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Abstract: Powered ankle exoskeletons (PAEs) are robotic devices developed for gait assistance,
rehabilitation, and augmentation. To fulfil their purposes, PAEs vastly rely heavily on their sensor
systems. Human–machine interface sensors collect the biomechanical signals from the human user to
inform the higher level of the control hierarchy about the user’s locomotion intention and requirement,
whereas machine–machine interface sensors monitor the output of the actuation unit to ensure precise
tracking of the high-level control commands via the low-level control scheme. The current article
aims to provide a comprehensive review of how wearable sensor technology has contributed to the
actuation and control of the PAEs developed over the past two decades. The control schemes and
actuation principles employed in the reviewed PAEs, as well as their interaction with the integrated
sensor systems, are investigated in this review. Further, the role of wearable sensors in overcoming
the main challenges in developing fully autonomous portable PAEs is discussed. Finally, a brief
discussion on how the recent technology advancements in wearable sensors, including environment—
machine interface sensors, could promote the future generation of fully autonomous portable PAEs
is provided.

Keywords: powered; ankle exoskeleton; orthosis; robot; wearable; human–machine; sensor; actua-
tion; control

1. Introduction

Powered ankle exoskeletons (PAEs) are robotic devices developed for gait rehabilita-
tion, locomotion assistance, and strength augmentation purposes [1]. Traditionally, when
developed for assisting with pathological conditions, PAEs may also be referred to as
active ankle–foot orthoses (AAFOs) or powered ankle–foot orthoses (PAFOs) [2]. The PAEs
developed for rehabilitation purposes are usually wearable robots utilized in rehabilitation
facilities that enable repeated walking training rounds on a treadmill or over ground to
improve the recovery of the lower-limb motor function in patients suffering from neurolog-
ical disorders such as stroke, cerebral palsy, and spinal cord injuries. Assistive PAEs, on
the other hand, aim to help people with gait disorders affecting the ankle joint caused by
ageing, trauma, or neurological conditions to overcome their movement limitations and
retrieve a normal and safe gait pattern during their locomotion in daily life. As reported
by the World Health Organization [3], about 15% of the total population across the globe
experience some form of disability such as muscle weakness, partial or full paralysis or
mobility limitation in the lower limb. Therefore, a majority of the currently available
PAEs have been developed to address the increasing demand for ankle rehabilitation and
assistive devices. However, the application of PAEs is not limited to gait rehabilitation and
assistance. Strength augmentation ankle exoskeletons have been developed for powering
the ankle joint in healthy users to enhance their performance and reduce the risk of injuries
during normal walking, running, or manual handling activities [1,4,5].
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The concept of robotic exoskeletons as we know them today goes back to the 1950s
when Zaroodny of the U.S. Army Exterior Ballistic Research Laboratory initiated a project
on a ‘powered orthopedic supplement’, publishing a report in 1963 [6]. This exoskeleton
device was intended to augment the load-carrying abilities of an able-bodied wearer
such as a soldier. In the late 1960s, General Electric Research (Schenectady, NY, USA) in
collaboration with Cornell University constructed a full-body (680 kg, 30 DoFs) powered
exoskeleton prototype funded by the U.S. Office of Naval Research [7]. However, the first
powered exoskeleton explicitly developed for the ankle joint might be the early active
ankle orthosis presented in 1981 by Jaukovic at the University of Titograd in the former
Yugoslavia [8]. This orthosis was actuated using a DC motor placed in front of the wearer’s
shin that assisted in dorsi/plantar flexion of the ankle. The footswitches in the soles
provided the data required for controlling the device [9]. Long after Jaukovic, in the early
2000s, significant efforts aimed at developing PAEs were initiated by Blaya and Herr at
MIT [10], Ferris et al. at the University of Michigan [11], Hollander et al. the Arizona
State University [12], and Agrawal et al. at the University of Delaware [13]. Since then,
numerous studies have been conducted by many researchers around the globe aimed at
developing fully autonomous PAEs.

Regardless of their augmentation or assistive purposes, PAEs must comply with the
biomechanics of the anatomical ankle joint and its performance during a gait cycle [14].
According to definitions [15,16], the gait cycle starts with the heel strike of one foot and
ends at the next heel strike of the same foot. The gait cycle is usually divided into two main
phases: the stance phase and the swing phase (Figure 1). The stance phase begins when the
heel of one foot strikes the ground and terminates when the same foot leaves the ground
(also known as toe-off). The swing phase is defined as the part of the cycle when the foot is
off the ground. The stance phase can be divided into three sub-phases: controlled plantar
flexion (heel strike to foot flat), controlled dorsiflexion (foot flat to maximum dorsiflexion),
and powered plantar flexion (maximum dorsiflexion to toe-off). During the swing phase,
the ankle’s angular position is controlled until it reaches an angle suitable for heel strike.
The tibialis anterior, as the major dorsiflexor muscle, is active throughout the swing phase
and the loading response. During the loading response and initial swing, the tibialis
anterior functions to control the plantar flexion, whereas during the late swing phase it
works to maintain the ankle dorsiflexion. As the major ankle plantar flexors, the triceps
surae are active during late mid-stance and terminal stance to control dorsiflexion and
to generate the force required for the heel to elevate against gravity [17]. The shape and
duration of the gait cycle, the kinematic and kinetic characteristics of the ankle movement,
and the muscular activity throughout the cycle, may vary between individuals based
on their weight, morphology, and health status. An individual’s gait characteristics can
also alter from one step to another, depending on the walking pace, locomotion intention,
fatigue level, and terrain conditions [18–21].
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Laboratory gait analysis equipment such as force plates, instrumented treadmills,
and motion capture systems are the gold standard settings traditionally used for precisely
measuring the gait biomechanics and characteristics [16]. However, the growing demand
for the light, portable, and wireless measurement tools necessary for conducting field eval-
uations, as well as the development of portable smart devices, has led to the development
of wearable untethered sensors and measurement tools [22,23]. Nowadays, technology
innovations in sensor hardware fabrication along with advancements in signal processing
and sensor fusion techniques have improved the measurement techniques for bio-signals
that describe an individual’s gait biomechanics [24–29]. Like many other intelligent wear-
able devices, PAEs have significantly benefitted from such advancements. It is noteworthy
that what makes the PAEs remarkably superior to passive ankle exoskeletons and AFOs
is the controllability of the delivered assistance in such intelligent devices. The control
hierarchy of a PAE is, therefore, the most critical and complicated component of the device,
as it needs to detect the human user’s instantaneous locomotion requirement and ensure
the performance of the device is compliant with the user’s intention, while delivering the
desired assistance to the user in an optimal fashion [9]. Fulfilling such a complex purpose
is not conceivable without the use of an effective integrated sensor system that gathers the
required information from the human user and different parts of the exoskeleton in real
time. A PAE relies heavily on its sensor system to not only communicate with the human
user but also to continuously monitor its performance.

To date, several excellent review papers have been published on lower-limb orthoses
and exoskeletons, discussing the design, actuation, and control principles of these de-
vices [14,30,31]. Alqahtani et al., 2021 [1] provided a discussion on different applications
of lower-limb robotic exoskeletons. Kalita et al., 2020 [32] systematically reviewed lower-
limb robotic-based orthoses and exoskeletons with a section briefly discussing a selected
number of PAEs. While Kubasad et al., 2021 [2] has reviewed the design of a number of
active and passive orthoses developed for treating drop foot, Jiang et al., 2018 [33] and
Shi et al., 2019 [34] focused on the application of these devices in the recovery of stroke
patients. Alvarez-Perez, et al., 2019 [35] delivered a review on a selection of seated and
walking robots used for ankle rehabilitation. However, in the mentioned reviews, multi-
joint exoskeletons and rehabilitation suits have been generally favored over single-joint
exoskeletons. Moltedo et al., 2018 [36] provided an exceptional review of studies that
investigated the effect of the assistance delivered by PAFOs on healthy and impaired users
during walking trials. However, a comprehensive review of the broad range of available
PAEs is still missing. Furthermore, the sensor system as a critical component in PAEs and
its interaction with the actuation unit and the control hierarchy of the device have not been
properly investigated so far. Hence, the current article aims to provide a comprehensive
review of how wearable sensors have contributed to the actuation and control of the PAEs
developed over the past two decades. Articles concerning seated rehabilitation ankle robots
and multi-joint exoskeletons are not included in this review article. For a more detailed
explanation of the search and review process, please see the Supplementary Materials
(Figure S1).

A PAE is typically composed of an actuation unit, a control unit, a physical frame, and a
sensor system (Figure 2). The sensor system is normally composed of human–machine and
machine–machine interface sensors and their corresponding electronics such as analog-to-
digital converters, digital signal processing units, and microcontrollers with implemented
sensor fusion algorithms. The control unit of a PAE usually contains high-level and low-
level control schemes. The high-level control scheme uses the information acquired by
the human–machine sensors component to produce the actuation command matching the
user’s movement intention and requirement. The actuation unit containing an actuator and
a power unit then generates the assistive load as commanded. Based on the PAE type, the
actuator may provide assistance with dorsiflexion (e.g., avoiding drop foot), plantar flexion
(e.g., to power the ankle propulsion), or both. The low-level control scheme monitors the
actuator output through the machine–machine sensors component and ensures the output
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matches with the value commanded by the high-level control algorithm. The physical
frame transfers the generated load to the user’s anatomical ankle, while it may or may not
allow for a passive movement in the eversion/inversion degree of freedom. The physical
frame is required to be light, comfortable to wear, and yet sturdy and durable. Furthermore,
the physical frame of a PAE is normally used for housing the actuation, sensors, and control
components.

To comprehensively review the selected articles, the following information was ex-
tracted from the grouped papers:

• General information including the exoskeleton purpose and target population, target
limb side (bilateral or unilateral), degree of freedom (DoF), and assistance direction
(dorsiflexion or plantar flexion or both), portability, and the total weight.

• Actuation principle and actuator type.
• Control hierarchy including high-level and low-level control schemes.
• Sensor system including human–machine and machine–machine sensors

The general information extracted from all 172 reviewed articles is available in Table
S1 in the Supplementary Materials. A selection of recently developed state-of-the-art PAEs
and a summary of their key features are provided in Table 1 for illustration purposes. The
selected devices are examples of well-developed PAEs with advanced control algorithms,
innovative sensor systems, functional actuation units, and practical wearable physical
frames.
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Table 1. An example set of state-of-the-art PAEs selected from the reviewed articles that demonstrate
advanced control algorithms, innovative sensor systems, functional actuation units, and practical
wearable physical frames.
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Low-Level Control Scheme: Adaptive PID
Machine–Machine Sensors: Torque Sensors
Actuation Mechanism: Brushless DC Motors

Sensors 2022, 22, x FOR PEER REVIEW 5 of 42 
 

 

Table 1. An example set of state-of-the-art PAEs selected from the reviewed articles that demon-
strate advanced control algorithms, innovative sensor systems, functional actuation units, and prac-
tical wearable physical frames. 

