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Abstract: In the fault classification process, filter methods that sequentially remove unnecessary
features have long been studied. However, the existing filter methods do not have guidelines on
which, and how many, features are needed. This study developed a multi-filter clustering fusion
(MFCF) technique, to effectively and efficiently select features. In the MFCF process, a multi-filter
method combining existing filter methods is first applied for feature clustering; then, key features are
automatically selected. The union of key features is utilized to find all potentially important features,
and an exhaustive search is used to obtain the best combination of selected features to maximize the
accuracy of the classification model. In the rotating machinery examples, fault classification models
using MFCF were generated to classify normal and abnormal conditions of rotational machinery.
The obtained results demonstrated that classification models using MFCF provide good accuracy,
efficiency, and robustness in the fault classification of rotational machinery.

Keywords: feature selection; rotating machinery; fault classification; fusion; multi-filter; clustering

1. Introduction

Rotating machinery plays a crucial role in the systems and processes of industrial
applications, such as manufacturing systems, transportation, home appliances, and power
systems [1,2]. Since rotating machinery generally operates continuously at high speeds and
with high power [3], interruption of the related processes could threaten safety and result
in massive economic loss [4,5]. Therefore, fault diagnosis of rotating machinery is essential
to prevent critical failures that would cause a system to shut down.

The fault diagnosis of rotating machine is performed by detecting outliers that may
occur due to faults in the monitored data. Traditional fault detection methods have mainly
used thresholds set based on domain knowledge. However, recently, many fault detection
methods have detected faults by learning monitored data, using machine learning/deep
learning technology. Classifying normal or abnormal conditions is performed with binary
classification models, and multi-class classification models are used to detect different
combinations of faults. These fault classification models help people make decisions and
predict the occurrence of more severe failures in parts or machines in advance.

The most detectable signs of failures in rotating machinery are vibrations and noise
from abnormal conditions. However, since noise generated under abnormal conditions
is often difficult to distinguish from noise generated in external environments, vibration
data are more frequently used to diagnose failures in rotating machinery. In particular,
accelerometers are frequently used to measure vibration data, and various fault diagnostic
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methods have been developed using vibration information [6,7]. Vibration data of ro-
tating machinery measured over time are further amplified by periodic operation of the
machinery at certain frequencies. Thus, the characteristics (features) of signals, in both time
and frequency domains, can be important measurements to distinguish between normal
and abnormal conditions of rotating machinery. Such features are used to create fault
classification models that distinguish between normal and abnormal states or different
failure modes.

Selection of appropriate features (key to successfully building classification models)
has been studied in recent years [8,9]. When extracting features for use as input features for
classification models, it is important to use features that are highly relevant to classification,
and to eliminate redundant or unnecessary features [10]. This is because learning from
the data to generate a model takes a long time, and the complexity of the model increases;
but the accuracy can decrease as the number of unnecessary features increases. Therefore,
research on effective and accurate feature selection needs to be carried out to improve the
efficiency and accuracy of fault classification models [11,12].

Various feature selection methods have been proposed for fault diagnosis in rotating
machinery. In particular, since the number and type of features derived from both time
and frequency domains can vary, feature selection is very important for obtaining accurate
classification models. Therefore, many studies have recently been conducted to optimize
the combination of features with the highest classification accuracy in feature selection.
An optimal combination of features has been derived using filter methods such as relief,
chi-square, and information gain [13], or by using Pareto optimization [14] or a binary
particle swarm optimization method [15] after using a filter method. A wrapper-based
embedded method, using a support vector machine (SVM) [16], and a method of deriving
optimal features using the sensitivity of features [17] or a genetic algorithm [18] have been
proposed. Although these methods have shown results in improving classification accuracy,
each method has been applied to specific classification problems, which is insufficient to
show the universality and robustness of the proposed methods.

Some studies have proposed effective fault diagnosis methods with several compo-
nents, by extracting several features based on deep learning models using multivariate
sampling data [19]. However, because these methods use a backpropagation training
process, they is time-consuming and can have unsatisfactory performance when dealing
with high-dimensional data. In another study, a universal domain adaptation method was
proposed, to enhance the generalization ability of a data-driven model for fault diagno-
sis [20]. The fault diagnosis results of roller bearings showed that the proposed method
yielded the best performance compared with other neural network methods. However, the
study assumed that the balanced data were available in the training process. Thus, it might
not be applicable to unbalanced data, which often occur in real industry applications.

