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Abstract: Many transport systems in the real world can be modeled as networked systems. Due to
limited resources, only a few nodes can be selected as seeds in the system, whose role is to spread
required information or control signals as widely as possible. This problem can be modeled as the
influence maximization problem. Most of the existing selection strategies are based on the invariable
network structure and have not touched upon the condition that the network is under structural
failures. Related studies indicate that such strategies may not completely tackle complicated diffusion
tasks in reality, and the robustness of the information diffusion process against perturbances is
significant. To give a numerical performance criterion of seeds under structural failure, a measure
has been developed to define the robust influence maximization (RIM) problem. Further, a memetic
optimization algorithm (MA) which includes several problem-orientated operators to improve the
search ability, termed RIMMA, has been presented to deal with the RIM problem. Experimental results
on synthetic networks and real-world networks validate the effectiveness of RIMMA, its superiority
over existing approaches is also shown.

Keywords: complex networks; influence maximization; robustness; memetic algorithm; optimization

1. Introduction

There are many networked systems in real life such as transportation networks and
robot networks, which are indispensable parts of human work and life [1]. Automatic
guided vehicles (AGVs), which belong to the category of wheeled mobile robots, play
a significant role in transportation, the logistics industry, and autonomous driving [2],
and can also be modeled as networked systems. The network topology information is
widely studied for its direct description of the structural characteristics of systems. Some
network structure characteristics including the random connection and the power law
degree distribution, have been discovered and summarized in previous studies [3,4]. The
network topology information plays a crucial role in related research and analysis takes on
networked systems.

Due to the limited cost, resources cannot be allocated to all nodes in a network, but
some influential nodes tend to be selected from the network as seeds to spread the influence.
How to use the topological information of a specific network to select the seeds that can
achieve the optimal propagation effect is defined as the influence maximization problem [5],
which is of great significance in both theoretical and realistic applications. Applications
of the influence maximization theory can be found in transportation networks such as the
selection of cluster heads in the vehicular networks [6] and traffic bottleneck identification
in the city [7].

For the influence propagation process in the networked systems, several informa-
tion spreading models have been extensively emphasized, including the independent
cascade (IC) model [8], the weighted cascade (WC) model [9], and the linear threshold
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(LT) model [10]. Kempe et al. modeled the seed selection problem as a discrete combina-
torial optimization problem and proved the problem is NP-hard [8]. Another approach
is through the Monte Carlo simulation, which directly estimates the influence range of
seeds. The deficiency lies in the prohibitive computational cost; as the number of nodes
enlarges, the required budget increases sharply. This method thus cannot be applied to
large-scale networks. Lee et al. in [11] proposed a fast approximation method for influence
spreading, and its rationality has been verified through experiments. The advantage is
its lower computational cost. On the basis of these studies, the influence maximization
problem can be regarded as an optimization problem, i.e., selecting the optimal set of nodes
from the network guided by reasonable performance evaluation factors.

Networked systems are exposed to uncertainty and disturbances, and damages can
even be destructive to the functionality. For the vehicular networks and robot networks,
hacking smart terminals, disrupting cloud computing platform services, and cracking
communication protocols are common forms of attack. According to the difference of
attack targets, it can be divided into node-based and link-based attacks [12,13], both two
categories have been demonstrated to be common and may cause serious damages. In
terms of the attack type, it can be roughly divided into random attacks and malicious
attacks. For the first category, targets in the network are attacked at the same probability.
In malicious attacks, targets are attacked in the order of their importance; for example,
nodes with larger degrees tend to be removed in priority [14]. Generally, malicious attacks
are likely to cause more distinct structural losses than random attacks; therefore, such
attack model has been intensively studied in previous studies including the attack on
connectivity [15–17], on community [18,19], and on the diffusion behavior [13]. Several
reasonable robustness performance evaluation factors have been designed [20,21]; based
on these, methods that can improve the robustness are also developed [13,20,22–24].