 
Fang et al., 2020 [37] (copyrights authorized by 
Elsevier) 

Purpose: Assistive Device: Cer-
ebral Palsy, Neuromuscular Im-
paired, and Parkinson Patients 
Bilateral: Yes 
DoF: 1 DoF Plantar Flexion 
Portability: Portable 
Weight: 1.85 kg–2.20 kg 

High-Level Control Scheme: Phase-
based 
Human-Machine Sensors: FSRs 
Low-Level Control Scheme: Adap-
tive PID 
Machine–Machine Sensors: Torque 
Sensors 
Actuation Mechanism: Brushless 
DC Motors 

 
Choi et al., 2020 [38] 

Purpose: Assistive Device: El-
derly 
Bilateral: No 
DoF: 2 DoF Plantar Flexion and 
Eversion/Inversion 
Portability: Tethered 
Weight: 2.14 kg 

High-Level Control Scheme: Phase-
based 
Human–Machine Sensors: FSR, En-
coder 
Low-Level Control Scheme: Pulse 
Width Modulation (PWM) with So-
lenoid Valves 
Machine–Machine Sensors: Load 
Cell 
Actuation Mechanism: Pneumatic 
Muscle 

 
Bougrinat et al., 2019 [39] (copyrights authorized 
by Elsevier) 

Purpose: General Augmenta-
tion 
Bilateral: No 
DoF: 1 DoF Plantar Flexion 
Portability: Portable 
Weight: 2.045 kg 

High-Level Control Scheme: Phase-
based 
Human–Machine Sensors: FSR, 
Low-Level Control Scheme: PID 
Machine–Machine Sensors: Load 
Cell, Current Sensor, Encoder 
Actuation Mechanism: Brushless 
DC Motors 

 
Guerro-Castellanos et al., 2018 [40] (copyrights 
authorized by Elsevier) 

Purpose: Assistive Device: 
Drop Foot and Paretic Patients 
Bilateral: No 
DoF: 1 DoF Dorsiflexion/Plan-
tar Flexion 
Portability: Portable 
Weight: 3.5 

High-Level Control Scheme: Phase-
based 
Human–Machine Sensors: FSR, En-
coder, IMU, EMG 
Low-Level Control Scheme: Adap-
tive (active disturbance rejection) 
Actuation Mechanism: Brushless 
DC Motors 

Choi et al., 2020 [38]

Purpose: Assistive Device: Elderly
Bilateral: No
DoF: 2 DoF Plantar Flexion and
Eversion/Inversion
Portability: Tethered
Weight: 2.14 kg

High-Level Control Scheme: Phase-based
Human–Machine Sensors: FSR, Encoder
Low-Level Control Scheme: Pulse Width
Modulation (PWM) with Solenoid Valves
Machine–Machine Sensors: Load Cell
Actuation Mechanism: Pneumatic Muscle

Sensors 2022, 22, x FOR PEER REVIEW 5 of 42 
 

 

Table 1. An example set of state-of-the-art PAEs selected from the reviewed articles that demon-
strate advanced control algorithms, innovative sensor systems, functional actuation units, and prac-
tical wearable physical frames. 

 
Fang et al., 2020 [37] (copyrights authorized by 
Elsevier) 

Purpose: Assistive Device: Cer-
ebral Palsy, Neuromuscular Im-
paired, and Parkinson Patients 
Bilateral: Yes 
DoF: 1 DoF Plantar Flexion 
Portability: Portable 
Weight: 1.85 kg–2.20 kg 

High-Level Control Scheme: Phase-
based 
Human-Machine Sensors: FSRs 
Low-Level Control Scheme: Adap-
tive PID 
Machine–Machine Sensors: Torque 
Sensors 
Actuation Mechanism: Brushless 
DC Motors 

 
Choi et al., 2020 [38] 

Purpose: Assistive Device: El-
derly 
Bilateral: No 
DoF: 2 DoF Plantar Flexion and 
Eversion/Inversion 
Portability: Tethered 
Weight: 2.14 kg 

High-Level Control Scheme: Phase-
based 
Human–Machine Sensors: FSR, En-
coder 
Low-Level Control Scheme: Pulse 
Width Modulation (PWM) with So-
lenoid Valves 
Machine–Machine Sensors: Load 
Cell 
Actuation Mechanism: Pneumatic 
Muscle 

 

 
 
 
 

Purpose: General Augmenta-
tion 
Bilateral: No 
DoF: 1 DoF Plantar Flexion 
Portability: Portable 
Weight: 2.045 kg 

High-Level Control Scheme: Phase-
based 
Human–Machine Sensors: FSR, 
Low-Level Control Scheme: PID 
Machine–Machine Sensors: Load 
Cell, Current Sensor, Encoder 
Actuation Mechanism: Brushless 
DC Motors 

 

 
 
 
 

Purpose: Assistive Device: 
Drop Foot and Paretic Patients 
Bilateral: No 
DoF: 1 DoF Dorsiflexion/Plan-
tar Flexion 
Portability: Portable 
Weight: 3.5 

High-Level Control Scheme: Phase-
based 
Human–Machine Sensors: FSR, En-
coder, IMU, EMG 
Low-Level Control Scheme: Adap-
tive (active disturbance rejection) 
Actuation Mechanism: Brushless 
DC Motors 

Bougrinat et al., 2019 [39] (copyrights authorized by
Elsevier)

Purpose: General Augmentation
Bilateral: No
DoF: 1 DoF Plantar Flexion
Portability: Portable
Weight: 2.045 kg

High-Level Control Scheme: Phase-based
Human–Machine Sensors: FSR,
Low-Level Control Scheme: PID
Machine–Machine Sensors: Load Cell, Current
Sensor, Encoder
Actuation Mechanism: Brushless DC Motors

Sensors 2022, 22, x FOR PEER REVIEW 5 of 42 
 

 

Table 1. An example set of state-of-the-art PAEs selected from the reviewed articles that demon-
strate advanced control algorithms, innovative sensor systems, functional actuation units, and prac-
tical wearable physical frames. 

 
Fang et al., 2020 [37] (copyrights authorized by 
Elsevier) 

Purpose: Assistive Device: Cer-
ebral Palsy, Neuromuscular Im-
paired, and Parkinson Patients 
Bilateral: Yes 
DoF: 1 DoF Plantar Flexion 
Portability: Portable 
Weight: 1.85 kg–2.20 kg 

High-Level Control Scheme: Phase-
based 
Human-Machine Sensors: FSRs 
Low-Level Control Scheme: Adap-
tive PID 
Machine–Machine Sensors: Torque 
Sensors 
Actuation Mechanism: Brushless 
DC Motors 

 
Choi et al., 2020 [38] 

Purpose: Assistive Device: El-
derly 
Bilateral: No 
DoF: 2 DoF Plantar Flexion and 
Eversion/Inversion 
Portability: Tethered 
Weight: 2.14 kg 

High-Level Control Scheme: Phase-
based 
Human–Machine Sensors: FSR, En-
coder 
Low-Level Control Scheme: Pulse 
Width Modulation (PWM) with So-
lenoid Valves 
Machine–Machine Sensors: Load 
Cell 
Actuation Mechanism: Pneumatic 
Muscle 

 

 
 
 
 

Purpose: General Augmenta-
tion 
Bilateral: No 
DoF: 1 DoF Plantar Flexion 
Portability: Portable 
Weight: 2.045 kg 

High-Level Control Scheme: Phase-
based 
Human–Machine Sensors: FSR, 
Low-Level Control Scheme: PID 
Machine–Machine Sensors: Load 
Cell, Current Sensor, Encoder 
Actuation Mechanism: Brushless 
DC Motors 

 

 
 
 
 

Purpose: Assistive Device: 
Drop Foot and Paretic Patients 
Bilateral: No 
DoF: 1 DoF Dorsiflexion/Plan-
tar Flexion 
Portability: Portable 
Weight: 3.5 

High-Level Control Scheme: Phase-
based 
Human–Machine Sensors: FSR, En-
coder, IMU, EMG 
Low-Level Control Scheme: Adap-
tive (active disturbance rejection) 
Actuation Mechanism: Brushless 
DC Motors Guerro-Castellanos et al., 2018 [40] (copyrights

authorized by Elsevier)

Purpose: Assistive Device: Drop Foot
and Paretic Patients
Bilateral: No
DoF: 1 DoF Dorsiflexion/Plantar Flexion
Portability: Portable
Weight: 3.5

High-Level Control Scheme: Phase-based
Human–Machine Sensors: FSR, Encoder, IMU,
EMG
Low-Level Control Scheme: Adaptive (active
disturbance rejection)
Actuation Mechanism: Brushless DC Motors
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Purpose: Assistive Device: Multiple
Sclerosis Patients
Bilateral: No
DoF: 1 DoF Dorsiflexion/Plantar Flexion
Portability: Portable
Weight: 3.1 kg

High-Level Control Scheme: Phase-based
Human–Machine Sensors: FSR, Encoder
Low-Level Control Scheme: Proportional
Pressure Regulators with Solenoid Valves
Machine–Machine Sensors: Pressure Sensors
Actuation Mechanism: Pneumatic Cylinders

2. Sensor Technologies Used in Control Hierarchy of the PAEs

The control hierarchy is a core component of a PAE and functions as the decision-
making center of the device. To provide optimal assistance or augmentation, the controller
of a PAE must cover three important criteria: (I) reliable assessment of the user’s locomotion
intention, (II) precise coordination of the timing of assistance with the user’s movement,
and (III) generation of an appropriate actuation profile that matches the user’s need and
intention while minimizing the unwanted human–machine interaction force wrench. Only
if the controller succeeds in meeting these criteria can the robotic device achieve its assistive
or augmentation goals [9]. Therefore, designing, developing, and implementing effective
control strategies has been the focus of many studies in the field of PAEs [14,44]. The control
hierarchy of a PAE can be divided into a high-level control strategy and a low-level control
strategy, based on the purposes they fulfil. The higher-level control detects human motion
intentions and requirements, and then generates the appropriate displacement or torque
command. The low-level control, on the other hand, ensures that the desired command
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is tracked by the exoskeleton precisely and that the actuator’s output does not cause an
interaction force wrench [45].

The decision-making process of a wearable robot (Figure 3) such as a PAE begins
with the signal acquisition by the sensors. If acquired in analog format, the signal is first
converted to digital format using an analog-to-digital (A/D) convertor. Then, the digital
signals acquired from all sources are processed and combined throughout the sensor fusion
procedure. Sensor fusion is the combining of sensory data or data derived from sensory
data such that the resulting information is, in some sense, better than would be possible if
these sources were used individually [46]. When multiple signals are obtained from the
same type of sensors (e.g., several EMG biosensors), a unimodal sensor fusion algorithm
is used, whereas in multimodal systems, multimodal sensor fusion algorithms combine
signals from different types of sensors (e.g., combining data collected from EMG, IMU, and
FSR sensors) [47]. Sensor fusion can enhance the performance of a sensor system in the
following ways:

• Robustness and reliability: the redundant data generated by multiple sensor units
enables the system to provide information in case of partial failure.

• Extended spatial and temporal coverage: one sensor can look where others cannot
and can perform a measurement while others cannot.

• Increased confidence: a measurement from one sensor is confirmed by measurements
from other sensors.

• Reduced ambiguity and uncertainty: joint information reduces the set of ambiguous
interpretations of the measured value.

• Robustness against interference: by increasing the dimensionality of the measurement
(e. g., measuring the desired quantity with optical encoders and IMUs), the system
becomes less vulnerable to interference.

• Improved resolution: when multiple independent measurements of the same prop-
erty are fused, the resolution of the resulting value is better than for a single sensor
measurement [46].
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Adapted with permission from ref. [47]. Copyright 2015 Elsevier.

Filtering is the first preprocessing stage of sensor fusion and includes removing all
components of the raw digital signal except those in a defined passband (e.g., 20–500 Hz for
EMG). This removes low-frequency mechanical artifacts and high-frequency aliasing effects
from the signal. Moreover, to eliminate noise with frequencies within the defined passband,
other techniques such as notch filtering and spatial filtering may also be used [47,48]. In
the next step, useful information (features) is extracted from the filtered signals using a
broad range of mathematical methods via the feature extraction process. The selected
features do not need to have the same sampling frequency as the raw signals. Then,
further classification and/or regression processing may be utilized on the extracted features.
Classification assigns a discrete label to extracted features (e.g., stance or swing phase)
while regression converts features to continuous values (e.g., joint angle). Robot control
takes the results of classification and/or regression and converts them into the command
given to the wearable robot’s actuators [47]. In this section, different types of high-level
and low-level control algorithms employed in the reviewed PAEs, as well as the role of
wearable sensors in each control strategy, will be discussed.



Sensors 2022, 22, 2244 8 of 39

2.1. High-Level Control and Human–Machine Sensors

Apart from Sawicki et al., 2005 [49] and 2006 [50], who investigated the option of
controlling the device using a manual push-button held by the user or their therapist, all
other reviewed articles had developed a form of automatic control. Implementing control
strategies is not possible without the use of sensors. The exoskeleton needs to function
as an extension of the human body, to power it, and more importantly, support and har-
moniously synchronize with it. Bio-inspired high-level controllers, which play a critical
role in this regard, rely heavily on biosensors and physical sensors for precisely tracking
human motion intentions, in turn leading to human-in-the-loop (HIL) optimization and
assist-as-needed (AAN) strategies [51,52]. The high-level control strategies utilized in PAEs
can generally be classified into two main trends based on their sensor systems: phase-
based controllers and myoelectric-based controllers. Phase-based control schemes rely
on physical sensors such as force sensitive resistors (FSRs), encoders, and inertial-based
sensors, whereas myoelectric-based control algorithms use biosensors, i.e., electromyo-
graphy (EMG) electrodes for collecting the necessary information from the human user.
Basic phase-based and myoelectric-based controls comprised the majority of the control
options in early robot ankle exoskeletons, though in more advanced prototypes, the basic
control schemes were usually combined with a secondary control strategy to enhance
the performance of the system (Table 2). Different research groups have taken different
approaches to resolving control problems by exploiting the advantages of either of these
two main schemes while compensating for the shortcomings via adding other control
strategies to their control algorithm. Such remarkable efforts have led to the creation and
implementation of novel control algorithms. The section below provides a discussion of
these advancements.

