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Abstract: Activity recognition is fundamental to many applications envisaged in pervasive comput-
ing, especially in smart environments where the resident’s data collected from sensors will be mapped
to human activities. Previous research usually focuses on scripted or pre-segmented sequences related
to activities, whereas many real-world deployments require information about the ongoing activities
in real time. In this paper, we propose an online activity recognition model on streaming sensor
data that incorporates the spatio-temporal correlation-based dynamic segmentation method and the
stigmergy-based emergent modeling method to recognize activities when new sensor events are
recorded. The dynamic segmentation approach integrating sensor correlation and time correlation
judges whether two consecutive sensor events belong to the same window or not, avoiding events
from very different functional areas or with a long time interval in the same window, thus obtaining
the segmented window for every single event. Then, the emergent paradigm with marker-based
stigmergy is adopted to build activity features that are explicitly represented as a directed weighted
network to define the context for the last sensor event in this window, which does not need sophisti-
cated domain knowledge. We validate the proposed method utilizing the real-world dataset Aruba
from the CASAS project and the results show the effectiveness.

Keywords: online activity recognition; dynamic segmentation; emergent modeling; directed weighted
network

1. Introduction

The great progress of ubiquitous computing has contributed to the rapid development
of various sensors that are usually used to collect information of interest. When combined
with efficient machine learning or deep learning techniques, the collected information is
very important for the development of a wide range of applications. One of the application
areas is the smart home environment, in which human and environmental information is
adopted to track the functional condition of interested objects. The aging population [1],
the healthcare costs [2] and the desire for aging in place [3] highlight the necessity of
developing these technologies. In order to live a functionally independent life, residents
must have the ability to complete activities of daily living (ADLs), such as eating, bathing,
etc. Therefore, it is crucial to automatically recognize and track the ADLs of the interested
objects for monitoring their functional status.

A range of activity recognition (AR) technologies are very effective in scripted or
pre-segmented sequences of activity. However, the actual deployment of some real-world
scenarios requires continuous AR on streaming sensor data. In the context of providing
timely and proactive assistance (such as prompting systems [4,5]), AR on streaming/online
sensor data is required to know which tasks the resident is currently performing and
estimate whether the individual is competent for the task. Only in this way can suitable
intervention be implemented and proper help be provided. The task of online AR is
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non-trivial, because it is usually unable to obtain the data fully describing the activity in
this case, and the algorithm must determine the activity being executed according to the
partially observed data and other context information [6]. To provide an accurate online
AR, data segmentation and feature extraction are two crucial steps, which are important
factors able to decrease or increase the performance of an AR model.

The online and continuous methods classify every single sensor event on the basis of
the context information encoded by the preceding sensor events in the sliding window,
where the window size has to be chosen adequately. There are two strategies for streaming
data segmentation: fixed and dynamic window sizes. The former divides the entire sensor
stream into a series of sliding windows that have the same time interval or the same number
of sensor events. Such a method is convenient to operate, but the shortcomings are that
it cannot intuitively reflect the actual occurrence of the activities and the inappropriate
choice of the window size (too short or too long) will result in poor performance. For
instance, two or more activities may be covered in a sliding window, or the sensor events
corresponding to one activity are divided into several windows. The latter dynamic
method determines the segmentation points in a more flexible way, and it has been proven
to achieve better results than the static method [7]. Therefore, we propose a dynamic
streaming sensor data segmentation approach incorporating sensor correlation and time
correlation, which can avoid placing sensor events with weak spatio-temporal correlation
in the same sliding window.

After segmentation, extracting advisable features served as the basis of classifier from
the segmented window is of great significance for the task of recognizing activities. The
traditional activity modeling methods are often based on the statistical characteristics [8]
and frequency-domain features [9,10]. These features have been demonstrated to be
valuable for AR; however, a lot of hidden activity information is ignored and sophisticated
domain knowledge is needed. The question of how to fully extract features composed
of information related to behavioral semantics and spatio-temporal characteristics, and
establish an effective representation to characterize the activity information, is a difficulty
for AR. Furthermore, the different ways of completing a type of activity and the overlapping
functional areas between different activities will lead to the misclassification of activities,
which requires solving the confusion between activities. We propose a stigmergy-based
emergent modeling method [11,12], and the directed-weighted network (DWN) is used as
the explicit representation of the extracted features.

In this work, we propose an online AR framework on streaming discrete binary sensor
data, which integrates a dynamic streaming sensor data segmentation method, emergent
modeling method and deep learning technology. Specifically, the dynamic segmentation
approach derives the appropriate window size for each individual sensor event when it
is recorded, and ensures that the temporal and spatial correlation between the preceding
sensor data and the last event of interest in a sliding window is above the corresponding
threshold. The emergent computing paradigm with marker-based stigmergy and DWN are
employed to extract activity features and explicitly represent features, respectively. Finally,
the combination of a convolutional neural network and long short-term memory network
(CNN-LSTM) realizes the task of identifying ongoing activities at a fine-grained level. We
employ the fully annotated dataset Aruba collected by the Center for Advanced Studies in
Adaptive Systems (CASAS) project [13] to evaluate our framework. The main contributions
are as follows:

• The dynamic streaming sensor data segmentation approach incorporating sensor
correlation and time correlation can reduce the probability of sensor events with large
time intervals or from very different functional areas in the same sliding window, so
as to weaken their influence on the context information defining the last sensor event.

• By explicitly representing the activity features extracted based on the emergent com-
puting paradigm in the form of the directed-weighted network, the spatio-temporal
characteristics can be embodied without the need of sophisticated domain knowledge,
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the context information defining the last event in the window can be reflected, and the
ambiguity between ADLs can be relieved.