Most of the existing studies only consider the situation that the network structure stays
stable, and the selected seeds are only suitable for the current network structure [25–28].
Regarding the network-related influence maximization problem, there are some studies
on how to robustly select seeds against potential uncertainties in the propagation process.
These studies focus on the situation that the influence spreading probability or spreading
model is uncertain [29,30]. Yet such factors have already been implied in the seed determi-
nation process, as shown in [5,7,9,25]. Meanwhile, the network structure is closely related to
its performance. Changes in the network structure always impact the interaction between
network nodes and further bring about disturbances on the influence propagation process.
Consequently, the selection of seeds is expected to possess the ability to resist changes in
the network structure and keep a relatively robust influential range. This important feature
has not been thoroughly studied in the past literature. In other words, how to reasonably
evaluate the influential performance of seeds when attacks on the network structure hap-
pen, and how to select the optimal seed set guided by the evaluation factor, these problems
remain to be solved. Correspondingly, the robust influence maximization (RIM) problem
is defined as the task of selecting a seed set that can maintain a good influence spreading
ability under potential network structural damages.

Aiming at these deficiencies of the existing studies, this paper first analyzes how
to robustly solve the problem of network influence maximization; the malicious attacks
on networks are considered. Based on the robustness performance evaluation factors
of the existing studies, a factor that evaluates the influence performance of the selected
seeds under nodal attacks was designed, where a changeable parameter is included to
control the damage extent. An experimental analysis was also conducted to determine
a rational configuration of the parameter toward multiple scenarios. In this manner, the
factor intuitively assesses the influence performance of seeds in a numerical form, and
thus provides guidance for the optimal seed selection process. Equipped with which, a
memetic algorithm is devised to select robust seeds under malicious node-based attacks.
The proposed algorithm, RIMMA, contains several problem-directed operators and exploits
genetic information from both global and local areas. Corresponding experimental results
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on synthetic network and real network data indicate the superiority of RIMMA over existing
methods. Meanwhile, tests are carried out on land transportation networks such as logistics
networks and robot networks. The obtained seeds can achieve considerable influence
performance when the network structure is under attack.

The rest of this paper is organized as follows. Section 2 represents the related works.
Section 3 introduces the evaluation factor of robust influence performance proposed in
this paper and the parametric configuration process. The RIMMA is described in detail
in Section 4. Section 5 presents the experimental results and analysis. Finally, Section 6
summarizes this work and presents possible work.

2. Related Works
2.1. Influence Spreading Model and Evaluation Method

A network can be modeled as a graph G = (V, E), where V = (1, 2, . . . , N) represents
the set of N nodes, E = { eij

∣∣ i, j ∈ V, i 6= j} represents the set of M edges between
different nodes in the network. The influence maximization problem is to select the most
influential K nodes from all nodes in the network as the seed set S = {s1, s2, . . . , sk}, and the
influential performance is donated as σ(S) which is the maximum number of nodes that S
can influence. A principle diagram of a simple network is shown in Figure 1. There are
several existing spreading models to define the process of influence propagation process in
the network. The widely-used spreading models include the IC model [8], the WC model [9],
and the LT model [10], and slight differences can be found in the spreading rules. Taking
the IC model as an example, nodes only have two states: active state or inactive state, and
only the seed set S is active in the initialization phase. Details of the influence propagation
process are as follows. At each time step t, the set of nodes that are active is donated as
St, and S0 = S. Each node x in the St only has one chance to activate each of its inactive
connected neighbor nodes y at a pre-defined probability p at step t. Then, those successfully
activated nodes are deposited into the temporary set Tt, the set of active nodes is updated
as St+1 = St ∪ Tt. If the set Tt′ = ∅, which indicates that there are no nodes activated at
time step t′, the process of influence propagation is terminated. σ(S) is determined by the
number of nodes in St′ . The difference between the WC model and IC model is that the
activate probability between nodes is not definite, but is related to the weight information
in the network. In the LT model, an inactive node is activated on the condition that the
received total influence rate from neighboring nodes is larger than its predefined threshold.
As shown in the simple network in Figure 1, node 9 and node 10 are selected as seeds
to spread influence. In the initialization phase, only node 9 and node 10 are in an active
state, while other nodes are in an inactive state. Taking the influence propagation process
of node 9 as an example, in the IC model, node 9 has a fixed probability p to activate the
surrounding nodes, while node 9 in the WC model has different probabilities to activate
the surrounding nodes. The LT model is even more different. For example, the inactive
state node 1 will only transform into the active state when the total influence rate of the
three surrounding nodes reaches its pre-defined threshold. Considering that the IC model
has been widely applied in existing studies [3,5,11], this work also employs this spreading
model to investigate the robust influence maximization problem.