Table 2. High-level control strategies used in PAEs.

High-Level Control Scheme Reference

Phase-based [10,37–41,43,49,53–179]

Impedance-based [74,75,102,136,161–165,180]

Metabolic-rate-based [70,96,132,181,182]

Reflex-model-based [68,183–188]

Proportional-myoelectric-based [11,49,68,89,189–201]

Adaptive gain proportional-myoelectric-based [133–135,202–205]

Myoelectric neuromechanical-model-based [206,207]

Push-button [49,50]

2.1.1. Phase-Based Control and Physical Sensors

Phase-based control algorithms aim to track a desired ankle joint torque or angular
movement based on the user’s gait phase and kinematic states, measured by a variety
of mechanically intrinsic wearable sensors [10,37–41,43,49,53–179]. Phase-based control
schemes are the most frequently utilized high-level algorithms in the reviewed literature
due to the simplicity of the algorithms, though when used in their basic form they are
not adaptive to individual needs and variations, or even gait mode alternations in the
same individual. Phase-based control algorithms, therefore, have been combined with
other bio-inspired control strategies to form hybrid high-level control hierarchies that
allow for further adaptation and compliance with the user’s biomechanics and locomotion
needs [37,54,80,83,86,117,118,141].

Impedance-based controllers are an example of such complementary schemes [74,75,
136,161–165]. Lopes et al., 2020 [102] developed an adaptive impedance control algorithm
that adapts the human–robot interaction stiffness based on the user’s gait phase and state to
allow for an assist-as-needed strategy. Nuckols and Sawicki, 2020 [180] used an impedance-
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based controller to determine the desired exoskeleton torque. The impedance controller was
designed to emulate a physical passive elastic element capable of providing plantar flexion
torque (rotational stiffness). The desired torque was calculated based on a predefined
rotational stiffness and the real-time ankle joint angle.

Metabolic-rate-based control [70,96,132,181,182] is perhaps the only variation of
phase-based control schemes that takes a physiological input into account in fine-tuning its
adaptive gains. Metabolic-rate-based control is a type of human-in-the-loop optimization
that aims to select the optimal adaptive values for the control parameters that lead to a
minimum steady-state metabolic energy cost during a particular gait mode [70]. The tuning
procedure requires laboratory-based equipment including a treadmill, preferably instru-
mented [96,132], for an accurate real-time ground reaction force measurement and gait
event detection, as well as a respirometer device that continuously measures the oxygen
intake using metabolic masks [70,96,132]. Yan et al., 2019 [182] used the soleus muscle
activities as a physiological indication of the metabolic rate to be minimized during a
human-in-the-loop optimization to control their bilateral PAE system. Similarly, Han et al.,
2021 [181] presented a metabolic-rate-based control algorithm with a cost function based
on surface electromyography signals from four lower-leg muscles instead of respirometry
measurements. To construct the cost function, nine gait conditions were defined, where
each condition was a combination of different walking speeds, ground slopes, and load
weights. Then, ten different assistance patterns were provided by the PAE to the participant
for each gait condition. Although such adaptive control schemes offer many benefits in
adjusting the assistance level to the user’s needs, they require time-consuming and ex-
haustive phases of parameter tuning. The procedure usually includes testing a variety of
different combinations and values of the control parameters to eventually find an optimized
control parameter configuration for a given user, for a selected locomotion mode and a
minimized metabolic rate. The system can then be employed by the user without metabolic
rate measurement for the selected locomotion mode. Koller at al., 2017 [132] suggested that
an instantaneous cost mapping analysis that allows for an estimate of the metabolic cost
landscape without the explicit need for steady-state measurements can enable the objective
subject-specific comparison of protocols, regardless of which metabolic analysis is used.
They developed a novel method for quantifying the confidence in an estimated metabolic
cost landscape, which helped them obtain optimal parameter configurations in 20 min,
where the standard-practice protocol required 42 min in their previous work [96].

Reflex-model-based control is another bio-inspired high-level controller that has at-
tracted the attention of many researchers for developing user adaptive PAEs [68,183–188].
A reflex-model-based controller is an adaptive controller that does not need to be tuned
for each gait mode. In its ideal form, the model only needs to be fine-tuned once for each
individual user, and therefore it can increase user acceptance of robotic exoskeletons for
everyday use in dynamic real-life environments. The control algorithm used in this strategy
is adapted from the natural neuromuscular reflex mechanism of the human body. The
model implements a Hill-type [208] virtual muscle–tendon unit that mimics the biolog-
ical muscle–tendon unit with similar contractile properties. With respect to the user’s
anatomical ankle movement, the length of the virtual muscle–tendon unit changes through
a virtual moment arm and stimulates the virtual muscle–tendon unit. The activation signal
is generated by a modelled positive force feedback reflex pathway based on the previous
force output of the model. When stimulated, the virtual muscle generates force accordingly
based on the force–length and force–velocity relationships. The force generated by the vir-
tual muscle–tendon unit is then transformed to a torque value through the virtual moment
arm as if the biological muscle–tendon unit had created the ankle torque. Therefore, using
this control scheme, the exoskeleton actuator can spontaneously adapt to any dynamic
changes in the walking environment or user’s state [183,184].

To achieve their goal, phase-based control algorithms require highly efficient and
accurate sensor systems that can precisely detect the occurrence of gait events and estimate
the instantaneous gait state in real time. A broad range of wearable physical sensors,
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also known as mechanically intrinsic sensors, have been used in developing intelligent
ankle exoskeletons to fulfil this necessity (Tables 3 and 4). Force sensitive resistors (FSR),
foot-pressure insoles, and footswitches are the most commonly used physical sensors
for detecting gait events in PAEs (Table 3). Their application in ankle robot technology
development dates back to the initial PAEs [147–149]. Kim et al., 2007 [60] and 2011 [61]
detected the gait cycle from foot contact signals recorded by FSR sensors that acted as
on/off switches and indicated gait events by measuring the voltage drop. Similarly, Hwang
et al., 2006 [59] used four FSR sensors and a rotary potentiometer to detect gait phases.
Gurney et al., 2008 [209] integrated a set of FSR sensors into shoe insoles to measure the
plantar pressure from the main pressure distribution regions of the foot sole: forefoot,
toe, and heel, to identify gait events based on the pressure profile of these regions during
different states of a normal gait cycle.

Table 3. Parameters measured from the human user by human–machine interface sensors as reported
by the reviewed PAEs. Different sensor types employed for measuring each parameter and their
corresponding references are provided in the second and third columns, respectively.

Measured Parameter Sensor References

Gait events

FSR
[37–40,43,56,57,59–65,67,76–85,87,94,107,116–120,141–

143,145,147–153,156,159,160,166–168,170,171,173–
175,177,178,184,186,187,189]

Footswitch [10,49,58,69,72,73,88,89,91–93,97–
99,111,113,122,139,154,155,163–165,181,198,199,202]

IMU [57,66,74,75,102,158,170]

Gyroscope [112]

Piezoresistive sensor [109,110]

Ankle joint angle

Encoder
[38,40,42,58,62–64,68,69,72,73,85,86,100,103,104,106,108–

110,117,118,138,139,142,149–151,159–
162,165,173,178,181,185–188,202,206,207,210],

Potentiometer [10,43,59,101,102,114,143,147,148,154,155,166,167,170,171]

Gyroscope [172]

Linear displacement sensor [97–99]

IMU [64,127,152,211]

Goniometer [180,183]

Attitude sensor [116]

Custom strain sensor combined with IMU [174,175]

Strain sensor [87]

Knee joint angle
IMU [206,207]

Strain sensor [87]

Absolute shank angle IMU [40,85,87,117,118,159,160,177]

Orientation of shank, thigh, and trunk
IMU [42]

Inclinometer [82]

Angular velocity Gyroscope [123–126,128,129,150,151,157,172]

IMU [114,119,120]

Translational acceleration of wearer IMU [40,117–120,159,160]

Foot tilting
Accelerometer [141]

IMU [119,120]

Walking speed Speed encoder [204]

Ground reaction force
Force sensor [10,136]

FSR [101,117,131]

Muscle activity EMG [11,40,49,68,89,116,117,133–135,181,185,186,190–194,196–
207]

Anatomical ankle generated torque Strain gauges [101,102]

Exoskeleton frame–user interaction forces Force sensor [136]

Respirometry Metabolic mask [70,96,132]
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Table 4. Detailed technical information of different human–machine interface sensors used in the
reviewed PAEs including the specific sensor type, measured parameter, and sensor placement
location.

Sensor Specific Sensor Details Measurement Location Reference

IMU

IMU (gyroscope and accelerometer) Ankle joint angle Foot and calf [56]

WT901C485, WitMotion, Shenzhen,
China Gait cycle Shoe [57]

EBIMU-9DoFV5, E2BOX Inc.,
Shanghai, China Ankle joint angle Shin and thigh parts of the

exoskeleton [64]

6-DoF IMU, 100 Hz Gait phase Shank [66]

BNO055 (Bosch, Germany) Gait phase Foot [74,75]

3DM-GX4-25-RS232-SK1, LORD
MicroStrain, Inc., Williston, VT, USA Absolute shank angle Main structure [85]

MW-AHRS, NTRexLAB Absolute shank angle Shank [87]

EBIMU-9DoFV4, E2BOX Shank angle in sagittal plane Medial shank [177]

3 × Xsens (Xsens Technologies B.V.,
Enschede, The Netherlands)

Orientation of the shank, thigh, and
trunk Shank, thigh, and trunk [42]

MPU6050 Ankle joint angle Foot [211]

Not specified Gait phase segmentation Foot [102]

IMU (Shimmer Inc., Dublin, Ireland ) Angular velocity Shank [114]

SN-IMU5D-LC, Cytron, Simpang
Ampat, Malaysia

Shank’s angular velocity in the
sagittal plane and accelerations

along the y and z axes.
Mechanical structure, near shank [158]

2 × Xsens (Xsens Technologies B.V.,
Enschede, The Netherlands)

#1: Angle between the shank and the
vertical axis

#2: Translational acceleration of the
wearer along the three axes.

#1 Shank
#2 Foot

[40,117,118,159,
160]

Mpu6050 6-axis MotionTrackingTM

device, InvenSense, San Jose, CA, USA Leg linear acceleration Leg brace [119,120]

MTi-3, (Xsens Technologies B.V.,
Enschede, The Netherlands) Foot angle and angular velocity Lateral side of the shoe [127]

Link, Xsens, The Netherlands Knee joint angle Not specified [206,207]

XSens MTi-28A53G35, (XSens
Technologies. Enschede, The

Netherlands)

Orientation and position of the
exoskeleton Medial side of the exoskeleton [170]

SEN-09623, 9DoF Razor IMU, Sparkfun
Electronics, Boulder, CO 80301, USA. Orientation of lower leg and foot Foot and lower leg [174,175]

IMU (Sparkfun Electronics, Boulder,
CO 80301, USA, with a gyroscope

ADXRS610 and two accelerometers
ADXL320, from Analog Devices)

Absolute position of the exoskeleton Not specified [152]

Gyroscope

Gyroscope Shank angular velocity to identify
heel contact Not specified [157]

Single axis Gyroscope Gait phase On the shin [112]

2 × Single axis Gyroscope
(LY3100ALH, STMicroelectronics,

Geneva, Switzerland)

Sagittal angular velocity of the shank
and foot

One at the top of the mid-foot and
the other at the anterior side of the

shank
[123,125,129]

LY3100ALH, STMicroelectronics-single
axis

Angular motion of the foot for gait
segmentation Top of the mid-foot [124]

Sparkfun, NIWOT, CO, USA Angular motion of the foot for gait
segmentation Integrated in the shoe [126,128]

2 × Gyroscopes Sagittal angular motion and velocity
of the foot for gait segmentation Not specified [172]

Rate gyro Angular velocity of shank Not specified [150,151]

Accelerometer Tilt sensor Tilt of foot Not specified [141]

Attitude sensor
2 × JY901 attitude sensors Ankle joint angle Parallel to the lever and shank [116]

angular Ankle joint angle and angular
velocity Ankle joint [113]
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Table 4. Cont.