The remainder of this paper is organized as follows: The related works are summarized
in Section 2, and the proposed online AR framework that integrates the dynamic segmen-
tation method and the emergent modeling method is elaborated in Section 3. Section 4
presents the experimental results. Finally, the conclusions are presented in Section 5.

2. Related Works

Activity recognition plays an important role in people’s real lives, because it can learn
in-depth knowledge of human activity from raw data collected from a variety of sensors.
There exist a number of methods for AR, which vary according to the underlying sensing
technologies responsible for collecting the activity data, and various algorithms that are
employed to model and classify activities.

The progress of ubiquitous computing has witnessed the development of a variety of
sensors that can be utilized to gather information about human activities. There exist two
kinds of monitoring systems: vision-based monitoring and sensor-based monitoring. The
vision-based monitoring systems employ visual sensing facilities to detect the behaviors
of interested objects and changes in environment [14]. It is difficult to deploy them in
the context of smart homes to monitor residents’ ADLs for a long time considering the
problem of privacy invasion. The sensor-based AR adopts the sensor network techniques
to achieve the purpose of activity monitoring, and it mainly focuses on two approaches:
wearable [15,16] and dense sensor-based [17,18] monitoring. Wearable sensors such as
accelerometers are generally adopted to identify simple activities defined by ambulatory
movements, such as walking, running and sitting. This monitoring method suffers from
the issues of the willingness to wear, viability and ability to use, battery life and ease of use.
Meanwhile, the dense sensing-based AR embeds sensors (such as passive infrared sensors
(PIRs)) within environments to gather information about a more common series of ADLs,
such as cooking and sleeping, and it is more suitable for real-life long-term monitoring.
Dense sensors can monitor the resident’s motions and environmental parameters so that
assistive personnel can deduce the ongoing ADL according to sensor observations, so as to
provide timely context-aware assistance. Some ADLs occur in specific functional areas and
lead to unique interactions with objects, and researchers have explored the usage of PIR for
reflecting the interaction between residents and the environment, thus achieving the goal
of AR. For example, Machot et al. propose a windowing algorithm and several statistical
spatio-temporal features to identify complex ADLs for multi-user testbeds employing the
CASAS dataset and HBMS dataset [19]. Tan et al. elaborate a method that concatenates
external features and extracted features and uses a bi-directional LSTM to recognize ADLs
using the CASAS dataset [20]. The dataset for the experiments in our work employs binary
discrete PIR sensors that are convenient for deployment in a smart home environment and
can protect privacy.

There are already plenty of machine learning algorithms applied to AR, which elicit
activity models from pre-existing datasets. Different techniques and tools are investigated,
such as hidden Markov models (HMM) [21–23], dynamic Bayes nets [21], naive Bayes [24],
nearest neighbor [25], support vector machines (SVM) [26], conditional random fields
(CRF) [27,28] and multiple eigenspaces [29]. These classical pattern recognition methods
have made great progress in AR; however, they still have some shortcomings. Feature
extraction is usually carried out in a heuristic or hand-crafted manner, which is highly
dependent on human experience or domain knowledge, and can only capture shallow
features based on human expertise.

With the rapid development of deep learning technology in recent years, the above
limitations have been overcome to a certain extent. The deep neural networks commonly used
for AR are CNN, deep belief network (DBN) and recurrent neural network (RNN), including
its variations, such as LSTM and gated recurrent unit (GRU). To establish an excellent AR
system that can provide better classification and prediction performance, Abdellaoui and
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Douik propose a method in a two-phase recognition system paradigm, which introduces
DBN [30]. Tan et al. employ location-based stigmergy for the emergent representation of
ADLs, and then integrate it with CNN to complete the task of recognition. Its advantage
is that there is no need for any complex domain model when studying and understanding
ADLs [17]. Mohmed et al. present an enhanced fuzzy finite state machine (FFSM) model via
fusing the traditional FFSM with LSTM and CNN, respectively, to model and recognize ADLs,
and evaluate it on a real dataset that they collected and the Aruba dataset [31]. Mutegeki
and Han propose a spatially and temporally deep architecture CNN-LSTM that not only
improves the prediction performance but also decreases the complexity of the model [32].
With the deep learning models, the feature extraction and model construction are often
carried out at the same time. Moreover, the features can be learned automatically and high-
level representation can be extracted in the deep layer. In our work, we employ an holistic
deep learning-based structure CNN-LSTM to achieve the goal of online AR.

Though well researched, most learning models only use pre-segmented datasets. How-
ever, human activities should be monitored in real time in a lot of real-world scenes. This
requires the AR algorithm to keep away from pre-segmented sensor data and concentrate on
streaming data. Research works in this area are relatively fewer. Krishnan and Cook present
several sliding window-based approaches processing streaming data and propose five
kinds of fixed-size windowing methods with different weighting factors [33]. In addition,
they introduce a dynamic windowing approach, which employs a probabilistic method
to dynamically determine the window size. Chen et al. describe a knowledge-driven
method that adopts domain knowledge and ontologies extensively to solve the problem
of real-time AR [34]. Okeyo et al. present a dynamic sensor data segmentation approach
based on the sliding window techniques [35]. Their study explores two types of scenes,
overlapping and non-overlapping time windows. Sfar and Bouzeghoub propose another
dynamic streaming sensor data segmentation method, which integrates statistical learning
and semantic analysis to study the input event sequence and select the more appropriate
time-window size, so as to achieve the purpose of dynamic adaptation [36]. The work
presented in this paper proposes a dynamic sensor data segmentation method integrating
sensor correlation and time correlation and performs online AR on streaming data.