Given a spreading model, the Monte Carlo process is optional to evaluate the influence
performance σ(S) of the seed set S [8], but this method is time-consuming and may not
get accurate estimation results. The specific process of the Monte Carlo simulation method
to evaluate the influence of seeds is as follows. Assuming that the number of seeds is 10
and the number of simulations is n = 1000, the initial influence of the seeds σ(S) is 10. Each
simulation starts from the seeds and simulates whether each inactive node is activated
under the probability p. If the node is activated, the seed influence σ(S) is increased by 1,
while the σ(S) remains unchanged if the node is not activated. Then the final influence
of the seeds recorded in the n-th simulation is σn(S). This simulation is carried out 1000
times, sum and average all σn(S) (divided by n = 1000), and the calculated average is
the influence performance of the seeds. This method thus can only deal with evaluation
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tasks on small-scale networks. For improving the efficiency of the performance estimation
process, Lee et al. in [11] proposed a fast approximation method for influence spreading;
only the influence within the 2-hop range of seeds is considered, defined as follows:

σ̂(s) = ∑
s∈S

σ̂{s} −
(

∑
s∈S

∑
c∈Cs∩S

p(s, c)
(

σ1
c − p(c, s)

))
− χ (1)

where Cs is the 1-hop neighbor of node s, p(s, c) is the propagation probability from active
node s to inactive node c, χ represents the overlapped influence when the influence is
estimated between two seeds. In Equation (1), the first term evaluates the initial 2-hop
influence range of the seed node, the second term and the third term consider the 1-hop
and 2-hop distances of the two seed nodes, respectively. The overlapped influence is to
be subtracted. This fast approximation method can estimate the influence performance of
seed reliably. Meanwhile, this method has the advantage of low computational cost and
can tackle the evaluation task of seeds on large-scale networks.

Figure 1. An example of the influence maximization on a simple network donated as G = (10, 22)
which has 10 nodes and 22 edges. Node 9 and node 10 are the selected seeds that can generate the
propagation maximally. In the IC model, node 9 has a fixed probability p to activate node 1.

2.2. Definition, Evaluation, and Optimization Methods of Network Structure Robustness

Most real-world networked systems are operated in open and complicated environ-
ments, and networks are threatened by unpredictable attacks and errors. Therefore, it is of
great significance to study the robustness of networks. A robust networked system should
be able to guarantee that its functionality keeps resistance against structural failures as
much as possible. According to existing studies, an important indicator to evaluate the
performance of networks is through the connectivity of the network structure.

A robustness evaluation factor R was proposed in [20] and R works as follows. Nodes
in the network are sorted according to their importance based on certain criteria such as
the degree of the node, these nodes are attacked in sequence. When a node is removed,
the maximum connected cluster in the current network is recorded. The process does not
terminate until the network is totally collapsed. The numerical evaluation result of the
robustness of the network is through summation and normalization over the obtained
cluster-evaluation results. The mathematical definition of R is

R =
1
N

N

∑
Q=1

s(Q) (2)

where N is the number of nodes in the network, s(Q) is the proportion of nodes in the
maximum connected cluster after removing Q nodes, and 1/N is a normalization factor,
which guarantees that the comparison between networks with different sizes is achievable.

Zeng et al. in [31] made an extension on R, and an evaluation factor Rl was designed
to evaluate the network robustness under edge-based attacks. These factors including R
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and Rl evaluate the robustness of networked systems from a numerical point of view, and
can also guide the related optimization tasks. The evolutionary algorithm was employed to
solve the optimization problem of network robustness optimization [13,22]. Although these
network robustness evaluation factors cannot be directly applied to the robust influence
maximization on networks, they provide references for the possible factor design process.