Sensor Specific Sensor Details Measurement Location Reference

Foot pressure
sensors

3 × Membrane pressure sensors Plantar pressure distribution for gait
cycle detection Integrated insole [56]

Insole-shaped foot pressure sensors
(RX-ES39, Roxi Technology, Jiangsu,

China)

Identify the gait state using pressure
of three parts, i.e., forefoot, toe, and

heel
Shoes [57]

4 × FSR (MA-152, Motion Lab System
Inc., Baton Rouge, LA, USA) Ground contact, gait phase Heel, hallux, first metatarsal head,

and fifth metatarsal base [59–61]

FSR sensor Gait phase Heel and big toe [38,62,63]

3 × FSR sensors Gait phase Toe, heel, and medial of the insole [64]

2 × FSR (FlexiForce A401, Tekscan,
Boston, MA, USA) Gait phase Heel and the metatarsal bone [65,184]

FSR sensor Gait cycle Under the arch support of the shoe [67]

2 × FSR sensor Gait phase Under the ball and heel of the foot [76–79,81,82,84]

2 × FSR (FlexiForce A201, Tekscan, Inc.,
Boston, MA, USA) Ground reaction force Under forefoot [37,80,83]

2 × FSR (FlexiForce A301, Tekscan, Inc.,
South Boston, MA, USA) Gait phase Embedded into the insole [85,189]

Toe contact sensor like pressure switch
or force-sensing resistor Gait timing Not specified [94]

3 × FSR (FlexiForce, Tekscan, Boston,
MA, USA) Ground contact of each foot Insole [87]

Custom-designed FSR sole Gait phase Beneath the foot brace [177]

FSR (Interlink 406, Adafruit, New York,
NY, USA) Gait phase The user’s shoe at the anterior and

posterior ends of the shoe insoles [156]

FSR-151AS pressure sensor (IEE,
Contern, Luxembourg) Heel strike Heel [178,186,187]

2 × FSR sensors Ground reaction force Heel and toe [101]

FSR (SEN-09376 Antratek used with
Phidgets Voltage Divider 1121) Initiation of new step Heel [107]

IMS009-C7.5 (FSR) Heel strike Heel [116]

3 × FSR in a force sensitive resistor
matrix (FSRM)—(Tekscan, Inc., Boston,

MA, USA)
Distribution of ground reaction force Heel, hallux, fifth metatarsal

phalange joints
[40,117,118,159,

160]

FSR Heel strike Not specified [39]

2 × FSR-402 (Interlink Electronics Inc.,
Camarillo, CA, USA)

Foot loading pattern as an on/off
switch. Forefoot and heel [119,120]

4 × FSR-402 (Interlink Electronics Inc.,
Camarillo, CA, USA) Ground reaction force Below the shoe insoles at the heels

and toes [131]

2 × FSR-402, 0.5 in circle; (Interlink
Electronics Inc., Camarillo, CA, USA) Gait phase Heel and metatarsal heads [43,166–

168,170,171]

2 × FSR Gait phase Toe and heel [141]

4 × FSR (FlexiForce-A201-25lb,
Tekscan Inc., Boston, MA 02127, USA) Gait phase Embedded in a shoe insole [174,175]

Sparkfun SEN-09375) Gait phase Heel of the plate [142]

FSR Heel and toe contact In the shoes [143]

3 × FSR (FlexiForce-A201-25lb,
Tekscan Inc., Boston, MA 02127, USA) Ground reaction force Heel, lower forefoot, and big toe [145]

FSR Heel strike Heel [146–151]

3 × FSR Gait phase Under heel, middle, and front part of
the shoe [152]

4 × FSR Gait phase Flexible insole [153]
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Table 4. Cont.

Sensor Specific Sensor Details Measurement Location Reference

Force sensor

Ultraflex system—with 6 capacitive
force transducers 25 mm square and 3

mm thick
Ground reaction force

Bottom of the exoskeleton, two
sensors beneath the heel and four

beneath the forefoot region.
[10]

2 × Force sensors

Interaction forces—the ground
reaction forces during the contact of
robotic device with the ground and

other force sensors measure the
interaction forces between the shank

of the user and the robotic device.

Not specified [136]

GRF sensing system consisting of two
force sensors Gait phase Integrated into shoe [173]

Footswitch

McMaster-Carr, Aurora, OH, USA Heel strike In the heel of the shoe [58,69,72,73,181,
202]

Footswitch Foot contact Not specified [49]

Footswitch Foot contact Under left forefoot inside the shoe [88]

Footswitch (B&L Engineering, Santa
Ana, CA, USA) Foot contact Inside shoe [89,199]

IP67, Herga Electric, Suffolk, UK Foot contact Heel [91,92]

Multimec 5E/5G, Mec, Ballerup,
Denmark Foot contact In the heel of the shoe [93,97–99]

Footswitch, model MA-153 Heel strike In the heel of a shoe worn with the
orthosis [10]

FSW (B&L Engineering, Santa Ana,
CA, USA) Heel and toe contact Not specified [111,113]

B&L Engineering, Santa Ana, CA, USA Heel strike Under foot [122]

Footswitch (B&L Engineering, Santa
Ana, CA, USA) with 4 individual

footswitches
Gait phase

Inside shoe—at the heel, forefoot,
medial, and lateral zones at the level

of metatarsals.
[163–165]

Pressure sensor (footswitch) Heel strike moment and stride
length Under the shoe [139]

2 × Tactile Arrays Position of orthosis
Incorporated in the foot part of the
exoskeleton and in the insole of the

healthy leg
[154,155]

Potentiometer

Rotary potentiometer Ankle joint angle Attached to the hinged ankle joint of
the exoskeleton [59–61]

Precision potentiometer (resolution of
0.5◦) Ankle joint angle Exoskeleton ankle joint [101,102]

Bourns 6637S-1-502 5-k rotary
potentiometer Ankle joint angle Not specified [10]

Motorized linear potentiometer Ankle joint angle Integrated in wearable ankle robot [114]

Rotary potentiometer 53 Series,
Honeywell, Golden Valley, CA, USA). Ankle joint angle Exoskeleton ankle joint [43,166,167,170,

171]

Linear potentiometer Ankle joint angle Exoskeleton ankle joint [143,148]

linear and an angular potentiometer Ankle motion Not specified [147]

Rotary potentiometer Ankle joint angle Exoskeleton ankle joint [154,155]

Encoder

Optical encoder (E8P; US Digital,
Vancouver, WA, USA) Ankle joint angle Exoskeleton ankle joint [58]

2 × Absolute encoders (AMT203-V,
CUI Inc., Tualatin, OR, USA) Ankle joint angle Exoskeleton joints corresponding to

the talocrural and subtalar joints [38,62–64]

Digital optical encoder Ankle joint angle Exoskeleton ankle joint [68]

E4P and E5(US Digital Corp.,
Vancouver, WA, USA), for alpha and

beta exoskeleton
Ankle joint angle Exoskeleton ankle joint [69]

Absolute magnetic encoder (MAE3, US
Digital, Vancouver, WA, USA) Ankle joint angle Lateral side of each exoskeleton’s

ankle joint [73,202]

Digital optical encoders (E5, US Digital,
Vancouver, WA, USA) Ankle joint angle Exoskeleton joint shaft [72,181]

Angular sensor, PandAuto P3022,
Mexico, Mexico

Absolute angle of Link 1 in
exoskeleton Exoskeleton [86]
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Table 4. Cont.

Sensor Specific Sensor Details Measurement Location Reference

Optical incremental encoder (2048 CPR,
E6-2048-250-IE-S-H-D-3, US Digital,

Inc.)
Ankle joint angle Exoskeleton ankle joint [85]

RMB20IC13BC SSI-encoder
(RLS-Renishaw, Ljubljana, Slovenia) Ankle joint angle Exoskeleton ankle joint [42,100,178,185–

187]

Incremental optical encoder (US Digital
HUBDISK-2-2000-625-IE, module

EM1-2-2000-I, DI/O type, 5 pins, 5V)
Ankle joint angle Exoskeleton ankle joint [103,104,106,210]

Joint encoder (2000 CPT, HEDS-5600,
Broadcom, San Jose, CA, USA),

quadrature encoder-70
Ankle joint angle Lateral 3D-printed mount on

exoskeleton ankle joint [108–110]

Encoder E2 Ankle joint angle Exoskeleton ankle joint [188]

Incremental encoder Ankle joint angle Exoskeleton ankle joint [40,117,118,159,
160]

linear incremental encoders (Renishaw,
Chicago, IL, USA) Ankle joint angle Traction drive [161,162,165]

Optical 3 phase 4000 CPR Ankle joint angle Exoskeleton ankle joint [131]

Absolute rotary encoder 20 b Aksim,
RLS (Renishaw), Kemnda, Slovenia). Ankle joint angle Exoskeleton ankle joint [206,207]

Optical encoder (US Digital Inc.) Ankle joint angle Exoskeleton ankle joint [138,139]

Magnetic encoder (AN25-analog, KD
Mechatech Co., Korea) Ankle joint angle Exoskeleton ankle joint [173]

Rotary encoder Foot rotation Base of shank [142]

Absolute angular encoder Ankle joint angle Exoskeleton ankle joint [149–151]

Goniometer

Goniometer (5 kHz, 250 Hz Biometrics,
Newport, UK) Ankle joint angle Exoskeleton ankle joint [180]

Goniometers (500 Hz, Biometrics,
Newport, UK) Ankle joint angle Exoskeleton ankle joint [183]

Linear
displacement

sensor

100 Hz; SLS130, Penny & Giles,
Christchurch, Newport, UK Ankle joint angle Foot and shank sections of the

exoskeletons [97–99]

Strain sensor

Soft strain sensor Ankle and knee joint angle Knee and the ankle joints [87]

4 × strain gauges connected to a full
Wheatstone bridge

Human–exoskeleton interaction
torque

On the exoskeleton frame, near the
ankle joint [101,102]

4 × custom-built strain sensors Ankle joint angle Dorsal and medial side of the ankle [174,175]

Piezoresistive
sensor

3 × Piezoresistive sensors Gait phase
Foot section of the exoskeleton,

underneath the calcaneus, the first
metatarsal head, and the hallux.

[109]

Piezoresistive sensor Heel strike Underneath the calcaneus [110]

EMG

Surface electrodes, high-pass filtered at
20 Hz, rectified, low-pass filtered at 6

Hz
Muscle activity Gastrocnemius muscle [68]

2 × Wired, bipolar electrodes (Bagnoli
Desktop System, Delsys Inc., Boston,

MA, USA)
Muscle activity Medial and lateral aspects of the

soleus [202]

Wireless EMG system (Bagnoli, Delsys,
MA, USA)

Muscle activity of four lower-leg
muscles on the exoskeleton side

Medial gastrocnemius, lateral
gastrocnemius, soleus, and tibialis

anterior
[181]

1200 Hz, TeleMyo, Noraxon USA,
Scottsdale, AZ, USA Muscle activity Soleus and tibialis anterior [11]

1200 Hz, Konigsberg Instruments, Inc.,
Pasadena, CA, USA Muscle activity Soleus, medial gastrocnemius,

tibialis anterior
[49,89,190–

194,196–200,203]

Surface EMG (960 Hz SX230,
Biometrics, Newport, UK). Muscle activity of the paretic side Soleus [201,204]

Surface EMG Muscle activity Tibialis anterior and soleus muscles [185,186]
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Table 4. Cont.