This study proposes a fault classification model for rotating machinery, which is
combined with a notable feature selection method, as follows: (1) Multi-filter clustering
fusion (MFCF) was developed to provide an adaptive threshold capable of determining the
total number of relevant features through hierarchical clustering. (2) An exhaustive search
of the wrapper method was used to find the best feature sets maximizing classification
accuracy. (2) The performance of the proposed method was validated in four rotating
machinery cases with different operating processes, fault modes, and numbers of datasets.
(3) The selected features were used to train and test several classifiers, including the SVM, k-
nearest neighbors (KNN), and multilayer perceptron (MLP), to ensure that the final selected
features are compatible with all classifiers. Finally, the proposed method was shown to
have high accuracy, robustness, efficiency, and generalizability in fault classification for
rotating machinery through multi-domain feature extraction and multi-filter fusion.
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2. Related Methods
2.1. Feature Selection Methods

Feature selection can be divided into wrapper, hybrid, and embedded methods. Filter
methods include methods determining the ranks of features by evaluating close rela-
tionships or similarity of features, based on information theory and statistics [17]. They
evaluate the relative importance of features, but there is no absolute criterion for selecting
them [21], so it is difficult to distinguish between necessary and unnecessary features [22].
Users need to arbitrarily determine the number of features, or select features according
to a user-specified percentage [10], making it difficult to clearly conclude that certain fil-
ter methods are superior to others [23]. Therefore, while filter methods can efficiently
remove unnecessary features based on importance, there is no guideline for selecting
important features.

The most commonly used filter methods include chi-square (CS), the extra trees
classifier (ETC), and a correlation matrix (CM). The CS method provides a ranking of
features based on an independence test of two events using χ2 values. The ETC uses
entropy values to measure the probability of the same class by aggregating the learning
ensemble, and a CM measures the similarity between two features, with a final coefficient
of the degree of linear correlation, as shown in Equations (1)–(3):

χ2 =
(Oi − Ei)

2

Ei
(1)

where Oi is the observed feature data, and Ei is the expected feature data,

Entropy (E) = −∑c
i=1 pi log2(pi) (2)

where c is the number of group labels, and pi is the proportion of feature values associated
with group i, and

r =
∑
(
Xi − X

)(
Yi −Y

)√
∑
(
Xi − X

)2
√

∑
(
Yi −Y

)2
(3)

where Xi and Yi are feature observation data, and X and Y are the mean values of the two
features, X and Y.

However, each method has different measures to evaluate feature importance, so
they can yield different rankings of features. Therefore, for effective and robust feature
selection, the method of extracting and combining key features from each feature selection
method with different characteristics becomes an important issue, in finally deriving the
best feature set.

The wrapper method determines the types and number of features based on the
accuracy of classification models. All possible feature combinations are used as input
features in the classification model, so the feature combination with the highest classification
accuracy is chosen as the final feature set [4]. The wrapper method, unlike the filter method,
provides an optimal combination of features, but requires a long computational time,
because it generates a classification model for every combination of features [24,25]. Among
the wrapper methods, an exhaustive search enables accurate and robust feature selection
by simultaneously evaluating all combinations of features, instead of gradually adding
or removing features. Exhaustive search is inefficient, compared to the other methods
if all existing features are used without removing unimportant features. However, if
the filter method is applied first, and the number of key features derived from the filter
method is small, then an exhaustive search can find optimum features more effectively and
efficiently. The hybrid method is a combination of filter and wrapper methods, to improve
the shortcomings in each one. For example, after unnecessary features are removed using
the filter method, the wrapper method is applied to only find the best feature set from the
reduced features, resulting in a significant reduction in computational time [26,27]. While
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hybrid methods reduce the computational time needed with wrapper methods, they still
need to select the appropriate number of features in the filter process.

2.2. Classifiers

Various classifiers can be applied to build classification models for the diagnostic
needs of rotating machinery [28–30]. MLP with a neural network structure, the SVM
with a decision boundary, and the distance-based KNN model are widely used classifiers.
Since classifiers may have very different performances, depending on their characteristics,
this study attempts to verify performance through a combination of the proposed feature
selection methods, with the above three representative classifiers.

The SVM solves linear and nonlinear classification problems by finding hyperplanes
that maximize the distance between groups, by learning from training data and determining
the kernel type, such as linear, polynomial, or radial basal plane [31,32]. The SVM classifier
is formulated as follows:

f (x) = wT∅(x) + b (4)

where w is the vector of the weight, b is the bias for optimizing the hyperplane, and ∅(x) is
the mapping function of the kernel. The vector of weight w can be known by minimizing it:

Minimize wTw + C∑
i

ξi (5)

where C is the penalty hyperparameter, and ξi is a slack variable for i = 1, 2, . . . , N, with N
as the number of data samples.

