network (CNN), whereas Xception is a larger
CNN offering better segmentation accuracy at the cost of longer training time and larger
requirements for GPU memory size. The models were trained on high-performance com-
puting (HPC) Dell EMC PowerEdge C4140 servers equipped with Intel Xeon Gold 6130
CPU and NVIDIA V100 GPU with 16 GB VRAM memory. We used the default settings of
the models for training: for MobileNetV2 models, the output stride was set to 8, and the
training crop size was 769 by 769 pixels; for Xception models, the atrous rates were set to 6,
12, and 18, the output stride was 16, the decoder output stride 4, and the training crop size
was 769 by 769 pixels. The learning rate was set to 0.0001 for all models, and the learning
was optimized with the SGD with momentum optimizer, with the momentum value set
to 0.9.

We used only real-world images for validating and testing the models, i.e., in all
experiments, the validation dataset was the Cityscapes validation set, and the test dataset
was the Cityscapes test set. The batch size for training was the maximum batch size possible
with the size of the GPU memory at our disposal, namely, 4 images for MobileNetV2
models and 2 images for Xception models. For experiments on the MICC-SRI dataset
and the Cityscapes dataset, the MobileNetV2 model was trained for 1200 epochs, and the
Xception model was trained for 300 epochs on each of these datasets. For experiments on
the CCM dataset and the Cityscapes dataset, the MobileNetV2 and Xception models were
trained for 200 epochs on the Cityscapes dataset and on CCM-100, CCM-50, and CCM-25
dataset splits. All in all, training two models for experiments on the MICC-SRI dataset and
the Cityscapes dataset took approximately 1480 h of computing, whereas training eight
models for experiments on the Cityscapes dataset and the splits of the CCM dataset took
around 1415 h of computing.

3. Results and Discussion

We report our main results with the standard metric for semantic segmentation,
intersection over union (IoU), which is also known as the Jaccard Index, as well as the mean
intersection over union (mloU). The same as other authors, e.g., Cordts et al. [24], we report
and include in the mloU calculations only semantically meaningful classes, excluding such
classes as “Other” or “None”. As we had to change the labelling scheme from the one
originally used in the Cityscapes dataset, we cannot directly compare the performance
of the DNN models trained on the augmented datasets with the state-of-the-art results
on the original Cityscapes dataset reported in the literature [36]. Therefore, we compared
the performance of the models trained on the augmented datasets with that of the DNN
models with the same architecture that we trained on the original Cityscapes dataset with
the accordingly modified map of labels.

3.1. Results on Cityscapes and MICC-SRI Datasets

We summarise the main results of training the MobileNetv2 and Xception DNN models
on the Cityscapes and MICC-SRI datasets in Tables 3 and 4. As can be seen, augmentation of
the Cityscapes dataset with MICC-SRI images did not improve the accuracy of the semantic
segmentation: just the opposite, both MobileNetV2 and Xception models perform better
when trained only on real-world images that on the dataset augmented with synthetic
images, with an mloU 75.43% vs. 75.11% for the MobileNetV2 model and an mloU of
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79.34% and 78.81% for the Xception model. The MobileNetV2 model trained on the real-
world images only performs better than its counterpart trained on the augmented dataset
across all segmentation classes, whereas in the case of the Xception models, the only class
on which the model trained on the augmented data does better than its counterpart trained
on the real-world images is “Sidewalk”. The likely explanation for the worse performance
of the models trained on the augmented dataset is the low photorealism of images in the
MICC-SRI dataset: while the quality images were sufficient for the semantic road inpainting
task in [33], it turned out to not be good enough for the task of semantic segmentation. It
should also be observed that the Xception models trained on the Cityscapes and MICC-SRI
datasets demonstrate better performance than the MobileNetV2 models trained on the
same datasets with an mloU 79.34% vs. 75.43% on the Cityscapes dataset and mloU 78.81%
vs. 75.11% on the MICC-SRI dataset. Such a difference in performance is likely due to the
larger size of the Xception model.