Sensor Specific Sensor Details Measurement Location Reference

Not specified Muscle activity Tibialis anterior, gastrocnemius,
soleus, and the rectus femoris [116]

2 × Electromyography sensors (Delsys) Muscle activity Tibialis anterior and gastrocnemius [117]

EMG surface electrodes-1000 Hz;
SX230, Biometrics Muscle activity Soleus [133–135]

AxonMaster 13E500, Ottobock,
Germany Muscle activity Lower limb [206,207]

Surface EMG Muscle activity

Tibialis anterior, lateral
gastrocnemius, medial

gastrocnemius, peroneus longus,
and soleus

[205]

Despite their popularity in PAE technology development, insole FSR sensors,
footswitches, and pressure films are not without challenges and concerns, as they are
prone to cyclic ground impacts and unwanted readings imposed by the shoe [66]. Fur-
thermore, FSR sensors may detect the occurrence of a gait event, although they are not
capable of instantaneous estimation of the foot position and orientation throughout a
detected gait phase and assessment of exactly what part of the cycle the user is in at a
given moment [212]. These shortcomings of FSR sensors and instrumented foot-pressure
insoles have led to the development of a variety of sensor fusion strategies and alternative
solutions for precise gait event and phase detection in PAEs. For instance, Wang et al.,
2020 [57] used an insole-shaped pressure sensor to sense the plantar pressure from three
main pressure distribution regions of the sole: forefoot, toe, and heel, to identify gait events.
However, the authors found that gait events could not be estimated reliably enough using
the insole pressure sensor only, due to the noise and disturbance caused by the user’s
shoe. Therefore, they developed a novel sensor fusion strategy that integrated the data
collected using both the insole pressure sensor and an inertial measurement unit (IMU)
sensor attached to the shoe, to segment the gait cycles more accurately and efficiently. IMU
sensors consist of accelerometers, gyroscopes, and in some models, magnetometers. They
are portable, light-weight, low power, and body-mountable sensing devices that provide
multidimensional acceleration and angular velocity data [213]. However, to use their
remarkable capabilities one must first overcome the integration noise and offset voltage
drift issues of IMU sensors [214–216].

The idea of using IMU sensors in addition to FSR pressure sensors for gait event
detection in PAEs is not new. About a decade ago, Caltran et al., 2011 [152] integrated an
IMU-based position estimation algorithm with signals from a shoe sole instrumented with
three FSR sensors located at the heel, middle, and front of the foot, to achieve fusion-based
gait event recognition. To overcome the noise and drift issues, the authors implemented the
fusion of information from different sensors using a robust filter that corrected the position
estimation within a given range. In this fusion strategy, the position obtained from the
accelerometer was used as a redundant measurement with the purpose of correcting the
gyroscope-based estimated position. Moreover, the analysis of the FSRs along with the
absolute position allowed the precise identification of the events. In a more recent study,
Choi et al., 2018 [65] identified a number of issues with regard to using insole FSR sensors
for gait state detection. Firstly, FSR sensors are not durable, and repeated stress caused
by walking cycles can damage them. Secondly, the ideal positioning of the FSR sensors
in the shoe is subjective to individual gait patterns. Finally, the readings of the sensors
can be affected by external disturbances and forces applied to the shoe, including those
caused by the exoskeleton actuation. As a result, the authors replaced the FSR sensors
with a shank-mounted IMU in their next ankle exoskeleton prototype (Seo et al., 2019 [66]),
which provided enough information for an advanced recurrent neural network (RNN) gait
phase estimation algorithm to detect gait states continuously while protecting the sensors
from physical damage caused by repeated ground impacts.
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More complex phase-based control schemes rely on more than just gait event detection.
Real-time measurement of the user’s lower-leg kinematics provides very valuable informa-
tion for intelligent control of the PAEs. Potentiometers [10,43,59,102,114,143,147,148,154,
155,166,167,170,171] and encoders [38,40,42,58,62–64,68,69,72,73,85,86,100,103,104,106,108–
110,117,118,138,139,142,149–151,159–162,165,173,178,181,185–188,202,206,207,210] have
been broadly deployed in PAEs to measure the angular position and velocity of the ex-
oskeleton ankle joint. The acquired data then can be used for estimating the anatomical
ankle joint kinematics based on the mechanical relationship between the anatomical an-
kle and the exoskeleton hinge joint. In more recent prototypes, IMU sensors have also
been used to measure orientation and angular movement of the user’s foot, ankle, and
shank [64,119,127,152,211]. Strain sensors can be another option for measuring joint kine-
matics. Park et al., 2011 [174] and 2014 [175] presented a soft wearable robotic device that
used two custom-built strain sensors for measuring the ankle joint angle. The strain sensors
were calibrated based on the shank and foot orientation recorded by two nine-DoF IMU
sensors during an initial calibration phase. The IMU sensors were then removed, and the
joint kinematics were measured merely by the strain sensors. This strategy lowered the
power consumption significantly, since a single strain sensor consumes approximately
0.625 mW of power, while one IMU consumes approximately 36 mW. Lee et al., 2021 [64]
estimated the ankle kinematics using a combination of an encoder and two IMU sensors
placed on the shank and thigh linkages of the exoskeleton. In the PAE presented by Kwon
et al., 2019 [87], IMUs attached to the shanks measured the absolute shank angle while
soft strain sensors on the knee and the ankle joints measured relative joint angles. Arnez-
Paniagua et al., 2017 and 2018 [117,159] placed the IMU sensors on the shank and foot to
calculate the shank angle and the translational acceleration of the wearer.

Physical sensors provide very useful information regarding the mechanics of the gait
without the need for direct attachment to the user’s skin, since they can technically be
mounted on, or even embedded in, the exoskeleton physical frame to collect the required
information [47]. However, the measurements are highly affected by the dynamic human–
machine interaction between the user’s musculoskeletal system and the physical structure
of the exoskeleton. If this complex interaction is not well understood and modelled, the
sensor measurements will feed erroneous input to the control unit, which in turn will
cause the device to fail to accomplish its mission [203]. In addition, using mechanically
intrinsic measurements for control without direct access to the human nervous system has
some inherent defects. Mechanically intrinsic sensors in fact measure the outcomes of a
physical motion and not the initiators, so they are prone to mechanical delays. A delay in
receiving the information will result in the control system not being synchronized with the
user’s intention and can cause the user to fight the exoskeleton instead of being assisted
by it. Moreover, the control algorithm may not provide suitable assistance in the case
of any intended movement by the user that is not included in the predefined actuation
profiles [217].

2.1.2. Myoelectric-Based Control and Biosensors

One approach to overcoming the inadequacies of mechanically intrinsic sensors is
by accessing the user’s nervous system through surface electromyography (sEMG) and
using the sEMG signal as the input to myoelectric-based controllers. In the proportional-
myoelectric-based control strategy, the output of the actuator is set to be proportional
to the myoelectric activity of a predefined user’s muscle (e.g., soleus or tibialis ante-
rior) [11,49,68,89,189–201]. In this control method, the EMG signal collected from the target
muscle is processed to calculate the EMG linear envelopes. In traditional proportional
myoelectric control, the control signal is computed by multiplying the linear envelope
by a constant mapping gain. However, in adaptive gain myoelectric-based control [133–
135,202–205], the mapping gain is dynamically updated in real time based on changes in
EMG recordings and/or the ankle movement state [202,203] to promote the human-in-the-
loop assistance strategy. The myoelectric-based controllers exploit surface sEMG as a very
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effective method to directly and yet non-invasively connect to the user’s nervous system.
They are shown to be better synchronized with the user’s physiology compared to the
phase-based controllers, since the user has direct control over the timing and magnitude of
the actuation. Myoelectric-based control allows the exoskeleton wearer to actively initiate,
modify, and stop the actuation, and therefore may promote the user’s neuroplasticity. This
type of control does not require a reference value and therefore can potentially be more ro-
bust to environmental changes. This advantage makes myoelectric-based control a suitable
option for controlling autonomous wearable devices. Nevertheless, the standard sEMG
protocols must be in place when EMG biosensors are used as the main human–machine
interface measurement tool. A typical sEMG procedure usually begins with preparing
the electrode attachment site on the skin to reduce the skin impedance to less than 5 kΩ,
locating the target muscle, and correctly placing the electrode on top of the target muscle
belly [218]. The process then continues with acquiring EMG signals at a sample rate of no
less than 2000 Hz, and applying several signal amplification and filtering steps to the ac-
quired data to finally achieve a high signal-to-noise ratio (SNR), indicating that the acquired
data is suitable for use in controlling an exoskeleton [219]. Recent technology advancements
have led to the development of wireless sEMG sensors with integrated amplification and
filtering circuits that facilitate their deployment in wearable technologies [220].

Despite the valuable benefits of traditional EMG-based controllers mentioned above,
it is important to note that proportional-myoelectric-based and adaptive gain myoelectric-
based control algorithms produce control commands directly from electromyography
readings, while neglecting the highly nonlinear transformations that occur between neural
excitation of a muscle (EMG onsets) and the resultant mechanical joint torque generation.
Such algorithms do not take into account the nonlinear behavior of an individual muscle–
tendon unit or the complex dynamic co-activity of multiple muscles acting on the ankle joint.
Accurate estimates of the anatomical ankle joint torque using EMG signals requires data
to be acquired from at least the major, if not all, muscles spanning the joint, and requires
explicit modelling of the EMG-to-joint torque transformation. Employing a person-specific
EMG-driven neuromusculoskeletal modelling approach that estimates muscle forces from
electromyography signals through excitation–activation and activation–contraction dynam-
ics in recently developed control schemes has overcome the shortcomings of the traditional
myoelectric-based control algorithms. This type of control is known as neuromechanical-
model-based control [206,207] or myoelectric neuromuscular-model-based control and
contains a comprehensive sensor fusion procedure that effectively integrates the data
from a large set of wearable physical (angular kinematics) and physiological (EMG) sen-
sors to precisely estimate the person’s specific ankle dorsiflexion/plantar flexion torque.
Neuromechanical-model-based control can potentially revolutionize the communication
between the human and the machine and eventually meet the ultimate goals of PAEs as
intelligent user-adaptive robotic devices. However, it is important to note that developing
well-performing subject-specific neuromechanical-model-based control for driving a PAE
is not a trivial task. EMG-driven models not only inherit the typical electromyography
challenges (e.g., noise, crosstalk, skin and movement artifacts, etc.) but also rely on several
pre-measurements, parameter tuning, and calibration stages [221–223]. For instance, a
standard set of isometric tasks would be required for measuring maximum voluntary
contraction (MVC) values of the muscles included in model to be used in the EMG normal-
ization procedure. In addition, the absolute MVC value may vary for the same individual
from one day to another, due to alternations in environmental or physiological condi-
tions [224]. Furthermore, obtaining MVC values in patients with pathological conditions
can be very challenging and requires the development of condition-specific testing proto-
cols [225]. The neuromechanical modelling procedure also requires the development of a
musculoskeletal model of the user’s lower limb which is scaled to the user’s anthropometry
using static motion capture data. Then, a set of pre-defined effective calibration tasks must
be conducted for person-specific optimization of the activation dynamics coefficients and
muscle–tendon unit parameters [226,227], which in turn necessitates obtaining high-quality
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electromyography, motion analysis, and ground reaction force data during the calibration
procedure.

Parameters measured using a variety of human–machine interface sensors used in the
reviewed PAEs are shown in Table 3. Different sensor types employed for measuring each
parameter are grouped and listed together to demonstrate available sensor technologies for
measuring a particular parameter. To investigate the sensor types and their implementation
in PAEs for detecting the user’s locomotion intention and requirement more deeply, detailed
technical information including sensor specifications, measured parameters, and sensor
attachment locations is extracted from the reviewed publications and collated in Table 4.

2.2. Low-Level Control and Machine–Machine Sensors

The main purpose of a low-level controller in a PAE is to ensure that the command
generated by the high-level controller is precisely tracked by the actuation component.
The selection of the low-level control scheme is dependent on the actuation principle and
actuation mechanism. Choosing the proper actuator for a PAE can be very challenging
due to the specific requirements of these devices. PAEs demand high torques and speeds
to be able to provide the essential assistance at the ankle joint, given that the joint torque
at the anatomical ankle can reach up to 1.5 N·m/kg during normal walking [228]. The
main criteria to consider when choosing a suitable actuator for a PAE include: torque-to-
mass ratio, power-to-weight ratio, back-drivability, force bandwidth, efficiency, and force
density [229,230]. When development of a portable PAE is desired, portability, total weight,
and total size of the actuator and its corresponding power source would take a high priority
in selecting the actuator type, whereas a powerful and reliable actuation and power source
unit might be a better option for tethered rehabilitation PAEs. A further discussion on the
challenges in developing portable PAEs is provided in Section 3. Actuators used in PAEs
(Table 5) can be classified based on the employed actuation principle [231].

Pneumatic actuators are made of pneumatic cylinders or cylinder-like elements with
enclosed pistons that can be powered and driven using external air compressors. Four types
of pneumatic actuators were used in the reviewed PAEs: pneumatic artificial muscles [11,
38,49,50,62,63,88–93,95–99,131–135,146,174–176,179,190–201,203], pneumatic cylinders [43,
166–171], soft fabric actuators [156,232], and soft fiber braided bending actuators [211].
Pneumatic actuators are cheap and can provide high specific power. Nonetheless, the
nonlinearities associated with the compressibility factor of air make the pneumatic actuators
very difficult to model and control. Moreover, pneumatic actuators are not ideal choices
for portable devices due to the need for external air compressors which are usually very
heavy and bulky [233]. Portable air compressors have been used to actuate a number of
PAEs [43,131,146,166–171,174–176], though they do not last long enough to qualify as an
everyday usage option.