KNN is a type of supervised learning that can be used as a task in classification
and regression. It performs classification by measuring similarity (e.g., distance functions)
between data points [32]. Euclidean distance is often used as the distance metric, as follows:

Dist(X, Y) =

√√√√√ n

∑
i=1

(xi − yi)
2 (6)

where xi and yi are the coordinate values of the sample for X and Y as two data points, and
n is the dimension of the data points. KNN attempts to find the distance between the query
and all sample data. After that, it specifies the number of samples (k) closest to the query,
and then, the most frequent label is selected.

MLP is an algorithm in machine learning that works with feed-forward neural net-
works. It has a structure consisting of an input layer, multiple hidden layers, and an output
layer. MLP is famous for being able to solve complex problems, because of its outstanding
performance in building classifications [33,34]. In simple terms, the MLP output function is
expressed as

y = g
(

WTx + b
)

(7)

where x is the input variable in vector form, y is the output; g(·) is the activation function
of the nodes, W is the weight matrix linked to the input layer and hidden layer, and b
is the bias vector of hidden layer nodes. Each component of the input layer, multiple
hidden layers, and output layers can be assigned according to the level of complexity in
the problem.

3. Proposed Method

Each filter method described in Section 2.1 can select different features depending on
the type of features and the characteristics of the data, so it is important to systematically
and effectively select the most important features that affect classification performance. The
proposed MFCF feature selection focuses on how to cut off unnecessary features adaptively
from the candidate feature sets and find the best feature combination in an efficient and
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systematic way. For this, the raw data are first used to extract features from time and
frequency domains through fast Fourier transform (FFT), as shown in Figure 1.

Figure 1. Flow chart of the proposed method.

MFCF is used to extract candidate feature sets using multiple filter methods and feature
clustering, and an exhaustive search is used to select the optimal feature set that maximizes
classification accuracy. The selected features are used to generate fault classification models
(such as SVM, KNN, and MLP) where hyperparameters of the three models are optimized
using a grid search. The performance of the proposed method is evaluated in terms
of accuracy, efficiency, stability, and robustness. Accuracy and efficiency are evaluated
using measures such as the percentage of the correct predictions and computational time,
respectively. Stability is estimated from changes in both accuracy and efficiency when
the method is applied to training and testing the data. Robustness is measured through
variation of accuracy values, through cross validation.

3.1. Fusion Multi-Filter Feature Selection

Before MFCF is applied, all features from the time and frequency domains first need
to be defined. In order to determine the statistical characteristics of the measured data in
the time and frequency domains, 12 features were extracted from each domain, including
absolute mean (abs_mean), peak-to-peak (ptp), kurtosis (kur), skewness (skew), root mean
square (rms), etc.; 25%, 50%, and 75% are the 25th, 50th, and 75th percentile values, respec-
tively. The 24 features were evaluated with CS, ETC, and CM methods. The numbering for
the 72 features is in Table 1.
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Table 1. Feature number.

Frequency Domain Features Ff_CS Ff_ETC Ff_CM Time Domain Features Ft_CS Ft_ETC Ft_CM

abs_mean_F 0 24 48 abs_mean_T 12 36 60
peak_m_F 1 25 49 peak_m_T 13 37 61

kur_F 2 26 50 kur_T 14 38 62
skew_F 3 27 51 skew_T 15 39 63
rms_F 4 28 52 rms_T 16 40 64

mean_F 5 29 53 mean_T 17 41 65
std_F 6 30 54 std_T 18 42 66
min_F 7 31 55 min_T 19 43 67
25%_F 8 32 56 25%_T 20 44 68
50%_F 9 33 57 50%_T 21 45 69
75%_F 10 34 58 75%_T 22 46 70
max_F 11 35 59 max_T 23 47 71

Referring to Table 1, feature numbering can be expressed as FComb = [F0 F1, . . . FN]
for k = 0, 1, . . . , 71, where k is the list of feature numbers, and N is the total number.
Then the term is redefined as follows: FComb = [FCS FETC FCM] where FCS = {FfCS FtCS},
FETC = {Ff_ETC Ft_ETC}, and FCM = {Ff_CM Ft_CM}.