3. Online Activity Recognition Framework

This section discusses the online activity recognition framework integrating the spatio-
temporal correlation-based dynamic segmentation method and the stigmergy-based emer-
gent modeling method that provides the basis for the fine-grained recognition algorithm
CNN-LSTM. The goal of the proposed method is to classify each individual sensor event
with a corresponding activity label as best as possible. The whole process comprises two
phases. The first is the offline phase, in which the labeled training data are used to calculate
the sensor correlation matrix (SCM), sensor correlation threshold (SCT), maximum time
interval (MTI) and maximum time span (MTS). The second is the online phase, the goal of
which is to establish the corresponding segmented windows when new sensor events occur
based on sensor correlation and time correlation. After completing the above steps in the
online phase, the activity modeling step is performed on the segmented windows, followed
by the fine-grained multi-class recognition model, which obtains the category of the activity
being executed. Figure 1 shows the overall structure of the proposed online AR framework.

Training

Dataset

SCM

SCT

MTI

MTS

Streaming

Sensor Data

Dynamic

Segmentation

Activity

Modeling

Multi-class

Classification
Activity

Offline Phase

Online Phase

Figure 1. The flow diagram of the online AR framework.
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3.1. Dynamic Streaming Sensor Data Segmentation

Many existing studies use wearable and/or smartphone sensors to implement online
activity recognition. Accelerometer-based recognition is relatively easy because such
sensors continuously produce data at a fixed frequency, making it possible to segment
the entire sensor sequence on the grounds of the time interval or the number of sensor
events. The activities identified in these works are often low-level and simple, such as
walking, standing and sitting. In comparison, in the context of the smart home, embedded
sensors with different sampling rates depending on human activity usually generate data
in a discrete way, so there are still problems in dynamic segmentation. In addition, the
recognized activities composed of many sub-activities are usually complex, in which it is
difficult to obtain the exact boundary and duration of segmentation.

Sliding window technology is still the main means for streaming sensor data seg-
mentation, and has been widely used in a lot of applications. Specifically, some common
approaches for processing streaming sensor data are presented in Figure 2. Figure 2a shows
the ground truth of a series of activities denoted as A1, A2, A3, A4, and the relevant sensor
events are displayed in chronological order, in which the time interval between each pair
of sensor events can be different.

1A 4A2A 3A

Sensor Events

Activity Sequence

1T 2T 3T 4T 5T 6T 7T
Time-Based

6S

7S

8S 27S

40S

39S 41S

4040SS40

3939 41SS41

Event-Based

1C 2C 3C 4C 5C 6C
Activity-Based

1 2 3 4

(a)

(b)

(c)

(d)

Figure 2. Different segmentation methods on streaming data. (a) Ground truth of a sequence of activities.
(b) Time-based windowing. (c) Sensor event-based windowing. (d) Activity-based windowing.

For time-based windowing as displayed in Figure 2b, if a smaller duration is selected,
the window may contain insufficient information to make appropriate decisions (or build
the model correctly in the training phase). Conversely, if the duration is too long, it is
possible to embed information of multiple activities in one window. Therefore, compared
with other activities, the activities dominating the window will be more representative,
which will seriously affect decision-making. Furthermore, in the case that sensors have an
inconstant sampling rate that depends on human motion, there may be no sensor data in
some windows.

In terms of sensor event-based windowing, as shown in Figure 2c, the displayed sensor
event windows are obtained by taking the sliding window technique with a length of 6
events and a sliding step of one event, whose window duration varies obviously. During
the performance of the activity, multiple sensors can be activated, whereas during the silent
period, the number of sensor triggers will be reduced. The context of the last sensor event
in the segmented window is defined by the events preceding the last one. This method
may lead to the relevance between the sensor data in the window and the last sensor event
being weak, such as large time intervals or very different functional areas.

Another method is to divide the sensor events into fragments that coincide with the
occurrence of each activity, as shown in Figure 2d. Such a method can accurately determine
the boundary of segmentation. Nevertheless, one of the implicit but very critical drawbacks
is that it must wait for future data before making decisions on past data, i.e., it takes longer
to receive enough information to define a segment. In addition, the difficulty lies in how to
decide whether two consecutive sensor events belong to the same activity or not. Therefore,
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we employ a dynamic segmentation method when new sensor events occur in the ambient
assisted living environment, which incorporates sensor correlation and time correlation.

3.1.1. Sensor Correlation

Smart environments are usually embedded with a lot of sensors that generate sen-
sor events along the timeline. Generally, the sensor event sequence can be expressed
as {E1, E2, . . . , EN}, where Ei represents the ith sensor event encoded with template
{date, time, sensorID, sensorValue}. Therefore, one of the difficulties is how to determine
the preceding sensor data that describe the context for the latest sensor event whenever it
is recorded. On the one hand, the dynamic sensor event segmentation method is achieved
by calculating the sensor correlation measured by the mutual information between sensors
in this work. Mutual information is usually defined by the interdependence of two random
variables. In the current situation, each sensor is regarded as a random variable with two
results, “ON” and “OFF”. Krishnan and Cook defined the mutual information or depen-
dency between two sensors as the possibility that these two sensors appear consecutively
throughout the sensor event sequence [33]. This definition is affected by the order in which
each pair of sensors appears in the whole dataset. Consider deploying four sensors involv-
ing a specific activity in a tight place, and the resident can adopt the route that triggers
sensors in the order of S1 → S2 → S3 → S4, or in another way, S1 → S2 → S4 → S3,
to implement this activity. It is assumed that the number of the first path is greater than
that of the second one, but these two paths point to the same human activity; it is evident
that no matter which path is taken, there is a dependency between sensors S2 and S3. If
the above definition method is adopted to calculate the mutual information between S2
and S3, some dependencies between them will be lost. Therefore, we adopt its extension
definition and calculate mutual information between two sensors Si and Sj by calculating
the probability that they co-occur in a sliding window with ws sensor events and a sliding
length of 1 along the entire data stream. Let W = {. . . , Wk, . . .} represent the segmented
sliding window sequences, where Wk denotes the kth window of the streaming dataset;
then, the mutual information MI(Si, Sj) is defined as follows:

MI(Si, Sj) =
1
|W|

|W|
∑

k=1
δ(Si, Sj)

δ(Si, Sj) =


1, if (Si, Sj) ∈Wk

0, else

(1)

where δ(Si, Sj) takes 1 when sensors Si and Sj co-occur in a sliding window; MI(Si, :)
denotes the dependence of sensor Si with other sensors. The mutual information ma-
trix (i.e., SCM) is a symmetric matrix and calculated offline using the training sensor
event sequence.