Electric actuators were the most popular actuators deployed in the reviewed PAEs.
They were powered by on-board battery packs [37,41,56,57,61,65–67,76–84,86,87,94,100–
102,112,113,115,118–120,126,127,130,144,145,156–160,172–175,177,184,187,189,234,235], DC
off-board power supply units [10,39,109,116,121,122,128,136,147–149], and AC off-board
power supply units [72,181]. Eight different types of electric actuation elements were
used in the reviewed articles: brushed DC motors [86,115,121,172], brushless DC mo-
tors [37,39,40,42,57,64–66,76–84,100–113,116–118,122–125,127,129,143,147–151,157–165,178,
184–187,210], servo DC motors [74,75,87,119,120,141,144,145,177], servo AC motors [53,
58,68–73,180–183,202,204], stepper motors [189], permanent magnetic synchronous mo-
tors [85], DC voice coil actuators [154,155], and hybrid drive systems [138–140,173]. Hybrid
drive systems, in fact, are a combination of both hydraulic and electric actuation mecha-
nisms and are often recognized as electrohydraulic actuators. Electrohydraulic actuators
eliminate the necessity for dedicated hydraulic pumps by replacing the pumps with an
electrical motor. In general, electric actuators can provide high speeds, high torques, high
force bandwidths, and fast response times. Conversely, they are heavy and suffer from a
rather low torque-to-mass ratio [158].
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Series elastic actuators (SEAs) are made of electrical motors combined with passive
elastic elements that store and release kinetic energy as elastic potential energy. Brushed DC
motors [67,234,235], brushless DC motors [10,54,55,59–61,130,136,152,153,188,207,236], and
DC servo motors [137] have been used as the electrical components in PAEs for constructing
a variety of SEAs, and springs [110,172,181,236] and tendon-like [149] elements have been
used as the passive actuation components. SEAs are designed to control force precisely
with spring end positioning [237]. Using SEAs in PAEs has enabled researchers to reduce
motor energy and power requirements [12]. SEAs also provide high force amplitudes and
force bandwidths [69]. As another solution, Allen, D. P. et al., 2021 [94] recently suggested
using dielectric elastomer actuators (DEAs) for actuating PAEs. DEAs are made of elas-
tomer films and stretchable electrodes. Typically, elastomer films are sandwiched between
stretchable electrodes to create stretchable capacitors. These capacitors can be charged
with a constant voltage to create electrostatic forces. DEAs are capable of mimicking the
function of artificial muscles and weigh less than pneumatic and electric actuators. How-
ever, DEAs require high voltages in the kilovolt range to create a considerable number of
electrostatic forces. Additionally, the precise control of DEAs can be very challenging, as
their performance can be hindered by the effects of viscoelasticity, the material behavior
that causes stress to increase with strain and strain rate. The viscoelastic relaxation effect
slows down the DEA strap’s motion over time, and consequently leads to unrepeatability
and uncertainty in the actuation unit function [94,238].

Table 5. Different types of actuators used in PAEs. Portability of the utilized actuation units is
assessed based on their size, weight, and energy source.

Actuation Principle Actuator Type Portability References

Pneumatic

Artificial Pneumatic Muscles (PAM)
Yes [131,146,174–176]

No [11,38,49,50,62,63,88–93,95–99,132–
135,142,179,190–201,203]

Pneumatic Cylinders Yes [43,166–171]

Exosuit Pneumatic Source (Soft Fabric
Actuator) No [156,232]

Soft Fiber Braided Bending Actuator No [211]

Electric

Brushed DC Motors
Yes [115,172]

No [86,121]

Brushless DC Motors

Yes
[37,39,40,42,57,65,66,76–84,100–

102,111–113,117,118,122,123,127,157–
160,178,184–187]

No [64,103–110,116,124,125,129,143,147–
151,161–165,210]

Servo DC Motors
Yes [74,75,87,119,120,144,145,177]

No [141]

Servo AC Motors No [53,58,68–73,180–183,202,204]

Stepper Motor No [189]

Permanent Magnetic Synchronous
Motors No [85]

Electromechanical DC Voice Coil
Actuator No [154,155]

Electrohydraulic Hybrid Drive System
Yes [173]

No [138–140]

Electric Motors (Type Not Specified)
Yes [56,114]

No [41,126,128]
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Table 5. Cont.

Actuation Principle Actuator Type Portability References

Series Elastic

Brushed DC Motors
Yes [234,235]

No [67]

Brushless DC Motors

Yes [130]

No [10,54,55,59–61,136,152,153,188,207]

Not Specified [236]

Servo DC Motors No [137]

Electric Motors (Type Not Specified)
Yes [206]

No [205]

Dielectric Elastomer Polyimide Fibers Yes [94]

PAEs are nonlinear systems highly subject to a variety of disturbances and uncer-
tainties from the environment and the human user. The complex dynamics of the system
and parameter perturbations make the control problem challenging in PAEs. Although a
number of reviewed articles utilized open-loop feed-forward algorithms for controlling
actuation units [94,158,184], the majority of the considered studies developed a form of feed-
back controller (Table 6). Classical proportional–integral–derivative (PID) feedback con-
trollers [39,53–56,67,68,76–79,82,86,101,102,108–110,114,119–121,136,138–140,154,155] were
the most frequently used control algorithms in the reviewed PAEs due to the simplicity of
real-time implementation [239]. Integral, proportional, and derivative feedback is based on
the past (I), present (P) and future (D) state of the system Three types of controllers have
been devised based on the integral, proportional, and derivative feedback controllers that
are widely used in PAEs: P [100,106,107,113,146,172,178,185–187,204], PI [85,100,105,178,
185–187], and PD [10,57,65,66,69–73,81,137,147–153,161–165,180,181,202,206,207]. Propor-
tional control cannot fully eliminate the disturbance effects. When used with the integral
term (I), the proportional–integral controllers can reject the constant disturbances, though
they still function poorly with regard to the occurrence of time-varying disturbances. Using
the derivative term may assist with this issue, but it also increases the noise sensitivity [44].
A practical solution is to combine an adaptive control algorithm with the PID controller
and develop an adaptive PID control [37,64,80,83,84], so that the proportional, integral, and
derivative gains can be adapted to the time-varying disturbances [239].

Table 6. Low-level control strategies used in PAEs.

Low-Level Control Scheme References

Classical PID

PID [39,53–56,67,68,76–79,82,86,101,102,108–
110,114,119–121,136,138–140,154,155]

P [100,106,107,113,146,172,178,185–187,204]

PI [85,100,105,178,185–187]

PD [10,57,65,66,69–73,81,137,147–153,161–
165,180,181,202,206,207]

Adaptive PID [37,64,80,83,84]

Iterative Learning [58,68–73,131,181,182,202]

Adaptive [40,68,159,160,189]

Sliding Mode [53]

Open-Loop Feed-Forward [94,158,184,206,207]

Pneumatic Actuation Controls

On-Off Solenoid Valves [146,156,166,167,170,171,173–175]

Pulse Width Modulation (PWM) with Solenoid
Valves [38,62,63,141,173,188]

Proportional Pressure Regulators with
Solenoid Valves

[11,43,49,50,88–93,95–99,132–
135,142,168,169,190–201,203]



Sensors 2022, 22, 2244 21 of 39

Adaptive control algorithms such as active disturbance rejection [40], model reference
adaptive control [159], adaptive proxy-based [160], and extremum-seeking control [189]
have also been used in more recent PAEs. An iterative learning algorithm is another practi-
cal option since it does not require an accurate model in order to
function [58,68–73,131,181,182,202]. Iterative learning is in fact an unsupervised machine
learning algorithm that improves the system performance by learning from previous exe-
cutions [240] when the system executes the same task multiple times. Therefore, it does not
rely on knowing the external disturbances beforehand. This type of control has been shown
to perform better than the classical PID controller for repetitive movements, e.g., walking
on a treadmill [68]. However, iterative learning might not be an ideal solution when the
user interacts with a dynamic environment with a varying gait style and pace. In [68], the
torque-tracking performances of nine different hybrid control strategies with various combi-
nations of PID, model-based, adaptive, and iterative learning controls were experimentally
compared when combined with phase-based, reflex-model-based, or myoelectric-based
high-level controllers. The results showed that the combination of proportional control
with damping injection (PD) and iterative learning resulted in the lowest errors for all
high-level controllers. Based on this finding, in [69,71–73,181,202] the authors combined a
proportional–derivative (PD) control with an iterative learning scheme to benefit from both
strategies. However, it is important to consider the fact the experimental protocol used
in [68] included collecting data from only one participant, during walking on a treadmill
at 1.25 m/s for one hundred steady-state steps. Therefore, the results may not hold for
walking in a dynamic environment with varying gait modes. In a recently developed
PAE, a sliding mode control algorithm was employed in combination with an extended
state observer (ESO) to benefit from the high level of robustness this algorithm offers [53].
Sliding mode control (SMC) is a nonlinear control algorithm based on the variable struc-
ture method. This means the state-feedback control law is not a continuous function of
time, rather it can switch between different continuous functions to alter the dynamics
of a nonlinear system based on the current state. The state-feedback control law is not a
continuous function of time. Instead, it can switch from one continuous structure to another
based on the current position in the state space. Hence, it does not need to be precise and
will not be sensitive to parameter variations [241].

With regard to pneumatic actuators and artificial muscles, the actuation unit is more
difficult to model and control compared to electric motors. According to the reviewed liter-
ature, there are three methods available for controlling pneumatic actuators using solenoid
valves: on–off switch solenoid valves [146,156,166,167,170,171,173–175], pulse width mod-
ulation (PWM) of the solenoid valves [38,62,63,141,173,188], and proportional pressure
regulators with solenoid valves [11,43,49,50,88–93,95–99,132–135,142,168,169,190–201,203].
In the proportional pressure regulation method, the air pressure inside the artificial muscles
is controlled based on a signal proportional to the plunger displacement. When the plunger
is not depressed, no air pressure is supplied to the artificial muscles, and when fully de-
pressed, the control system sets the artificial muscle pressure at the maximum level. In [175],
a combined low-level controller was created with a PWM controller, on/off solenoid valves,
and a model-based disturbance rejection controller. In [146,176], proportional position
controllers were combined with solenoid valves.

Machine–machine interface sensors in PAEs play a critical role in gathering the re-
quired information for the low-level controllers (Tables 7 and 8). Feedback controllers,
regardless of their algorithm, are required to continuously monitor the actuator’s output
and apply corrective strategies to ensure that the desired assistance will be transferred to the
device, and later delivered to the user. Torque sensors [37,76–85,104–106], strain gauges [68,
69,73,202], potentiometers, and load cells have been used to measure the actuator-generated
torque, while tension sensors [53,182], force sensors [57], load cells [39,58,69,108–110,122–
129,180,183,204], and strain gauges [72,113,181] have been used for measuring the tension
force in the force transmission parts of the exoskeletons, such as the cables and ropes.
Current sensors [39,85,161,162] and encoders [39,103,104,106,108,110–113,115,116,121,131,
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141,143,147–151,161,162,165,172,188,206,207,210,235,236] are widely used in a variety of
electric motors, whereas pressure sensors [62,63,146,156,158,166,171,173,176,232] play a
critical role in controlling pneumatic actuators. Parameters measured using a variety of
machine–machine interface sensors used in the reviewed PAEs are shown in Table 7. Differ-
ent sensor types employed for measuring each parameter are grouped and listed together
to demonstrate available sensor technologies for measuring a particular parameter. To
investigate the sensor types and their implementation in PAEs for measuring the actuation
unit outputs more deeply, detailed technical information including sensor specifications,
measured parameters, and sensor attachment locations was extracted from the reviewed
publications and collated in Table 8.

Table 7. Parameters measured by machine–machine interface sensors deployed in PAEs as reported
by the reviewed articles. Different sensor types employed for measuring each parameter and their
corresponding references are provided in the second column.