Clustering of the 72 features should be performed to classify them into important
features and unimportant features, to be used for classification based on the feature impor-
tance measures from each filter method. For this, all feature values are normalized, and
the distances between two feature values are calculated using Euclidean distance for all
features, as shown in Equation (8):

dij = d
(

Fi, Fj
)
=

√
∑N

k=0

(
Fi,k − Fj,k

)2
(8)

where dij is the distance between feature i and feature j, and N denotes the amount of data,
including all feature values. Using hierarchical clustering, the distances between features
are repeatedly calculated, and features with small or large distances are combined into
one of two clusters: selected features or removed features. Using the Euclidean distance
between two features in Equation (8), a pairwise distance matrix to find cluster A with
selected features and cluster B with removed features can be defined as follows:

dAB =


0 d01 . . . d0N

d10 0 . . . . . .
. . . . . . 0 . . .
dN0 . . . . . . 0

 (9)

where dAB is a proximity matrix for measuring the distances between features. Features
with short distances are clustered based on Min

{
d
(
Fi, Fj

)}
, and then, the proximity matrix

is expressed as dAB = {dA} {dB} . In other words, features with high proximity values
are clustered into one group, whereas features with low proximity values are clustered into
the other. This agglomerative clustering is repeated by building a new matrix, until the last
matrix consists of only two large clusters, separating one important feature group and one
unimportant feature group.

dAB = {dA} {dB} represents the final proximity result capable of building cluster
A containing the feature set (dA), with high-ranking values from evaluating important
features obtained from each single-filter method. On the other hand, cluster B, containing
the unimportant feature set (dB), which is far from cluster A, is discarded.

This feature selection is unsupervised learning, in which the algorithm automatically
searches for important features by using Ward’s method, through error sum of squares
(ESS) and calculating the loss associated with each cluster. The ESS is computed, to measure
the distance between two clusters of important and unimportant features of multi-filter
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scoring, which is called the linkage function. Ward’s linkage function is known to be the
most suitable method to quantify a good group based on the variance of the clusters. The
target of the linkage search is to minimize the increment of the ESS at each step, to find
the minimum information loss. This algorithm works by fusing two clusters as the mean
vector, and it then calculates the ESS from each cluster, namely the selected feature cluster
and the discarded feature cluster. The following equations define the ESS in Equation (10)
and the linkage between clusters A and B, D(A,B), in Equation (11):

ESS(dA) =

Ta

∑
t=1

∣∣∣∣∣∣∣Vai −
1
Ta

Ta

∑
j=1

Vaj

∣∣∣∣∣∣∣
2

(10)

D(A,B) = ESS(dAB)− [ESS(dA) + ESS(dB)] (11)

where Va is the value of each feature, and Ta is the number of data points in cluster A. With
the same formula as Equation (10), ESS(dAB) and ESS(dB) are calculated by changing the
names of the variables, such as Va to Vb as a feature value in cluster B, and Vab as a feature
value in the combined cluster resulting from cluster fusion. Then, cluster A consists of
several features that may be the same, due to feature selection by clustering based on all
members. To optimize the combination of all potential features, after constructing a union
of features selected with each filter method, redundant features are removed, and features
are sorted according to importance:

cluster_A =
[

FCS_ new FETC_ new FCM_ new
]

(12)

FCS_new =
{

FCSp

∣∣∣p = 1, 2, 3 , . . . , P; FCSp ∈ FCS

}
(13)

FETC_new =
{

FETCq

∣∣∣q = 1, 2, 3 , . . . , Q; FETCq ∈ FETC

}
(14)

FCM_new = {FCMr |r = 1, 2, 3 , . . . , R; FCMr ∈ FCM} (15)

where FCS_new , FETC_new , and FCM_new are feature sets consisting of P, Q, and R features
selected using CS, ETC, and CM filter methods, respectively. Multi-filter clustering fusion
can be defined as follows:

Ffusion = FCS_new ∪ FETC_new ∪ FCM_new (16)

3.2. Exhaustive Search Application

The next step in the feature selection process is to derive a fusion feature set, Ffusion,
that combines the selected features, by considering the accuracy of the classification model.
The algorithm used to find the best combination from among all combinations of features
is an exhaustive search used in the wrapper method. In this algorithm, the fusion feature
has at least two to four features. The minimum number of features is determined so that
the classification model can have at least two dimensions. Up to four features are used
(considering the computational time), but a larger number of features can be used. The
set of all features is defined as Equation (17), and the number of feature combinations is
calculated using Equation (18):

Yc = {yl|l = 1, 2, 3 , . . . , C; yl ∈ Ffusion} (17)

C = ∑Ss
s=2

m!
(m− s)!s!

(18)

where Yc is a set of all feature combinations, C is the number of feature set combinations, m
is the length of Ffusion, and s is the number of subset features that are combined as a target
feature set, with the maximum feature combination being Ss = 4.