After obtaining SCM, we will determine the SCT value for each sensor based on it.
Typically, a specific activity activates sensors in the corresponding functional area and
generates sensor events. Obviously, SCM values between sensors with smaller spatial
distance are more likely to be greater, indicating that there is a higher probability to activate
the sensors in the same or close functional areas jointly or consecutively. Therefore, we
perform the following steps for each row of SCM (corresponding to one sensor) to obtain
the corresponding SCT value: first, sort the row in descending order, and then combine
with the layout of sensors in the smart home to find the sensor that is geographically critical
to the current sensor and its SCM value that is used as the minimum sensor correlation
threshold of the current sensor. As a result, given an interested sensor Si and the sensor
sequence S = {S1, . . . , Sn}, if the SCM value between Si and Sj is greater than the SCT(i)
value, it can be considered that sensors Si and Sj are spatially correlative.
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3.1.2. Time Correlation

In the dynamic segmentation approach, in addition to measuring the sensor correlation,
on the other hand, it also has to accurately determine whether two sensor events with some
time interval should be placed in the same window. For instance, given two sensor events
in which the dependency between the two sensors may be high, but the time interval may
be very large, then these two sensor events should not be in the same sliding window.
In consequence, a measure based on time correlation is employed to judge whether two
sensor events are temporally dependent. As mentioned earlier, a sequence of sensor events
can be represented as {E1, E2, . . . , EN}, where each Ei ∈ E contains the information vector
〈Di, Ti, Si, Vi〉. Di and Ti denote the date and timestamp of the sensor event, respectively,
Si signifies the sensor ID or name, and Vi denotes the value of Si. Assuming that a partial
segment Wi =

[
E f irst, . . . , Ei−1, Ei

]
of the latest recorded sensor event Ei has been selected,

then each incoming sensor event E f irst−1 ∈ E is manipulated twice with Tf irst and Ti
utilizing Equations (2) and (3), respectively.

Tcor
f irst

(
Tf irst−1, Tf irst

)
= 1−

Tf irst − Tf irst−1

MTI(S f irst−1, S f irst)
(2)

Tcor
i

(
Tf irst−1, Ti

)
= 1−

Ti − Tf irst−1

MTS( f (Si))
(3)

where the threshold MTI(Tf irst−1, Tf irst) is defined according to the distribution of the time
interval between sensors S f irst−1 and S f irst in two consecutive sensor events E f irst−1 and
E f irst. In consideration of the very small proportion of points away from the average time
interval and the “2σ” criterion, we take µ(S f irst−1, S f irst) + 2σ(S f irst−1, S f irst) as the value
of threshold MTI(Tf irst−1, Tf irst), where µ(S f irst−1, S f irst) and σ(S f irst−1, S f irst) denote the
mean and standard deviation, respectively. The sensor event sequence in the dataset is
recorded in chronological order, so Tf irst − Tf irst−1 > 0 and MTI(S f irst−1, S f irst) > 0. With
regard to the threshold MTS( f (Si)), it is related to the duration of activities. As mentioned
earlier, in the smart home environment, the layout of each sensor corresponds to the
functional area. Combined with SCM, the functional areas of the testbed used in this paper
can be further clustered into five areas: ¬ Kitchen+Dinning,  Bedroom+Bathroom, ® Living, ¯

Office, ° Home Entrance. Through studying the long-term activity data of Meal_Preparation,
Eating and Wash_Dishes, 88.10% of the sensor firings appear in the Kitchen+Dinning area;
88.01% of sensor events of Relax appear in the Living area. In addition, 94.57% of sensors
for activity Work are triggered in the Office, and 93.69% sensor events for activities of
Enter_Home and Leave_Home occur in the Home Entrance area. Furthermore, 97.08% sensor
activations for Sleeping and Bed_to_Toilet take place in the area of Bedroom+Bathroom. On the
basis that the resident keeps a relatively regular schedule, assuming that daily activities will
not change significantly, different threshold settings of activity duration and the sensing
range of sensors can be operated according to the clustered functional areas. In the same
way as determining MTI(Tf irst−1, Tf irst), the “2σ” point of the distribution of the duration
of activities in each clustered functional area is also used as the threshold of the activity
duration of each clustered functional area, as described in Equation (4). Specifically, for
partial segment Wi =

[
E f irst, . . . , Ei−1, Ei

]
, first determine the mapping from the sensor Si

to the clustered functional area, and then obtain the corresponding MTS value MTS( f (Si)).
Likewise, Ti − Tf irst−1 > 0 and MTS( f (Si)) > 0.

MTS( f (Si)) = µ( f (Si)) + 2σ( f (Si))

f (Si) ∈ {1, 2, 3, 4, 5}
(4)

To summarize, Algorithm 1 shows the pseudo code of the dynamic sensor data
segmentation method. This algorithm processes real-time streaming sensor data, which
comprises two important comparisons: the sensor correlation check (SCC) and the time
correlation check (TCC). For the currently recorded sensor event Ei, the window is initial-
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ized to Wi = [Ei−1, Ei] and Tf irst = Ti−1. Thereafter, both SCC and TCC will be conducted
for sensor event E f irst−1, which will be added to the segmentation if the check results align
with Equation (5). Otherwise, the current segmentation process ends.