Intelligent vehicles and mobile robots, as part of land transportation systems, can be
modeled as vehicular networks and robot networks because of the information interaction
between nodes. Kim et al. in [32] modeled vehicle-to-vehicle information flow as a
transportation network and proposed a diffusion framework for vehicular messaging. Basu
et al. in [33] completed the fault-tolerant control to improve network topology according to
the missing information of critical nodes in the robotic wireless communication network.

The influence maximization problem is also applied to land transportation networks.
Wang et al. in [6] designed a cluster routing algorithm based on influence maximization,
aiming to find the optimal cluster head of vehicles to improve the efficiency of the transmis-
sion. Zhao et al. in [7] modeled the traffic bottleneck identification problem as an influence
maximization problem, and the goal is to find the most influential bottlenecks, which
provides traffic planning solutions for decision makers. As a small land transportation
system, wheeled mobile robots have shown significance in related studies [34,35] and can
provide simplified models for subsequent research on larger land transportation systems.

3. Robust Influence Evaluation of Seeds under Network Structure Damage

In terms of the influence maximization problem, most studies ignore the impact of
structural failures on the propagation ability of the selected seeds. In realistic applications,
decision makers tend to be benefited by having robust seeds to deal with diversified
situations. As mentioned, network attacks can be divided into node-based attacks and
link-based ones. Attacks on nodes are direct and show effectiveness to collapse networks;
as indicated by some previous studies [19,26], only the failure of a few nodes is enough to
cause malfunction of the whole network. Considering the significance of nodes, this work
concentrates on node-based attacks to investigate the robust influence performance.

3.1. Robust Influence Performance Evaluation Method

It has been proved that a malicious attack often causes greater losses to the struc-
ture and performance of networks. Under this circumstance, nodes are ranked according
to their importance. The degree of nodes is a popularly-used measure to assess the im-
portance. From the perspective of the attacker, the destruction operation is also limited
by the available resources. If resources are sufficient, all nodes in the network can be
destroyed; otherwise, only part of the nodes can be destroyed. Due to the significant
structural importance, nodes with higher rank tend to be considered as priority in the
destruction process.

In terms of the influence spreading, if a removal operation causes changes in the
network structure, the maximal influence evaluation of the seeds should be re-estimated.
Different network damage scenarios should be considered in the performance evaluation
process; in this manner, the robustness of seeds can be guaranteed. Referring to Equation (2),
the influence performance evaluation factor of seeds under node-based attacks is defined
as follows:

Rs =
1

N × ρ

N×ρ

∑
P=1

σ̂(S|P) (3)

where N is the number of nodes in the network. ρ is the ratio of attacked nodes. σ̂(S|P) is
the estimated value of influence of the selected seed node set when P nodes are attacked.
For a certain ρ, if the selected set S can obtain a larger Rs value, it means that the selected
set S is considered to be causing a greater influence under the current attack. Here, 1/(N·ρ)
works as the normalization factor.
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3.2. Parameter Calibration in Rs

In network attacks, the degree of structural damage cannot be known in advance for
decision makers, which makes it difficult to determine the parameter ρ. Once the parameter
ρ in Rs is determined, the factor can be used as an objective function to guide the seed
selection process. Meanwhile, seeds obtained under different ρ are likely to be diverse. For
example, when ρ is set as a small value, the selected seeds prefer the condition when the
network stays steady or only suffers from slight damages. However, in the case of a larger
value of ρ, the selected seeds prefer the condition that the network is severely damaged.
Therefore, it is of great significance to select an appropriate ρ value so as to obtain a robust
solution for possible scenarios.

In this subsection, a rational ρ value is determined through trials and errors. The
experiments are conducted on two common synthetic networks, namely scale-free (SF)
network [3] and random (ER) network [4], where the number of nodes is set as N = 100
and the average degree is set as 〈k〉 = 4 [36]. The selection of seeds is carried out under the
guidance of the factor Rs. The scale of seed set is configured as S = 10, and the probability
of spreading influence between nodes is set as p = 0.01. The value of ρ is divided into 11
groups, lying in the range of [0,1] at an increasing step of 0.1, i.e., ρ = {0, 0.1, 0.2, . . . , 1}.
Seeds are selected guided by Rs with different ρ values. It is necessary to verify the
performance of the obtained seeds in the 11 groups. Each group of seed sets selected by a
specific ρ is verified in 11 scenarios of different removal situations, i.e., 121 sets of tests in
total. The difference between the specific result under a target ρ under each scenario and
the optimal performance in this scenario is evaluated and summarized. If the sum of the
differences is smaller, it can be considered that the selected seeds guided by the target ρ
can achieve a relatively stable performance against multiple scenarios, indicating the seeds
maintain better robustness against unknown attacks. The final experimental results are
presented in Figure 2.