Table 3. Semantic segmentation (IoU) with MobileNetV2 on Cityscapes dataset and Cityscapes
dataset augmented with MICC-SRI dataset.

Class Cityscapes Cityscapes Augmented with MICC-SRI
Road 92.66 92.62
Sidewalk 67.02 66.61
Building 86.48 86.18
Fences and Walls 44.46 43.21
Poles and traffic signs 57.07 56.72
Vegetation 89.52 89.45
Pedestrians 76.59 76.54
Vehicles 89.65 89.55
Mean IoU 75.43 75.11

Table 4. Semantic segmentation (IoU) with Xception on Cityscapes dataset and Cityscapes dataset
augmented with MICC-SRI dataset.

Class Cityscapes Cityscapes Augmented with MICC-SRI
Road 93.69 93.60
Sidewalk 71.78 72.70
Building 88.67 88.30
Fences and Walls 52.20 49.16
Poles and traffic signs 63.58 62.52
Vegetation 90.75 90.58
Pedestrians 81.75 81.39
Vehicles 92.29 92.24
Mean IoU 79.34 78.81

3.2. Results on Cityscapes and CCM Datasets

The results from training the MobileNetV2 and Xception models on Cityscapes and the
three splits of the CCM dataset, CCM-100, CCM-50, and CCM-25 datasets are reported in
Tables 5 and 6, respectively. As can be seen, for both DNN architectures, augmentation with
synthetic data improves the accuracy of the semantic segmentation. Thus, for MobileNetV2,
the model trained on CCM-100 achieves an mIoU of 55.49%, the model trained on CCM-50
achieves an mIoU of 56.05%, and the model trained on CCM-25 achieves an mIoU of 52.67%,
whereas the model trained on Cityscapes images only achieves an mloU of 44.68%. The
same applies to Xception models: namely, the model trained on CCM-100 achieves an mloU
of 63.14%, the model trained on CCM-50 achieves an mIoU of 63.87%, and the model trained
on CCM-25 achieves an mloU of 64.46%, whereas the model trained on Cityscapes images
only achieves an mloU of 57.25%. It is remarkable that the best-performing MobileNetV2
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and Xception models are not the ones trained on the splits of the CCM dataset with the
largest amount on synthetic data, as the best-performing MobileNetV2 model is the one
trained on CCM-50, while the best-performing Xception model is the one trained on the
split with the smallest amount of synthetic data, that is, CCM-25. That indicates that a
larger amount of synthetic data used for augmentation does not necessarily result in better
performance than augmentation with a smaller amount of synthetic data.

Table 5. Semantic segmentation (IoU) with MobileNetV2 on Cityscapes and CCM datasets.

Class Cityscapes CCM-100 CCM-50 CCM-25
Building 75.54 79.39 80.17 79.18
Fence 00.02 21.49 24.47 17.82
Pedestrian and Rider 69.23 67.94 68.92 69.38
Pole 10.48 38.51 38.54 36.81
Road 88.57 88.46 89.72 89.15
Sidewalk 54.51 57.24 59.79 58.62
Vegetation 83.90 86.14 86.41 85.54
Vehicles 82.20 82.72 82.72 82.78
Wall 0.00 19.90 23.81 15.95
Traffic Sign 0.00 35.42 34.10 25.30
Sky 82.80 85.32 85.83 85.85
Traffic light 0.00 21.32 15.38 00.13
Water and Terrain 33.61 37.50 38.73 38.20
Mean IoU 44.68 55.49 56.05 52.67

Table 6. Semantic segmentation (IoU) with Xception on Cityscapes and CCM datasets.