SCM(S f irst−1, Si) ≥ SCT(Si)

Tcor
f irst

(
Tf irst−1, Tf irst

)
≥ 0

Tcor
i

(
Tf irst−1, Ti

)
≥ 0

(5)

Algorithm 1 Dynamic sensor data segmentation method.
Input:
Streaming sensor data: E = {E1, E2, · · · , Ei−1, Ei}
Initialization window for the sensor event: Wi = [Ei−1, Ei], E f irst = Ei−1
Output:
A sensor event segmentation for Ei: Wi = [· · · , Ei−1, Ei]
Method:

Sensor correlation check (SCC): SCM(Sj, Si) ≥ SCT(Si)
Time correlation check (TCC): Tcor

f irst(Tj, Tf irst) ≥ 0, Tcor
i (Tj, Ti) ≥ 0

for Ej From Ei−2 To E1 do
if SCM(Sj, Si) ≥ SCT(Si) && Tcor

f irst(Tj, Tf irst) ≥ 0 && Tcor
i (Tj, Ti) ≥ 0 then

Wi =
[
Ej, Wi

]
E f irst = Ej

else
Break

end if
end for

It is worth noting that different smart home environments are deployed with a variety
of sensors to collect the information of ADLs, and even within the same smart home,
different users perform each activity in their unique ways. Our proposed AR framework
only needs to acquire SCM, SCT, MTI and MTS as prior knowledge for dynamic segmenta-
tion according to the layout of the smart home and the characteristics of the personalized
training data. Except for this, the proposed online AR method can be generalizable well to
be reusable for different application scenarios.

3.2. Activity Modeling

Once the window Wi of sensor event Ei is determined, then we need to convert this
segmented window into features that capture the spatio-temporal information to define the
context of Ei. Some works in the literature accomplish this process by establishing a feature
vector xi that explicitly captures the activation duration of each sensor. There are 31 motion
sensors and four door sensors in the context of the testbed used in this study; consequently,
the dimension of xi is 35 and it can be expressed as xi =

[
di

1, di
2, · · · , di

35
]
. Attach a label to

every xi with the tag yi of the last event Ei in the corresponding window Wi, and each label
yi corresponds to a predefined activity category.

There are some disadvantages in simply counting or accumulating the activation time
of each sensor. On the one hand, the order of the triggered sensors is not reflected; that
is, the coarse trajectory of the resident cannot be well represented. On the other hand, the
timeliness of information is not taken into account in the features extracted to define the
context of the last sensor event in the window. In this case, the sensor data occurring in
the "distant" past have the same impact as recent sensor events. However, generally, the
more recent the sensor event occurs, the more information it can provide, and vice versa.
We adopt the emergent paradigm with marker-based stigmergy for activity modeling so as
to overcome the above limitations. The emergent paradigm is based on the principle of
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the self-organization of data. With the emergent modeling method, the focus is mainly on
the low-level data processing, which enables aggregation perception in the environment.
Furthermore, the overall characteristics of the sensor event sequence can be described with
a domain-independent spatio-temporal logic.

It is well known that simple individual behaviors can give rise to complex emergent
behaviors. In natural systems, social insects use chemical markers (pheromones) released
on the ground in specific circumstances, such as assembling, foraging or alarming. Multiple
deposits at the same position accumulate in intensity. Individuals in a group may change
their behaviors after sensing a particular pheromone. Due to their high volatility, the
intensity of the released pheromones gradually decreases over time. In artificial systems,
when markers are produced in the computer-simulated spatial environment, marker-based
stigmergy will appear to realize self-coordination and self-organization, which would be
regarded as a potential computing paradigm using spatial and temporal dynamics.

In the process of activity modeling, we take advantage of stigmergy as a pattern of
information aggregation for human spatio-temporal tracks, where the process of infor-
mation aggregation is an abstract vehicle that leads to the emergence of a higher-level
concept. When the sensors are triggered by the human motion, the corresponding marks,
with a temporal decay called the volatilization rate ρ ∈ [0, 1], i.e., a ratio of reduction
after a time step, will be continuously released in the environment, which can realize the
accumulation of marks. Therefore, a separate mark after a certain amount of time will
vanish because there is no new mark to strengthen its concentration, and the aggregated
mark, i.e., stigmergic track, considered as a short-term and short-size motion memory, can
intuitively embody the spatio-temporal characteristics.

In this paper, DWN and its corresponding adjacency matrix are used to represent the
stigmergic track vividly and explicitly. Figure 3 illustrates an example of the generation
process from segmented data sequence to DWN, where ρ = 0.2. The selected window is a
segment framed by a red rectangle in Figure 3a.
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Figure 3. The process from segmented window to DWN. (a) Segmented sensor data. (b) Directed
weighted network. (c) Intensity of aggregated pheromone. (d) Adjacency matrix of DWN.



Sensors 2022, 22, 2250 10 of 19

Owing to the fact that the passive sensors are triggered by the motion of the resident,
the position of the activated sensor can be approximately regarded as the location of the
resident at the current moment. First, we extract the triggered sensors and their triggered
order: → 2 → 1 → 3 → 3 → 2 → 3. The corresponding DWN is shown in Figure 3b,
where the sensor that is triggered before the first activated sensor “M002” in the window
is also “M002”, so we obtain the self-loop “→ 2”. The remaining directed edges can
be easily obtained according to the trigger order. Then, we calculate the weight of each
directed edge (including self loops), i.e., the concentration of the pheromones deposited by
the sensor corresponding to the right side of the arrow of the directed edge. In each time
period, one unit of pheromone is released at the corresponding position in the environment
of the triggered sensor, and the pheromone concentration reduces with volatilization rate ρ
after a time step. Here, we set a time step to 1s. For the segmented window Wi, the end
time Te is equal to the time of the last sensor event Ei, i.e., Te = Ti, and Ti = 02 : 37 : 02
in this example. For each directed edge, the trigger start time ts and trigger end time te
of the related sensor are extracted. Without time volatility, the intensity of aggregated
pheromones is equal to the activation duration te − ts. When time volatility is introduced,
the intensity of pheromones I is calculated as shown in Equation (6), which describes the
superposition of the newly generated pheromone and the volatilized old pheromones.