Sensors 2022, 22, 2192 8 of 18

The process of determining the combination of these feature sets is evaluated with
various classifiers, such as an SVM, KNN, and MLP. Normal and abnormal data are labeled
as binary levels 0 and 1, respectively, and the accuracy of the classifiers is calculated as
follows:

Accuracy(y, ŷ) =
1

Ssamples

Ssamples

∑
l=0

1(ŷl = yl) (19)

where y is the measured label values, ŷ is the predicted label values, Ssamples is the amount
of data, and 1(·) denotes an indication factor. The accuracy of the classification models
using all feature combinations is tested and then sorted into a set of combinations with the
highest accuracy. Equation (20) is used to obtain the best combination of features based on
the highest accuracy value:

Yoptimum = max(accuracy(Yc)) (20)

This study uses hyperparameter tuning to improve model accuracy, and uses 10-fold
cross-validation to verify robustness. The grid search is the most representative tuning
technique for computing the optimum hyperparameter value. Since it does not require
much time for a small search space, and only combines a set of hyperparameters, it is simple
and easy to apply. Hyperparameter optimization stops when the objective function of the
hyperparameters, such as accuracy, reaches its highest value. Then, 10-fold cross-validation
is performed on the generated models (based on the optimized parameters from using a
grid search) and is repeated 10 times, while changing the test dataset. The accuracy of the
classification model is evaluated by calculating the average accuracy for each test dataset.

4. Case Studies

From four examples of failures or faults that occur in different types of rotating ma-
chinery, data were collected from experiments. Cases 1 and 2 contain experimental bearing
data from NASA repositories collected from the Intelligent Maintenance System Center
(IMS) [35]. Cases 3 and 4 are vibration data collected from air conditioning compressors.
The experiment settings in Examples 1 through 4 are shown in Figures 2–5, and details are
described in Sections 4.1 and 4.2.

Figure 2. Schematic of experimental setup in cases 1 and 2.

4.1. Data Collection

Cases 1 and 2 are rotating machinery problems that occurred with Rexnord ZA-2115
double row bearings installed on a shaft, as illustrated in Figure 2. The rotation speed of the
shaft remained constant at 2000 rpm under a radial load of 6000 lbs. The bearings operated
while being lubricated (so it is considered non-dry), and failure occurred after more than
100 million revolutions.

The bearing vibrations were measured using an accelerometer, recording 20,480 points
at a sampling rate of 20 kHz. The data for cases 1 and 2 were recorded at 10-min intervals,
and were measured 2155 times over five weeks. Cases 1 and 2 had different causes of
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bearing failure; case 1 had defects in the inner race, and case 2 had defects in the roller.
Figure 2 shows an experiment schematic for cases 1 and 2.

Figures 3 and 4 are vibration data for cases 1 and 2, measured over a five-week period.
The data points along the X-axis are the time index at 10-min intervals. Figure 3 shows
that the failure in case 1 occurred around the end of operations, at the 1789th measurement
of the 2155 measurements. Therefore, data from 1789 measurements can be classified as
normal, and 366 can be classified as abnormal. On the other hand, Figure 4 shows that the
failure in case 2 occurred earlier than in case 1, during the 1434th measurement. Therefore,
in case 2, there were 1434 normal measurements, and 471 abnormal measurements. The
normal and abnormal data were divided based on the history of the vibrations, as shown
in Figures 3 and 4, and based on the threshold for kurtosis (a feature mainly used in fault
classification). In addition, data segmentation was verified through an operation indicating
the time when bearing abnormalities occurred [36,37].
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In cases 3 and 4, vibration data collected from an air conditioner compressor were
used to apply the proposed method to fault data with various characteristics. The faults
in these two cases were caused by two different failure modes (a mechanical defect, and
lack of refrigerant inside the compressor). The machine used in cases 3 and 4 was a twin
rotary compressor with low vibration and a 180◦ phase difference when rotating the shaft.
Figure 5 shows a schematic for cases 3 and 4.

Figure 5. Schematic of the experiment setup in case 3 and case 4 [38].
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The experiment was conducted in two different rooms, an outdoor unit and an in-
door unit, to simulate actual conditions for using air conditioners. In cases 3 and 4, an
accelerometer measured the vibrations in the compressors shown in Figure 5. Details of the
experiment variables in cases 3 and 4 are shown in Tables 2 and 3, respectively.

Table 2. Experiment variables in case 3.

Conditions EEV Fan Speed (rev/min) Frequency (Hz)

Cooling 60, 120, 180, 240, 300, 360 350, 500, 700 20, 30, 40, 50

Heating 60, 120, 180, 240, 300, 360 350, 500, 700 20, 30, 40, 50

Table 3. Experiment variables in case 4.