Figure 2. Numerical analyses of seeds’ performance guided by Rs with different ρ on SF network
and ER network. The results are averaged over 5 independent realizations.

According to the experimental results in Figure 2, in the SF network, the seed set
obtained when ρ is set to 0.2 and 0.3 can achieve a relatively stable propagation ability on
all possible scenarios. In the ER network, the set of seeds selected under the condition
of ρ = 0.2 has the stable influence propagation ability in the test and shows distinct
advantages over other configurations of ρ. In conclusion, the seed set selected when the ρ
is 0.2 can achieve relatively stable influence propagation ability on two common artificial
synthetic networks. Therefore, in the subsequent process of selecting seeds, ρ in Rs is set as
0.2 to evaluate the performance of candidates.
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4. RIMMA Algorithm

In this section, operators of RIMMA are introduced in detail. The goal is to find
candidates with the maximal robust influence factor Rs. In RIMMA, Rs is used as the fitness
function to evaluate the quality of chromosomes. The procedure of the RIM algorithm is
shown in Figure 3. First, an initialization operation is performed to obtain a random initial
population. Then, randomly select different individuals from the population to execute
the crossover operator to expand the population. The function of the mutation operator
is to generate new individuals in the population to replace the old ones. Finally, the local
search operator takes into account the local characteristics of nodes, and the target is to seek
local replacement operations that can improve the fitness of the individual. After reaching
the maximum number of iterations, the optimal individual in the population is output
as the optimal solution. The details of each operator will be introduced in detail in each
subsection. In the end, the framework of the RIMMA algorithm is summarized.

Figure 3. The procedure of the RIMMA algorithm.

4.1. Initialization

In a memetic algorithm, each chromosome represents a set of seeds, which are the
limited nodes selected to spread influence, and each individual contains a specific seed
set. A population with Ω chromosomes represented Ω seed sets, which are labeled as
S1, S2, . . . , SΩ. The initial population is generated by combining two strategies, i.e., random
selection and degree preference selection. Specifically, the random selection strategy is
adopted for the first half of the population. In detail, every chromosome selects K different
seeds from n nodes in the network stochastically. The selection strategy of the other half
population is based on the degree information of nodes. Nodes with a larger degree
accounting for the top 2% in the network are preserved in the TOP set. The first node of
the seed set of the individual is randomly selected from the TOP set, and the remaining
nodes are randomly selected from other nodes in the network. Note that no duplicate
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seeds are allowed in a seed set; in that case, the duplicate one is replaced by a randomly
generated seed. This strategy ensures that both nodes with high and low degrees are
considered. The designed initialization operation is used to generate potential solutions
widely distributed in the solution space, which is conducive to the subsequent optimization
operations. The details of the crossover operator are summarized in Algorithm 1. The
procedure of initialization is summarized as Figure 4. P1 represents the initial population
containing Ω0 individuals. S1

i represents the i-th individual in the population, and similarly
S1

k represents the k-th individual.

Algorithm 1. Initialization

Input:
Ω0 : Initial population size
k : Size of seed set;
G : Target network;

Output:
P1 =

{
S1

1, S1
2, . . . , S1

Ω0

}
: Initial population;

for i = 1 to (Ω0/2) do
for j = 1 to k do

Randomly select a node from N nodes in G as the j-th element in the S1
i

while (the j-th node in S1
i is the same as the rest) do

Randomly select a node from N nodes in G to replace j-th node
end while

end for
end for
for k = (Ω0/2) to Ω0 do

The first node of S1
k is randomly selected from TOP set

for l = 2 to k do
Randomly select a node from N nodes as the l-th element in the S1

k
end for

end for

Figure 4. The procedure of the initialization algorithm.