I =
te−1
∑

t=ts

(1− ρ)Te−t−1

= (1−ρ)Te−te−(1−ρ)Te−ts

ρ

(6)

For instance, as displayed in Figure 3c, the start and end time of self-loop “→ 2” are
“02 : 36 : 35” and “02 : 36 : 47”, respectively. The concentration of the aggregated
pheromone of this directed edge is I2→2 =

(
0.815 − 0.827

)/
0.2 = 0.163833. The weight

of the last edge “2 → 3” is: I2→3 =
(
0.80 − 0.82)/0.2 = 1.8. With the same calculation

method, we can obtain the concentrations of all aggregated pheromones, so as to obtain
the corresponding adjacency matrix (Figure 3d) of the directed weighted network, which
describes the spatio-temporal traits of the segmented window and defines the context of
the last sensor event.

For convenience, the directed weighted network and adjacency matrix are collectively
referred to as “DWN” in the following. From DWN, we can not only know the intensity
of pheromones released when each sensor is activated, but also know the location of the
resident before the sensor is triggered. That is, the explicit representation method of DWN
can distinguish different pheromone sources’ information and deduce a coarse stigmergic
track. Furthermore, with the emergent computing paradigm with marker-based stigmergy,
the concentration of the old pheromones gradually decreases over time due to the volatility,
and the effect on the context that defines the last sensor event is gradually weakened, while
the influence of the new pheromones is relatively greater. This also reflects the limited
memory characteristics of context-aware information, the trigger sequence information of
sensors and the motion process information of the resident. In our method, DWN is used
as the input of the fine-grained classification algorithm.

3.3. Fine-Grained Classification

After activity modeling, the fined-grained classification algorithm takes DWN as the
input and outputs the category of activity whenever the new sensor event is recorded.
We employ a method that combines CNN and LSTM for online AR on streaming sensor
data. The CNN plays the role of a slice-wise feature extractor that selects the most effective
features from input data, while the LSTM, a powerful tool for learning the sequential task,
is responsible for linking the features across slices.
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4. Experiments

In this section, to evaluate the proposed online activity recognition method combined
with the spatio-temporal correlation-based dynamic streaming sensor data segmentation ap-
proach and the stigmergy-based emergent modeling approach, we employ the open dataset
Aruba provided by CASAS [13]. We describe the dataset, performance measurements and
experimental studies.

4.1. Dataset

The Aruba dataset was collected by detecting ADLs for an elderly woman in a smart
home for nearly eight months, which includes annotated binary sensor data. The layout of
the smart home and the positions of sensors are presented in Figure 4. This testbed consists
of two bedrooms, a living room, a kitchen, a dining room and an office, which is embedded
with 31 wireless motion sensors (named with “M0**”) installed on the ceilings, four door
sensors (named with “D0**”) installed on the door frames and four temperature sensors.
Only the information of binary sensors (motion and door sensors) is adopted in this work,
because the temperature sensors cannot provide the explicit motion process information
of the resident. Therefore, the size of DWN is 35× 35. Figure 5a represents a sample of
the dataset, where the annotated sensor events in the dataset include ten categories of
predefined activities of daily living, while the untagged sensor events are all labeled with
“Other Activity”. The number of sensor events for each class of ADLs in the whole dataset
is displayed in Table 1, which shows that the number among different activities varies
greatly and the “Other Activity” with more than 50% sensor events dominates the dataset.
For convenience, the dataset is digitized. Concretely, the 11 categories of activities from
“Meal_Preparation” to “Other Activity” are mapped into the integers “1–11”, respectively.
The motion sensors and door sensors are converted to “1–31” and “32–35”, respectively,
whose “SensorValue” of “ON/OPEN” and “OFF/CLOSE” are mapped to “1” and “0”,
respectively. “Date” is converted to the form of “yyyymmdd”, and “Time” is converted to
the timestamp (in seconds) relative to the zero hour of the current day. The digitized data
sample is shown in Figure 5b.

Bathroom

Kitchen Bathroom

Bedroom

Closet

Back 

door

Garage

door

Front door

D002 D004

D003

M005
M006

M007

M008
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M012

M013

M014

M015
M018
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M020

M021 M022

M023

M024
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: Door Sensors

: Motion Sensors

Bedroom
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M010

M009

Living

M017

M016

M001

M004

M026

D001

Dining

Office

M028

M030

M025

M029

Figure 4. The layout of Aruba and locations of sensors.
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date time sensorID sensorValue label

2010-11-04 11:41:28.769587 M022 ON

2010-11-04 11:41:32.570925 M022 OFF

2010-11-04 11:41:34.029848 D004 OPEN Leave_Home begin

2010-11-04 11:41:37.192624 M030 ON

2010-11-04 11:41:43.345957 D004 CLOSE Leave_Home end

2010-11-04 11:41:44.121 M030 OFF

2010-11-04 11:43:30.094537 D004 OPEN Enter_Home begin

2010-11-04 11:43:30.658939 M030 ON

2010-11-04 11:43:34.541657 M030 OFF

2010-11-04 11:43:34.683398 D004 CLOSE Enter_Home end

2010-11-04 11:43:35.454279 M022 ON

2010-11-04 11:43:36.210289 M022 OFF

(a)

date time sensorID sensorValue label

20101104 42089 22 1 11

20101104 42093 22 0 11

20101104 42094 35 1 9

20101104 42097 30 1 9

20101104 42103 35 0 9

20101104 42104 30 0 11

20101104 42210 35 1 8

20101104 42211 30 1 8

20101104 42215 30 0 8

20101104 42215 35 0 8

20101104 42215 22 1 11

20101104 42216 22 0 11

(b)

Figure 5. A sample dataset of Aruba. (a) Raw data sample. (b) Digitized data sample.