Conditions Refrigerant (%) Frequency (Hz)

Normal 100 30~90
Abnormal 50~90 30~90

In case 3, both normal and abnormal compressors operated, consisting of six electric
expansion valve (EEV) variables × three fan-speed variables × four frequency variables
× two conditions = 144 measurements. To improve the accuracy of the classification
model, the data were partitioned into 50 intervals of the compressor cycle, increasing to
7200 measurements in total [39]. Case 4 collected normal and abnormal data at seven
frequencies, where each variable was repeated three times. A state in which the refrigerant
is charged at the 100% level is considered normal, and a state in which the refrigerant level
is 50–90% is considered abnormal. This indicates that the refrigerant charge gradually
declined, due to continuous operation of the air conditioner. Therefore, there are 39 normal
measurements and 216 abnormal measurements.

4.2. Feature Extraction and Selection

The data in this study constitute the time domain and the frequency domain. The data
measured in the time domain are acceleration. The data in the frequency domain were
obtained by transforming time domain data using fast Fourier transform (FFT), as follows:

fk =
L

∑
r=0

xre−2π j kr
L (21)

where L is the length of the data sequence of xr as input time domain, and k = 0, 1, . . . L. As
described in Table 1, 12 features were extracted from each domain, for a total of 24 features.
Thus, two input feature matrices were formed into time-domain and frequency-domain
combinations: Ft = [F1t . . . F12t], Ff = [F1f . . . F12f], and F = [Ft Ff].

After normalizing using a min–max scaler method with the data in both domains, box
plots of the data for each feature can be obtained for the four cases, as shown in Figure 6,
where the intersection refers to the overlapped normal and abnormal data distributions.
The intersection of normal and abnormal data distributions is used to show whether each
feature sufficiently distinguishes between normal and abnormal data. The smaller the
intersection area, the more easily the corresponding feature classifies normal and abnormal
data; the larger the intersection area, the more difficult the classification is. Thus, the
intersection area can be used as an initial estimate of whether the feature is easy or difficult
to classify into normal and abnormal conditions.
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Figure 6. Distribution and intersection areas of normalized feature values. (a) Time domain features
for case 1; (b) Time domain features for case 2; (c) Time domain features for case 3; (d) Time domain
features for case 4; (e) Frequency domain features for case 1; (f) Frequency domain features for case 2;
(g) Frequency domain features for case 3; (h) Frequency domain features for case 4.
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As seen in Figure 6, the intersection areas vary greatly, depending on the feature
types and cases. Some features have a small intersection area, which means they can
clearly distinguish between normal and abnormal data, while others are not useful for fault
classification. Case 1 has the smallest intersection area, indicating that failure classification
is easiest. However, a large number of key features can be selected, so the number of
features needs to be reduced to improve fault classification accuracy and decrease the
computational time. On the other hand, the distributions of normal and abnormal data
for most features are not clearly distinguished in case 3, and their intersection areas are
close to 1 in both time and frequency domains, making it very difficult to derive important
features. Case 4 shows that some features in the time domain are valid, but most features
in the frequency domain are invalid. The results from case 4 confirm that using multiple
domains rather than a single domain helps improve the accuracy of fault classification. In
summary, each case had a different number and type of features extracted, due to different
causes of failure and the different data characteristics. Therefore, it is necessary to correctly
select the type and number of features suitable in each case.

Figure 7 shows a dendrogram of the results from hierarchical clustering obtained
for all features by applying MFCF in cases 1 through 4. The dendrogram represents
the hierarchical relationship between the clusters, where the X-axis represents feature
numbering (see Table 1) listed by importance, and the Y-axis represents the proximity of
the Euclidean distance between two features. The features can mainly be clustered into
two groups (orange lines and green lines). The orange lines include the main features
with high importance and proximity, and the green lines include features that need to be
deleted based on the three filtering methods. Cases 1 through 4 have data with different
characteristics, so the types and numbers of selected features are different in all cases.

In order to remove the same features at the clustering stage, the total number of
features selected before sorting via fusion of the three filter methods are 19, 14, 9, and
10 for Cases 1, 2, 3, and 4, respectively. As expected from the results in Figure 6, case 1
contains the largest number of features classified as main features. On the other hand, cases
3 and 4 have a smaller number of main features for classification, so the number of selected
features is less than in cases 1 and 2. Hierarchical clustering allows users to easily derive
valid features, by dividing all features into necessary and unnecessary sets. However, the
number of clustered features is still large, so it needs to be further reduced. Details of the
feature reduction process at each stage (multi-filter clustering, fusion, and the proposed
method) are shown in Table 4.