Measured Parameter Sensor

Cable/rope tension

Tension sensor [53,182]
force sensor [57]

load cell [39,58,69,108–110,122–129,180,183,204]
strain gauge [72,113,181]

Mechanical deflection Potentiometer [10,55,67,108,110,137,146,153,176]
encoder [206,207,236]

Pressure Pressure sensor [62,63,146,156,158,166,171,173,176,232]

Pneumatic muscle force Load cell
[11,38,49,50,62,63,88,89,91,96–99,131,134,190–194,196–200,203]

Real torque measured from actuator Torque sensor [85]

Reaction torque measured at the ankle Torque sensor [37,76–84,104–106]
linear potentiometer [234] strain gauges [68,69,73,202]

Forces delivered by exoskeleton Load cell [138,139]

Motor current Current sensor [39,85,161,162]

Motor position/velocity

Encoder
[39,55,57,59,67,68,72,108,110–113,115,116,121,141,143,147–

151,161,162,165,172,180,181,188,206,207,235]
Hall sensor and resolver [85]

Cable position Potentiometer [126]

Motor stroke Encoder [42,100,178,185–187]

Slave cylinder stroke Optical distance sensor [158]

Actuator lever/link angles Encoder [103,104,106,210]



Sensors 2022, 22, 2244 23 of 39

Table 8. Detailed technical information of different machine–machine interface sensors used in
the reviewed PAEs, including the specific sensor type, measured parameter, and sensor placement
location.

Sensor Specific Sensor Details Measurement Location Reference

Load cell

LC201 Series; OMEGA Engineering,
Stamford, CT, USA Cable tension At the ankle [58]

Inline tensile load cell: DCE-2500N,
LCM Systems, Newport, UK,250Hz LP

Filter
Actuation force

Attached to the end effector
moment arm (~ 10 cm)
through a series elastic

element

[180]

Load cells (500 Hz, LCM Systems Ltd.,
Newport, UK) Cable tension

In series with the force
transmission cables and series

elastic element
[183]

Tension load cell (CDFS-200,
BONGSHIN LOADCELL, Osan,

Korea)—one with each pneumatic
artificial muscle

Pneumatic muscle force Attached at the end of the
pneumatic muscle [38,62,63]

LC201, OMEGA Engineering Inc.,
Stamford, CT, USA) Bowden cable tension Alpha exoskeleton, Bowden

cable [69]

Tension load cell-(LC8150-375-1K
0–100 lbs, 1200Hz, OMEGA

Engineering, Stamford, CT, USA)
Pneumatic muscle force Between the pneumatic

muscle and the rod end
[11,49,50,88,89,96,190–

194,196–200,203]

Load cell (W2, A.L. Design, Buffalo,
NY, USA)

Tensile force of pneumatic
muscle Not specified [91]

100 Hz; 210 Series, Richmond
Industries Ltd., Reading, UK Pneumatic muscle force

Connected between the
orthoses and the pneumatic

muscles
[97–99]

Two in-line load cells (LSB200, FUTEK
Advanced Sensor Technology, Irving,

CA, USA)
Actuation force

Posterior side of the calf, near
the proximal part of the

orthosis.
[108–110]

Inline tensile load cell (DCE-2500N,
LCM Systems, Newport, UK) Actuation force Bowden cable [204]

LFT-13B, Shenzhen Ligent Sensor Tech
Co., Ltd., Shenzhen, China (inline load

cell)
Force applied on the struts Not specified [39]

2 × Load cell—one cantilevered load
cell (Phidgets 3135 50 kg Micro Load

Cell), second load cell (LCM300,
FUTEK Advanced Sensor Technology,

Irving, CA, USA)

Cable force at the top of the
Bowden cable and forces
delivered to the wearer

First one in pulley module,
second one at the ankle in

series with the cable
[122]

LTH300, FUTEK Advanced Sensor
Technology, Irving, CA, USA Bowden cable force In series with the Bowden

cable and the calf wrap [123–125,129]

LSB200, FUTEK Advanced Sensor
Technology Irving, CA, USA

Assistive force transmitted to
the hip joint via straps

Left side of exosuit in series
with the two vertical straps

and the waist belt
[124,129]

2 × LSB200, FUTEK Advanced Sensor
Technology, Irving, CA, USA

Delivered force at the
ankle—DF and PF forces

generated by Bowden cable
retractions

Integrated into the exosuit’s
textile loops of the calf wrap [126–128]

Not specified Pneumatic muscle force Between the NcPAM and the
bottom plate [131]

OMEGA Engineering, Stamford,
Connecticut Actuation kinetics In series with actuator [134]

Load cell (range +/− 220 N;
Transducer Techniques Inc.) Forces transmitted to wearer At the extremity of the slave

cylinder [138,139]

Strain gauge

Not specified Plantar flexion torque On heel lever [68,73]

4 ×strain gauges (MMF003129, Micro
Measurements, Wendell, NC, USA) in

a Wheatstone-bridge
Torque On ankle lever [69,202]

Wheatstone bridge consisting of four
strain gauges

(KFH-6-350-C1-11L1M2R, OMEGA
Engineering, Norwalk, CT, USA)

Assistive torque End of titanium ankle lever [72,181]

LCM200, FUTEK Advanced Sensor
Technology, Inc., Irvine, CA, USA Cable tension On transmission cable [113]
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Table 8. Cont.

Sensor Specific Sensor Details Measurement Location Reference

Encoder

Incremental encoder Motor position and velocity Motor [55]

AMT103-V, CUI Inc., OR, USA (2048
counts per revolution). Motor position and velocity Motor [57]

Optical encoder (E5 Optical Encoder,
US Digital, Vancouver, WA, USA) Motor pulley velocity Motor [180]

Not specified Motor position and velocity Motor [59–61]

Incremental encoder with 1024 count
per turn Motor position Motor [67]

Digital optical encoders Motor position Motor [68]

Digital optical encoders (E5, US Digital,
Vancouver, WA, USA) Motor position Motor shaft [72,181]

Incremental encoder
(SCH24-200-D-03-64-3-B, Scancon,

Allerød, Danmark)
Motor stroke Motor axis [42,100,178,185–187]

Absolute magnetic encoder (AS5048A,
SPI type, 6pins, 5V, a4-bit) Torque angle/lever arm angle In actuator [103,104,106,210]

Motor-shaft encoder Motor position and velocity Motor [108,110]

Encoder E1 Motor position Motor [188]

500-Count quadrature incremental
optical encoders (model: HEDL 5540,

Maxon Motors, Sachseln, CH).
Motor position Motor [111,112]

14-Bit magnetic on-axis relative
encoder (AS5047P and AS5047D, AMS

AG, Premstaetten, AT)
Motor position Motor [113]

Encoder (ENX16 EASY 500IMP) Motor position In actuator module [115,116]

Motor Encoder Motor position and velocity Motor [39,143,147,148]

Quadrature encoders (2×195 RPM and
2×60 RPM HD premium planetary

gearheads)
Motor position and velocity Motor [121]

Rotary encoder—Gurley R119 rotary
encoders (Gurley, Troy, NY) Commutate the motor Mounted coaxially with the

motors [161,162,165]

Encoder FPC optical 3 phase 4000 CPR Not specified Inside the thrust bearing [131]

Absolute angle Hall encoder (MHM, IC
Haus, Germany) Motor position Motor [206,207]

Angle encoder Motor position and velocity Motor [235]

Absolute rotary encoder 20 b AksIM,
RLS (Renishaw), Kemnda, Slovenia). Spring deflection Not specified [206,207]

Encoder (5540 HEDL) Motor position Motor [172]

2 × Rotary encoder and linear encoder Spring deflection In actuator [236]

Encoder with servo motor Actual position sensing of
actuator Motor [141]

Digital incremental motor encoder Determine position of lead
screw Not Specified [149–151]

Hall sensors and resolver Not specified Motor position Motor [85]

Potentiometer

Linear potentiometer Spring deflection Motor housing [55]

Linear potentiometer (50 mm travel
length) Spring deflection

Assembled to stainless steel
pipe with a 3D-printed plastic

housing.
[67]

Linear potentiometer Spring deflection Top of spring module [10,108,110]

Linear potentiometer (P3 America Inc.,
San Diego, CA, USA) Cable position With actuator [126]

Linear potentiometer Joint torque Mounted in parallel with
series spring [234]

Softpot linear position sensor Transpose of spring Not specified [137]

Linear potentiometer Deflection of links Upper part of actuator link [146,176]

Linear sliding potentiometer Spring deflection Fixed in the two-support
platforms of the springs. [153]
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Table 8. Cont.

Sensor Specific Sensor Details Measurement Location Reference

Tension sensor
Not specified Cable tension Bowden cable [53]

Not specified Cable tension At the end of Bowden cable [182]

Pressure sensor

TST-20.0, TIVAL Sensors GmbH,
Wuppertal, Germany Pressure of pneumatic muscle Pneumatic muscle [62,63]

ASDXAVX 100PGAA5, Honeywell
Sensing and Productivity Solutions,

Charlotte, NC, USA
Actuator pressure Actuator [156,232]

Pressure sensors
(PX3AN1BH667PSAAX, Honeywell)

Measure the pressure in each
hydraulic transmission Not specified [158]

Tethered pressure transducer: 4100
series, American Sensor Technology;

Mt. Olive, NJ, USA)

Assistive torque-pressure in
actuator In actuator chamber [166]

Pressure transducers
(AST4000A00150P3B1000, 150 psig and

AST4000A00100P3B0000, 100 psig,
American Sensor Technologies, Inc,

Mount Olive, NJ, USA)

Compressed CO2 pressure on
both sides of the actuator Actuator [171]

5V G1/4 0–1.2 MPa, China Senses the pressure in the
cylinder chamber system

With the control hardware,
attached to the waist of user [173]

Not specified Not specified Upper end of actuator [146,176]

Torque sensor

TRT-500, Transducer Techniques,
Temecula, CA, USA

Reaction torque provided by
the motors through the ankle

pulley

Placed in line with each
exoskeleton ankle

joint/mounted on the insole
[37,76–84]

Torque sensor (TPM 004+, Wittenstein,
Inc., Igersheim, Germany) Actuator torque output Installed between the actuator

case and the main structure [85]

DRBK, ETH Messtechnik, 200 Nm,
0.0122 Nm resolution Actuator torque output Attached to test setup [104–106]

Current sensor

Not specified Active current Motor [85]

Not specified Motor current Motor [39]

Analog current sensor (Interactive
Motion Technologies board employing

TI/Burr-Brown 1NA117P)

Motor current to estimate
motor torque Motor [161,162]

Distance sensor Optical sensor (GP2Y0A51SK0F, Sharp) Slave cylinder stroke Not specified [158]

Force sensor ZZ210-013, Zhizhan Measurement and
Control, Shanghai, China Cable force Heel cable and forefoot cable [57]

3. Towards Fully Autonomous Portable PAEs

Tethered PAEs featured in more than 56% of the reviewed articles. However, apart
from a small number of articles aimed at developing ankle robots to be utilized explic-
itly in rehabilitation facilities for gait training purposes in stroke survivors [162–165] or
those with incomplete spinal cord injuries [50], the rest of the tethered ankle exoskeletons
were developed for research purposes with an ultimate goal of fabricating a portable au-
tonomous device that can be worn on the ankle joint during daily routines. Such tethered
exoskeletons should be considered as strong research tools that have significantly enhanced
our knowledge of neuromechanical control of human walking [88], the biomechanics of
human–machine interaction between the user and the robotic device [134,142], and device
controllability and robustness against gait mode changes [96,132–134]. Large off-board
actuators with wide torque ranges, along with standard laboratory-based motion analy-
sis equipment [96,132–134], have enabled researchers to study different aspects of PAE
technology development in a controlled laboratory environment without actuation torque
limitations. However, despite their remarkable contribution to prompting rapid prototyp-
ing and design iteration, tethered ankle robots cannot be used as wearable self-contained
devices during the activities of daily living while still in their current state of development.