Table 1. Number of sensor events of activities.

Activity Name Number of Events Proportion (%)

1-Meal_Preparation 288,407 18.06370999

2-Relax 347,911 21.79060635

3-Eating 16,352 1.02416996

4-Work 16,321 1.022228346

5-Sleeping 32,535 2.037754993

6-Wash_Dishes 10,417 0.652444868

7-Bed_to_Toilet 1310 0.082048841

8-Enter_Home 2003 0.125453304

9-Leave_Home 1914 0.119878994

10-Housekeeping 10,579 0.662591365

11-Other Activity 868,861 54.419113

4.2. Evaluation Measures

Because the focus is to evaluate the overall performance of all activities including
“Other Activity” when different methods are employed, we compute the accuracy and F1
score. For binary classification, true positive (TP), false negative (FN), true negatives (TN)
and false positive (FP) shown in Table 2 are calculated, and the precision P and recall R
can be defined by Equations (7) and (8).

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

For computing weighted measures, (P, R) pairs of each category activity are calcu-
lated: (P1, R1), (P2, R2), . . . , (P|A|, R|A|), where |A| denotes the number of categories for
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all activities including “Other Activity”, and Nj represents the number of sensor event
windows relevant to a kind of activity j. Then, the weighted mean, P̄ and R̄, can be obtained.
Therefore, the accuracy Acc and weighted F1 score F1 are calculated as in Equation (9):

Acc =
|A|
∑

j=1
TPj

/
|A|
∑

j=1
Nj

F1 = 2 · P̄ · R̄
/
(P̄ + R̄)

(9)

Table 2. The confusion matrix.

Confusion Matrix
Predicted Result

Positive Negtive

True Result
True True Positive (TP) False Negtive (FN)

False False Positive (FP) True Negative (TN)

4.3. Experimental Results

We use the CNN-LSTM architecture as the fine-grained classifier to learn the activity
classification model. The segmentation methods on streaming sensor data include the
event-based segmentation method that takes a fixed window size (we refer to this method
as FS) and the proposed dynamic segmentation method that adopts a dynamic window
size (referred as DS). The activity modeling approaches include the feature vector approach
(referred to as FV) and the DWN approach. We employ the five-fold cross-validation
strategy and the offline phase is performed on the training dataset to compute SCM, SCT,
MTI and MTS according to Section 3.1.

Figure 6 shows the results employing FS, in which the window size increases from 5
to 60 sensor events, and the activity modeling adopts FV and DWN without volatility (i.e.,
ρ = 0), respectively. It is easy to see that the performance of both FV and DWN with ρ = 0
first increases and then decreases with the increase in window size ws. They achieve the
best overall performance when ws = 15 and ws = 20, respectively. When the number of
sensor events per window is small, there is insufficient information to define the context
of the last sensor event in the window. On the contrary, a large window size leads to a
lot of redundant information. The above two cases are unfavorable to accurately describe
the activity features, so the overall performance is not good. Furthermore, when a specific
window size is given, the results of DWN are better than those of FV. Compared with the
feature vector, the representation of the directed weighted network can not only obtain the
activation duration of each sensor, but also obtain the location information of the resident
before each sensor is triggered, which reflects the rough motion process.
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Figure 6. Overall performance of FS+FV and FS+DWN (ρ = 0).
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Next, we use dynamic segmentation approach to determine the sliding window for
each sensor event when it is recorded, and then use the above two activity representation
methods to perform activity modeling. The results are shown in Figure 7, which illustrate
that the dynamic segmentation approach obtains better classification performance than the
fixed window size approach.

0.764

0.766

0.768

0.77

0.772

0.774

0.776

0.778

0.78

Acc F1

FS(ws=15)+FV DS+FV FS(ws=20)+DWN(ρ=0) DS+DWN(ρ=0)

Figure 7. Classification performance of FS and DS.

The results of employing FS and DWN with volatility (ρ = 0.1) are displayed in
Figure 8. Different from FV and DWN without volatility, the accuracy and F1 score in this
case gradually increase as the window size increases, and finally converge to a stable value
that is greater than the maximum value obtained at ws = 20 when there is no volatility.
Activity modeling based on the emergent paradigm with marker-based stigmergy can
reduce the impact of sensor data far away from the interested sensor event on the context
for defining the last sensor event in the segmented window, so as to reduce redundant
information. In contrast, the sensor events in the sliding window that are closer to the last
event provide more information for defining the context. Therefore, when the window
size increases to a certain value, the context information provided by the “distant” past
triggered sensor events is very little, resulting in the overall classification performance
converging to a stable state.

The proposed online activity recognition method on streaming sensor data integrates
the dynamic segmentation approach and the emergent modeling method. Figure 9 displays
the overall performance of the following four cases: ¬ FS+DWN without volatility, 

DS+DWN without volatility, ® FS+DWN with volatility and ¯ DS+DWN with volatility.
We can easily find that the results of the proposed fusion method integrating spatio-
temporal correlation-based dynamic windowing and stigmergy-based emergent modeling
are obviously better than the other three cases.