Sensors 2022, 22, 2191 9 of 22

4.2. Crossover Operator

The purpose of the crossover operator is to exchange partial information between
two chromosomes, and new chromosomes are generated to further enrich the current
population. The crossover method adopted in this paper utilizes the single-point crossover
at a probability of pc. Assuming that Sp1 and Sp2 are two randomly selected parent
chromosomes, an integer L1 is randomly generated first in the range of [1, K], and then
the genetic information at L1 in Sp1 and Sp2 is exchanged to generate two new child
chromosomes, Sc1 and Sc2.

It should be noted that the randomly generated integer L1 needs to ensure that the
generated child chromosomes Sc1 and Sc2 are legitimate. In other words, the genetic
information at L1 in chromosome Sp1 cannot be duplicated with that in chromosome Sp2,
and vice versa. If the random number L1 cannot meet this condition, a new random
number is generated. The details of the crossover operator are summarized in Algorithm 2.
Examples of the operator are shown in Figure 5. The procedure of crossover operator is
summarized as Figure 6. St is a temporary set of two parent chromosomes and two child
chromosomes. Si represents the i-th individual in the population.

Algorithm 2. Crossover

Input:
Ω0 : Initial population size
Ω : Total population size
P : Current generation population
pc : Crossover probability;

Output:
P′c : Population after crossover;

P′c ← P
for i = (Ω0 + 1) to Ω do

if (r < pc) /* r is a random number subjecting to uniform distribution between [0,1] */
Randomly select two different chromosomes from the population P as the parent
chromosomes Sp1 and Sp2
Randomly generate an integer L1 in the range of [1, K]
while (gene at L1 on one parent chromosome is duplicated with the other) do

Randomly generate an integer L1 again
end while
Sc1 ← Sp1 , Sc2 ← Sp2
Remove the node at L1 from Sc1 and add the node at L1 from Sp2 to Sc1
Remove the node at L1 from Sc2 and add the node at L1 from Sp1 to Sc2
Calculate the fitness of Sp1, Sp2, Sc1, Sc2, and the chromosome with the largest fitness is
denoted as St
Si ← St
add Si to P′c

else
randomly select a chromosome St from P
Si ← St
add Si to P′c

end if
end for
Output the expanded population P′c;

4.3. Mutation Operator

For all chromosomes in the population, the mutation operator is performed at a
probability of pm. Similar to the crossover operation, for the chromosome S to be mutated,
an integer L2 in the range of [1, K] is randomly generated, and then a node is randomly
selected from all N nodes to replace the gene at L2 in the chromosome S. Similarly, in
order to ensure that the mutated chromosome S′m is legitimate, it is necessary to guarantee
that the selected replacement node is not duplicated with all nodes in S; otherwise, the
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replacement node should be selected again until it meets the condition. The details of
the mutation operator are given in the following Algorithm 3. Examples of the mutation
operator are shown in Figure 7. The procedure of mutation operator is summarized as
Figure 8.

Figure 5. Examples for the crossover operator. The seed set size of the chromosome was set as 5.
The red dotted box represents the crossover position and blue dotted box represents the position
of repeated nodes. In (a), the crossover position L1 was randomly selected as 4 to generate two
legitimate child chromosomes and the crossover succeeded. In (b), L1 was selected as 2 to generate
illegitimate child chromosomes and the crossover failed.

Figure 6. The procedure of crossover operator.
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Figure 7. Examples for the mutation operator. The seed set size of the chromosome was set as 5.
The red dotted box represents the mutation position and blue dotted box represents the position of
repeated nodes. In (a), the mutation position L2 was randomly selected as 3 to generate legitimate
chromosomes and the mutation succeeded. In (b), L2 was selected as 4 to generate illegitimate
chromosomes and the mutation failed.