Figure 7. Cont.
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Figure 7. Multi-filter clustering. (a) case 1; (b); case 2; (c) case 3; (d) case 4.
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Table 4. Selected features at each stage.

Cases Stages Features No. of Features

Case 1

Multi-filter clustering
{25%_T} ∪ {max_F, mean_T} ∪ {ptp_F, 75%_T, abs_mean_F, rms_F,
mean_F, std_F, 25%_F, 50%_F, 75%_F, max_F, abs_mean_T, rms_T,

std_T, 25%_T, 75%_T, skew_F}
19

Fusion
25%_T, max_F, mean_T, ptp_F, 75%_T, abs_mean_F, rms_F, mean_F,

std_F, 25%_F, 50%_F, 75%_F, abs_mean_T, rms_T, std_T, 75%_T,
skew_F

17

Final set SVM: rms_T, 75%_T, KNN: mean_T, 75%_T, mean_F,
MLP: mean_T, 75%_T, ptp_F 2,3,3

Case 2

Multi-filter clustering {kur_T} ∪ {kur_F, skew_F, mean_T} ∪ {kur_F, skew_F, mean_T, ptp_F,
std_F, max_F, kur_T, skew_T, min_T, 50%_T} 14

Fusion kur_T, kur_F, skew_F, mean_T, ptp_F, std_F, max_F, skew_T, min_T,
50%_T 10

Final set SVM: skew_F, std_F, kur_T, skew_T, KNN: kur_T, skew_F, std_F,
skew_T, MLP: kur_F, max_F, skew_T, mean_T 4,4,4

Case 3

Multi-filter clustering {ptp_T, kur_T} ∪ {kur_T, min_T} ∪ {ptp_F, ptp_T, kur_T, min_T,
max_T} 9

Fusion ptp_T, kur_T, min_T, ptp_F, max_T 5

Final set SVM: ptp_T, kur_T, ptp_F, min_T, KNN: ptp_T, kur_T, ptp_F, min_T
MLP: kur_T, ptp_F, min_T, max_T 4,4,4

Case 4

Multi-filter clustering {75%_F} ∪ {75%_F, 50%_F, rms_F, abs_mean_F, std_F} ∪ {75%_F,
rms_F, mean_F, 50%_T} 10

Fusion 75%_F, 50%_F, rms_F abs_mean_F, mean_F, std_F, 50%_T 7

Final set SVM: abs_mean_F, rms_F, mean_F, KNN: abs_mean_F, mean_F, std_F,
MLP: 75%_F, abs_mean_F, mean_F, std_F 3,3,4

Table 4 shows the features selected in each case with different subsets at each MFCF
stage, where the three numbers in the last column of the final set indicate the number of
features used in SVM, KNN, and MLP, respectively. Since data in each case are measured
from different rotatory machines with different failure modes, each case has different
numbers and types of important features extracted from the different domains. For example,
in case 1, mean_T was used as the input feature in the three classifiers. The acceleration time
series data have a sine or cosine curve with almost the same amplitude, so mean_T tends
to have a constant value. However, since the abnormal data differ from the average values
of acceleration of normal data, mean_T may be an important feature for fault classification.
In case 2, skew_T was used as an input feature, because skewness measures the asymmetry
of the probability density function of the vibration signals. In case 3, kur_T, ptp_F, and
min_T were used as common input features for the three classifiers, where kur_T and ptp_F
indicate the degree of flatness of the probability density function near the center and the
peak value of the signals, respectively. They are often used to measure the strength of
signals, due to failure of rotating machinery. Furthermore, min_T shows that the normal
compressor condition had a low minimum value for acceleration response, compared to the
minimum value under abnormal compressor conditions. In case 3, the intersection areas
for many of the features are high, i.e., there are few important features except those three
features shown in Figure 6, and they were used as input features in the fault classification
models. Accordingly, the proposed method can be used more effectively in a problem
that is difficult to classify. The most frequently selected features in case 4 are mean_F and
abs_mean_F. The amplitude of the vibration signal of rotatory machinery is particularly
useful for distinguishing between a normal state and an abnormal state in the frequency
domain. Therefore, mean_F and ABS_mean_F functions were selected as common main
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features. After the training process, to build the classifiers for the finally selected features
in all cases through the exhaustive search, two to four feature combinations were derived.