In moving towards full portability, there are many aspects to be considered in devel-
oping PAEs. Current PAEs still have substantial added mass, limited mechanical power,
and tethered or limited energy supplies, while a wearable device is expected to be light,
comfortable to wear, and have a power source that lasts through the day [111]. Choosing
the right actuation unit and its corresponding power source is one of the major challenges
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facing the development of portable PAEs, as there are trade-offs between power- and
torque-to-weight ratios, back-drivability, force bandwidth, efficiency, and portability [9].
Light and portable actuators are not usually capable of delivering the torques required
for supporting the ankle joint during normal gait (approximately up to 1.5 N·m/kg [228]),
whereas stronger motors consume a larger amount of power and need bulky and heavy
battery packs to function throughout the day [242]. Coupling the actuators with gearboxes
to increase the torque-to-weight ratios [158] or elastic components that can slowly store
some part of the gait energy and quickly release it during push-off has been shown to help
with the power-source problem to some extent [100,115,148], though future advancements
in chargeable battery technologies [243] are also expected to cause significant modifications
in the next generation of PAEs. Optimizing the physical structure of the exoskeleton also
plays a very critical role in decreasing the total weight of the device, lowering power
consumption, and of course improving the user’s comfort and acceptance. The ideal ex-
oskeleton must reliably transfer the generated actuation to the anatomical ankle, be durable
and sturdy yet light and comfortable to wear, and not physically interfere with the user’s
movements. To meet these criteria, researchers have been exploring a variety of options
from soft robots to different engineering materials and manufacturing methods [1].

Role of Wearable Sensors in Developing Autonomous Portable Ankle Exoskeletons

Portable ankle exoskeletons would not be possible without wearable sensors that en-
able researchers to make the required measurements without being restricted to laboratory-
based equipment. Deploying insole pressure sensors and footswitches as well as poten-
tiometers and encoders in early PAEs was one of the initial efforts towards freedom from
laboratory-based measurement equipment. Blaya et al., 2004 [10] used an Ultraflex system
as a replacement for force platforms in clinical gait laboratories. This system was instru-
mented using six capacitive force transducers with 25 mm square area and less than 3
mm thickness, placed on the bottom of the foot. Each sensor could detect up to 1000 N
with a 2.5 N resolution and a scanning frequency of 125 Hz. Ultraflex provided the input
for the adaptive impedance control, while a single footswitch was placed in the heel of a
shoe worn with the exoskeleton to detect the heel strike approximately 30 ms earlier than
the Ultraflex force sensors. In this prototype, a potentiometer was used for measuring
the ankle joint plantar flexion/dorsiflexion angle without the need for a motion capture
system. A year later, Ferris et al., 2005 [11] used surface EMG signals from the soleus and
tibialis anterior muscles to control artificial pneumatic muscles that actuated a robotic ankle
exoskeleton based on a proportional-myoelectric-based control scheme. This study proved
the feasibility of developing a lightweight PAE that can be controlled using EMG electrodes
only. Myoelectric-based controllers were demonstrated to make the timing and amplitude
of actuation more aligned with the user’s intention compared to phase-based controllers,
as they enable direct access to the user’s nervous system [36].

The selection of wearable sensors depends strongly on the control strategy and its
complexity level. For instance, simple phase-based controllers merely need a gait event
detection system and an angular movement measurement unit to gather their required
information. Such information can be collected from physical sensors such as force sensors,
potentiometers, or IMUs simply attached to the device rather than to the user’s skin [36],
which makes the exoskeleton more wearable and user-friendly. Therefore, phase-based
control algorithms might be a suitable option for ankle exoskeletons that are specifically
made for augmenting the ankle power during walking and running in healthy users. In
contrast, metabolic-rate-based control schemes, which rely on laboratory-based respiratory
measurements to optimize their control parameters, cannot be considered when developing
portable autonomous exoskeletons despite their sophisticated human-in-the-loop (HIL)
optimization method [70,96,132]. Instead, other wearable biosensors such as surface EMG
electrodes, pulse oximetry units, and/or low-profile ultrasonography probes may be used
in future exoskeleton technologies for continuous monitoring of the user’s physiological
state and for optimizing the assistance provided by the robotic device [244].
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An ideal control strategy for a portable ankle exoskeleton should not need repeated
time-consuming laboratory-based calibration and parameter tuning processes and is ex-
pected to show robust, adaptive behavior in response to changes in both the state of the
user and the environment [183]. Biosensors such as surface EMG electrodes play a critical
role in effectively detecting changes in the user’s state and/or intention. In addition to
electromyography (EMG), other techniques such as mechanomyography (MMG), which
measures the sound of the muscles, sonomyography (SMG), which measures muscle thick-
ness [245,246], and ultrasound imaging [247] have been previously explored for controlling
robotic prostheses and may soon be investigated for improving biosensors and movement
prediction technologies in PAEs. Another near-future advancement in PAEs is expected to
involve employing brain–machine interface (BMI) technologies using electroencephalogra-
phy techniques (EEG) [248] or neural implants to quickly and accurately detect the user’s
locomotion intention and generate the appropriate actuation command. Such significant
breakthroughs will substantially change the face of current PAEs [52]. Therefore, new
technologies such as artificial intelligence (AI), along with biosignal processing and neu-
ral technology, will be extremely important for the development of future exoskeleton
research [249]. Thanks to corrective and predictive machine learning algorithms [216,250],
IMU sensors seem to be a very promising replacement for a wide range of physical sensors
such as FSRs, pressure insoles, footswitches, potentiometers, and encoders, as they are
shown to be capable of both detecting the gait phases and measuring the limb orienta-
tion and movement. The magnetometer and accelerometer components in IMU sensors
might also become useful in the near future for evaluating muscle activities without EMG
electrodes [251]. Using a limited number of sensors that can measure several parameters
has many benefits including decreasing the total weight, lowering the amount of required
signal preparation and signal processing, reducing power consumption, decreasing the
noise sensitivity, and finally promoting the wearability and portability of the device.

As mentioned above, the ideal control algorithm for PAE must be adaptive to locomo-
tion environment changes. Although the application of environment–machine interface
sensors was not observed in the reviewed articles, we expect that terrain recognition and
obstacle detection technologies will soon be integrated into the next generation of PAEs,
similar to the currently available technologies in robotic prostheses [52,252]. For instance,
Fan et al., 2011 [253] used a laser distance sensor in combination with an IMU to identify the
movement state and upcoming terrain. The placement of the IMU sensor was investigated
for both shank and waist. The results revealed a 98% accuracy in terrain recognition for the
waist placement. A laser in combination with an IMU at the waist was also used by Liu
et al., 2016 [254] to recognize the terrain. Terrain detection accuracy was above 98%, and
the system succeeded in informing the control system about the upcoming terrain change
more than 0.5 s before the time required for the control unit to switch mode and adapt to
the new terrain. In this study, it was shown that employing environment–machine sensors
for terrain recognition also improved the accuracy and the reliability in detecting the user’s
intended locomotion mode. To determine the foot orientation with respect to the ground,
Scandaroli et al., 2009 [255] placed four infrared sensors beneath the foot. Their proposed
system was able to detect objects located up to 0.3 m away. Krausz et al., 2015 [256] devel-
oped a depth-sensing system using a Microsoft Kinect. The system was shown to be able to
detect the presence of stairs with an accuracy of 98.8% while also accurately estimating the
staircase, the distance to the stairs, the angle of intersection, the number of steps, the stair
height, and the stair depth. Diaz et al., 2018 [257] mounted a camera on the shank to collect
the visual data required for a terrain recognition system. The system achieved an accuracy
of 86% in classifying the terrain into six different categories. The results proved the system
to be capable of measuring the inclination angle of the terrain.

Obstacle detection technologies used in vehicles [258] and mobile robots [259] are
gaining more attention from researchers for potential applications in assistive technolo-
gies [252]. Several techniques can be used for this purpose, including ultrasonic sensors
(sonar), laser range scanners (LRS), and computer vision (CV) techniques [252]. Costa et al.,
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2012 [260] employed a stereo imaging technique for developing an obstacle detection and
avoidance module to assist visually impaired people while navigating. The required data
were fused from an RFID reader placed on the cane (connected via Bluetooth) and a chest-
mounted camera, as well as a GPS and Wi-Fi antennas which were built-in components of
the mobile computer unit. Similarly, Vlaminck et al., 2013 [261] developed a system that
aimed to assist visually impaired people in indoor environment navigation by detecting
walls, doors, and stairs, as well as loose obstacles and bumpy parts of the floor, using a
3D-imaging Kinect sensor. The application of lidar and stereo for obstacle detection in both
structured (e.g., indoor, road) and unstructured (e.g., off-road, grassy terrain) environments
was explored by Kuthirummal et al., 2011 [262]. The provided system aimed to detect scene
regions that were traversable and safe for a robot to go to from its current position. The
smart shoe presented in a very recent study by Wu et al., 2021 [263] is capable of detecting
obstacles using an ultrasonic sensor and an accelerometer that measures the 3D acceleration
of the foot to detect obstacles. The system includes a gait events recognition algorithm that
detects the motion state of feet. When the foot is in the stance phase, the obstacle detection
algorithm is activated. This smart shoe also has a fall detection system, and in the case
of a fall incident it will automatically connect to a mobile phone and call the emergency
contacts.

Technology advancements in sensor fabrication [24] will significantly enhance the
wearability of sensor systems in future ankle exoskeletons. Recently developed technolo-
gies in the field of microfabrication, microelectronics, flexible electronics, and nanomaterials
combined with wireless communication, Internet of Things (IoT), and signal processing
advancements have led to the development of textile-based [264–266] and skin-like (epider-
mal) [266,267] wearable sensors. Nanotechnology and nanomaterials in particular have
facilitated the rapid production of highly sensitive wearable sensors for a wide range of
applications [268]. These innovations now make it possible to equip future intelligent ankle
exoskeletons with compact, light, low-cost, and customizable multifunctional sensors that
can be simply mounted in any desired location, from the user’s skin to fabric and flexible
materials used in the exoskeleton structure, in order to collect the target signal from the hu-
man body, the device, and the environment [269]. This will significantly improve how the
smart exoskeleton communicates with the human user and their locomotion surroundings.
The incorporation of temperature, humidity, pressure, and touch sensors [270,271] could
considerably improve the comfort of wearing the PAE and the alignment of the device with
the user’s movement intention and requirement. The deployment of such technologies in
recent smart prostheses [272] indicates their near-future applications in exoskeletons and
assistive devices.

4. Conclusions

Wearable sensor technology has played in a significant role in the development of
PAEs throughout the past two decades. Human–machine sensors in both physical and
biosensor forms act as the communication media between the robotic device and the human
user. They assess the user’s locomotion phase, body position, and orientation, as well as
the muscle activities, to inform the device about the user’s movement intention and power
requirement, either to augment the user’s performance or to assist them to overcome their
locomotion limitations and regain their normal walking pattern. Machine-machine interface
sensors also continuously monitor the output of the actuation unit in terms of pressure,
current, and motor position, as well as generated torque and force, and inform the low-level
control schemes of any errors and disturbances to ensure the actuation unit is precisely
following the high-level control commands. The advancement in control algorithms has
considerably affected the deployment and application of human–machine sensors. The
early generations of PAEs simply relied on FSR on/off switches to detect a gait event and
impose a pre-assumed joint torque or joint angle profile to the user, or they used a constant
ratio to relate the EMG activity of a single muscle to the ankle joint torque. Nowadays,
high-level control schemes have evolved into sophisticated algorithms that take a broad
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range of data acquired from several sources by a variety of wearable sensors such as IMUs,
force sensors, encoders, potentiometers, and wireless EMG biosensors that come with
built-in signal processing circuits, and employ a combination of advanced sensor fusion,
human-in-the-loop optimization, and assist-as-needed strategies to eventually develop
PAEs that people can wear and use as an extension of their own body.

Despite the significant advancements in the development of PAEs, they have not yet
been widely adopted by end users. Currently available technologies are still far from
providing a fully portable autonomous device that can be worn on the ankle joint on a
daily basis and can intelligently adapt its behavior to continuous changes in the user’s
locomotion intention and requirement, as well as changes in the surrounding environment
and objects. Such advancements require further developments in obtaining information
from both the user and the locomotion environment. Rapid technology advancements in
biosignal processing are expected to provide new opportunities for exploiting EMG and
EEG signals for involving brain–machine interfaces in exoskeleton control systems and
improving understanding of the user’s intention and neuromuscular function. This will also
significantly improve our current knowledge of how the user’s neuromuscular system alters
when interacting with an active intelligent wearable device. Environment–machine sensors
are needed for inclusion in future generations of ankle exoskeletons to inform the control
hierarchy of terrain changes, obstacles, and tripping hazards. Advancements in machine
learning and artificial intelligence will soon modify the way we use the data acquired
from physical sensors, enabling extraction of more features with higher accuracy. Finally,
technology advancements in sensor fabrication can potentially enhance the wearability
of PAEs by providing lightweight, inexpensive, and multifunctional textile-based and
skin-like sensor systems, and it is suggested that these should be considered in developing
future generations of PAEs.
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