In addition to studying the overall performance, we also explore the classification
performance of different categories of activities in various cases discussed earlier, and
their confusion matrixes are shown in Figure 10. We observe that “Enter_Home” and
“Leave_Home” activities benefit the most by employing the emergent paradigm with
marker-based stigmergy. The improvement for these two activities is understandable as
they have clear directionality and a well-defined past context. However, on the other hand,
“Meal_Preparation” and “Wash_Dishes” have high confusion because they share the same
functional area and corresponding deployed sensors. Moreover, they are not as directional
as “Enter_Home” and “Leave_Home” and the number of segmented windows related to
“Wash_Dishes” is far lower than that of “Meal_Preparation” (0.6524% vs. 18.0637%), which
leads to the poor classification performance of “Wash_Dishes”. Another obvious confusion
is included in “Other Activity”. As can be seen from the confusion matrixes, many sensor
data belonging to the predefined ten ADLs are misclassified as “Other Activity”. There
are several reasons for this performance change. On the one hand, more than 50% of
the sensor events in the dataset belong to “Other Activity”, which dominates the entire
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dataset, resulting in a number of data belonging to predefined activities being identified
as “Other Activity”. On the other hand, “Other Activity” itself may be mixed with a
variety of different activities, transitions between activities and movement patterns, which
makes it difficult to characterize this complex class and distinguish it well from the other
predefined activities.
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Figure 8. Results of employing FS+DWN with ρ = 0 and ρ = 0.1, respectively. (a) Accuracy.
(b) F1 score.
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Figure 9. Comparison results of volatility and non-volatility, fixed and dynamic window size.
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Figure 10. Confusion matrixes using different approaches. (a) FS (ws = 15) + FV. (b) FS (ws = 20) +
DWN (ρ = 0). (c) FS (ws = 60) + DWN (ρ = 0.1). (d) DS + DWN (ρ = 0.1).

Finally, the proposed online activity recognition method is compared with several
existing methods:

SWMI: It employs a constant window size, in which each window has the same
number of sensor events. The mutual information between two sensors defined as the
probability of these two sensors appearing consecutively in the whole data stream is taken
into account when extracting features [33].

SWMIex: The only difference between this method and SWMI is that it defines mutual
information as the possibility that two specified sensors arise simultaneously in one window
of the entire dataset [37,38].

SW: This model utilizes sensor event-based windowing and every sensor event is
equally contributing in the feature vector [33].

SWTW: There are the same number of sensor events in each window in this model,
and it uses a time-based weighting factor to calculate the contributions of each sensor event
to the feature vector [33].

SWMI+SWTW: This method combines SWMI and SWTW.
TW: It adopts an equal time interval to divide the entire sensor event sequence into a

series of segments [33].
All the classifiers adopt the CNN-LSTM architecture and the corresponding results

are shown in Figure 11, which demonstrates that our proposed model obtains better perfor-
mance than the other commonly used models. This mainly due to the following reasons. On
the one hand, as far as the window segmentation is concerned, in order to provide accurate
context for the latest sensor event as much as possible, the sensor events contained in the
segmented window should be correlative to the target event in time and space. However,
sensor event-based or time-based windowing methods simply and roughly divide the
sensor data stream into a set of sequences, resulting in the segmented windows that either
contain too much redundant information or too little effective information, both of which
are not conductive to defining the context and accurately identifying the corresponding
activity being performed. In contrast, our proposed dynamic segmentation method takes
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into account the spatio-temporal correlation of sensor events in the window, ensuring that
events with a large time interval or from very different functional areas will not be placed in
the same window. On the other hand, in terms of activity modeling, the extracted shallow
information (such as the trigger times or trigger duration of sensors) cannot reflect the con-
text information well and loses some hidden information. The stigmergic tracks obtained
based on the emergent modeling method can not only reflect the duration of residents
staying at each position, but also roughly characterize the motion process. In addition,
the impacts of sensor events from the “distant” past on the definition of the context about
the interested event can be weakened by exploiting volatility. Both window segmentation
and activity modeling approaches are critical to determine the ongoing activity, so the
combination of these two aspects can result in good performance. In summary, the results
of both ablation experiments and comparative experiments verify the effectiveness of the
online activity recognition model that integrates the emergent modeling method based
on stigmergy and the dynamic segmentation method considering sensor correlation and
time correlation.
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0.765

0.77

0.775
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0.79

Acc F1

SWMI SWMIex SW SWTW SWMI_SWTW TW Ours

Figure 11. Performance using different online AR models.

5. Conclusions

This paper presents an online activity recognition model on streaming sensor data
for monitoring elderly behavior. The online AR method combines the spatio-temporal
correlation-based dynamic segmentation approach and the stigmergy-based emergent
modeling approach to recognize the ongoing activity when a new sensor event is recorded.
The dynamic segmentation method integrates sensor correlation and time correlation
to estimate whether two consecutive sensor events belong to the same window or not,
avoiding sensor events from very different functional areas or with a long time interval
in the same window, so as to determine the final segmented window for every individual
sensor event. After this, the emergent paradigm with marker-based stigmergy is employed
to establish activity features by aggregating sensor data at the low level for defining the
context of the last sensor event in the segmented window. This activity modeling method
is domain knowledge-independent, and it adopts the directed weighted network that can
distinguish different pheromone sources to explicitly represent the extracted features. With
the temporal volatility of pheromones, the aggregated marks can reduce the impact of early
sensor events on the context, and recent sensor events play a relatively greater role, which
reflects the limited memory characteristics of context information. The open dataset Aruba
offered by CASAS is employed to evaluate the effectiveness of our model. The ablation
experiments show that the results of adopting DS+DWN with volatility are superior to
those of the other cases. Moreover, the overall performance of the proposed method is
shown to be better than that of the existing methods in comparative experiments. All of the
above demonstrate the effectiveness of the proposed online activity recognition method
integrating the dynamic segmentation and emergent modeling.
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