Using the finally selected features, fault classification models were generated using
SVM, KNN, and MLP. Table 5 shows the accuracy and calculation times of the three single-
filter methods and the proposed MFCF. The proposed method was compared with the
three single-filter methods using the top three features, because it can present a good
comparison by selecting the most useful features from the top three, and it can control the
computational time. The accuracy of the proposed method was 1.0 (100%) for all classifiers
in cases 1 and 4, and cases 2 and 3 had an average accuracy of 0.99 for all classifiers. In
terms of efficiency, the proposed method consumed the least computational time compared
to the others, because the exhaustive search was only performed for the selected features
through MFCF, and the randomness in feature selection was low. Conversely, CS returned
the lowest accuracy and required the longest running time, even though it is not much
different from the other feature selection methods. In particular, the CS method yielded the
lowest accuracy in case 4 (with the smallest number of samples), because it depends on
sample size, and its time consumption was drastically different from the other methods,
owing to the selection of classifiers. KNN was the most computationally expensive classifier.
This was due to the complexity of the algorithm that stores the training data, as well as the
number of iterations needed to calculate the distance between feature values. Thus, the
proposed method was the most efficient, and yet had it the highest classification accuracy.

Table 5. Accuracy and execution times with the test data.

Methods
Case 1 Case 2 Case 3 Case 4

SVM KNN MLP SVM KNN MLP SVM KNN MLP SVM KNN MLP Avg.

Accuracy

CS 0.93 0.99 0.93 0.91 0.95 0.92 0.97 0.99 0.96 0.76 0.94 0.95 0.93

ETC 0.98 0.99 0.96 0.88 0.95 0.93 0.98 0.99 0.97 0.86 0.99 0.96 0.95

CM 0.93 0.98 0.93 0.93 0.97 0.98 0.98 0.99 0.98 0.94 0.98 0.96 0.96

MFCF 1.0 1.0 1.0 0.99 1.0 0.99 0.99 0.99 0.99 1.0 1.0 1.0 0.99

Efficiency
(sec.)

CS 3.52 114.9 54.2 6.75 104.2 47.62 90.2 659.5 80.94 0.4 30.3 11.4 100.3

ETC 3.01 115.4 23.9 5.23 103.6 52.7 84.1 678.9 70.89 0.4 30.8 13.4 98.5

CM 3.5 118.6 43.3 4.99 100.9 36.6 86.5 680.8 69.27 0.4 30.5 9.1 98.7

MFCF 2.4 113.2 13.8 4.02 100.1 39.6 83.0 655.3 81.63 0.4 30.0 10.0 94.4

These high-accuracy and low-computational times are highly advantageous for ma-
chine learning, especially when diagnosing failures in rotating machinery with many
classification difficulties. The performance of the proposed method was validated by test-
ing several cases with different characteristics, such as the number of datasets, the types
of failures, the types of experimental objects, and the variables in the data collection, as
described in the previous section.

To validate the classification model, 10-fold cross-validation was carried out to deter-
mine the general applicability of the proposed method. Figure 8 shows box plots for the
accuracy results from CS, ETC, CM, and the proposed MFCF. Comparing each method,
CS generally had low accuracy, high variability, and varying results, depending on the
classifier type. CM tended to be similar to the results from CS, indicating that accuracy
varies according to the classifier. ETC often had a higher accuracy than the other filter
methods, but still had a lower accuracy and higher variability than the proposed method.
On the other hand, the proposed method had little variability in the results, although accu-
racy was close to 1.0 in cases 1 to 3, where classification is easy regardless of the classifier
type. However, in case 4, we can see that the lack of data resulted in lower classification
accuracy and higher variability than in the other cases, but it still showed the best accuracy
in comparison with the other methods.
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Figure 8. Ten-fold cross validation. (a) case 1; (b); case 2; (c) case 3; (d) case 4.

5. Conclusions

This study developed a hierarchical clustering method using multiple filters (called
MFCF), to extract key features from time and frequency domains, and to maximize classifi-
cation accuracy by optimizing the number and type of features using an exhaustive-search-
based wrapper method. MFCF enables robust, accurate, and efficient fault classification,
regardless of the type of failure classification model, especially in the fault classification of
rotatory machinery, including complex failure modes and different data characteristics. To
validate the proposed method, vibration data from rotating machinery with four different
failure modes were used, and cross-validation results confirmed that it had the best classifi-
cation performance, compared to the other filter methods. Although the proposed method
in this study was used for the problem of classifying normal measurements and those with
abnormalities, it will be applied in the future to problems including multi-classification and
multi-domain features, to verify its general applicability to broad engineering applications.
In addition, this study obtained vibration signals using only accelerometer sensors, but the
proposed method will be applied to extract features of data collected using various sensors,
such as chemical and temperature sensors in the future.
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