Class Cityscapes CCM-100 CCM-50 CCM-25
Building 84.94 85.10 85.08 85.62
Fence 37.20 40.19 40.19 43.44
Pedestrian and Rider 78.08 76.42 76.94 77.92
Pole 45.08 48.50 48.75 49.26
Road 92.31 91.82 91.43 91.85
Sidewalk 65.80 67.21 67.09 69.88
Vegetation 87.71 87.00 87.59 87.85
Vehicles 89.86 88.82 89.63 89.63
Wall 23.29 28.88 27.69 31.63
Traffic Sign 44 .42 50.89 55.83 56.14
Sky 85.13 88.79 89.70 90.34
Traffic Light 0.00 43.64 42.19 44.13
Water and Terrain 46.86 39.58 35.62 44.22
Mean IoU 57.25 63.14 63.87 64.46

Another finding worth noting is that models trained on different splits of the CCM
dataset show best results (i.e., in comparison to other models) on different classes: thus,
the model trained on CCM-100 performs better than other models on the classes “Traffic
Sign” and “Traffic Lights”; the model trained on CCM-50—on the classes “Building”,
“Fence”, “Pole”, “Road”, “Sidewalk”, “Vegetation”, “Wall”, and “Water and Terrain”;
finally, the model trained on CCM-25 outperforms models trained on other splits on the
classes “Pedestrian and Rider”, “Vehicles”, and “Sky”. These differences are exemplified in
Figure 2. In particular, the MobileNetV2 model trained only on the real-world Cityscapes
images cannot classify road signs and traffic lights; as for the Xception model trained only
on the real-world Cityscapes images, while it can classify road signs, it is not capable of
distinguishing between traffic lights and road signs, mistakenly classifying the objects
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from the former class as belonging to the latter class. Contrary to that, MobileNetV2
and Xception models trained, respectively, on CCM-50 and CCM-25 splits, i.e., the best-
performing models for their respective architectures, are quite capable of classifying road
signs and traffic lights and distinguishing between these two types of objects. These
observations correspond to the results in Tables 5 and 6 regarding the ability of the models
to classify the classes “Traffic Lights” and “Road Signs”.

Figure 2. Semantic segmentation of a sample image with different models: (a) the original image;
(b) segmentation masks produced with MobileNetV2 models: trained on Cityscapes images only
(left) and on CCM-50 split (right); (c) segmentation masks produced with Xception models: trained
on Cityscapes images only (left) and on CCM-25 split (right). Note the differences in the ability of
the models to classify traffic lights and road signs.

4. Conclusions

The goal of the study was to investigate whether it is possible to improve the quality
of semantic segmentation by augmenting real-world images of urban scenes with synthetic
images generated with the open-source driving simulator CARLA. We used the Cityscapes
dataset as our source dataset of the real-world images and performed experiments with two
DNN architectures from the Deeplab library, MobileNetV2 and Xception. We conducted
two series of experiments, which altogether took approximately 2895 h of computing
on a rather powerful server equipped with an NVIDIA V100 GPU. In the first series of
experiments, we augmented the Cityscapes dataset with synthetic images from the MICC-
SRI dataset; however, because of the low degree of photorealism of the synthetic images,
the augmentation led to the deterioration rather than to a better accuracy of the semantic
segmentation. In the second series of experiments, we augmented the Cityscapes dataset
with synthetic images that we generated with a more recent version of CARLA, creating
our custom-made CCM dataset. As a result, we achieved a better accuracy of the semantic
segmentation that the accuracy that the same models achieved after training only on real-
world images of Cityscapes. We consider these results promising, as they indicate that
improved semantic segmentation can be achieved with synthetic data by rather simple
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means, as we generated synthetic data for the CCM dataset by running simulations in
available maps with the maximum number of assets (dynamic objects) possible on our data
generation setup.

Furthermore, we also investigated how the amount of synthetic data used for aug-
mentation affects the accuracy of the semantic segmentation. We did that by training DNN
models on the three different splits of the CCM dataset containing all real-world images
and 100, 50, and 25 percent of synthetic images, respectively. As a result, we found no
direct correspondence between the amount of synthetic data and the quality of the semantic
segmentation, as in the case of the MobileNetV2 model, the best result was achieved on
the CCM-50 split, whereas in the case of Xception, the best result was achieved on the
CCM-25 split. That indicates that attempting to improve the performance of a DNN model
by simply augmenting the training dataset with a larger amount of synthetic data does not
always work and suggests directions for future work on more elaborate methods of dataset
augmentation with synthetic data.
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mloU Mean intersection over union
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