Figure 8. The procedure of mutation operator.
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Algorithm 3. Mutation

Input:
P : Population before mutation
pm : Mutation probability;

Output:
P′m : Population after mutation;

P′m ← P
for (each chromosome Si in P′m) do

if (r < pm) /* r is a random number subjecting to uniform distribution between [0,1] */
Randomly generate an integer L2 in the range of [1, K]
Randomly select a node vt from all N nodes
while (vt is duplicated with all nodes in Si) do

Randomly select a node vt from all N nodes again
end while
Remove the node at L2 from Si and add the node vt to Si

end if
end for

4.4. Local Search Operator

The local search operator is an important operation that distinguishes MA from GA.
Two strategies are considered in the operator. Firstly, the operator should consider the local
characteristics of the node such as its 2-hop neighborhood. Secondly, those nodes with
larger degrees are preferred in the early stage of the algorithm, which is aimed at promoting
the fitness function. As the iteration time increases, the probability of such operations is
reduced to avoid premature convergence.

Based on the above strategy, the local search operator is divided into two phases. The
first phase is the local search toward the nodal neighborhood, which is performed at a
probability of pmi. For each seed in the chromosome, its neighbors or neighbors’ neighbors
are searched to find better candidates. In order to limit the computational cost, this 2-hop
replacement is only performed at a small probability. The fitness of the replaced seed set
is evaluated, and only the operations that reach a better performance are retained. The
second part is the global search of nodes, which is performed at a varying probability,
and the probability decreases as the number of iterations increases. Applying the roulette
wheel selection, the node that is to be replaced in the current chromosome is selected.
The strategy of roulette wheel selection is based on the degree of seed. The smaller the
degree, the higher the probability of being selected. Nodes with smaller degrees may also
be important nodes in the network, so all nodes should have a chance of being selected.
The operation is inclined to replace those low-degree ones in priority. If the performance of
this seed set gets promoted, then the replacement operation is kept. The specific details of
the local search operator are given in Algorithm 4. The procedure of local search operator is
summarized as Figure 9. SNei represents the temporary set of 1-hop and 2-hop of the node.
sl represents the replacement node in SNei that can improve the individual performance the
most. sg represents the replacement node in the TOP set that can improve the individual
performance the most.
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Algorithm 4. Local Search

Input:
P: Current generation population
pmi : Local search probability
pma : Global search probability
gen : Current iteration
MaxGen: Maximum iterations;

Output:
P′l : Population after local search;

P′l ← P
for (each chromosome Si in P′l) do

for (each seed s in Si) do
if (r < pmi) /* r is a random number subjecting to uniform distribution between [0,1] */

for (each neighbor node sn of s) do
Add sn into the set SNei
for (each neighbor node snn of sn) do

if (r < pmi)
Add snn into the set SNei

end if
end for

end for
Try to replace s with each node in the set SNei. If the fitness is improved, the neighbor
node with the largest fitness is recorded as sl
Remove s and add sl into Si

end if
if (r < (pma × (MaxGen− gen)/MaxGen))

Obtain the TOP set of nodes with a large degree accounting for 2% of the total nodes;
Select a node s from Si using roulette wheel selection
/* The smaller the degree, the higher the probability of being selected */
Try to replace s with each node in the TOP set. If the fitness is improved, the node with
the largest fitness is recorded as sg
Remove s and add sg into Si

end if
end for

end for

4.5. RIMMA Framework

In RIMMA, the initialization operator is performed first to obtain the initial population.
In each generation of the RIMMA, the crossover operator is performed to enrich the popula-
tion; then the mutation operator is performed. Followed by the local search operator, the
fitness level of the whole population is to be promoted. At the end of each iteration, the
fitness function of each chromosome in the population is evaluated, and the best individual
is preserved into the next population, while other individuals are selected from individuals
in the current population based on a roulette wheel selection according to their fitness.
The higher the fitness, the greater the probability of being selected. The above process is
repeated until the iterations reach the pre-defined threshold, then the overall best candidate
is the final output. The overall framework of RIMMA is summarized in Algorithm 5.
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Figure 9. The procedure of local search operator.

Algorithm 5. RIMMA

Input:
G : Target network
Ω0 : Initial population size
Ω : Total population size
k : Size of seed set
pc : Crossover probability
pm : Mutation probability
pmi : Local search probability
pma : Global search probability
MaxGen: Maximum iterations;

Output:
S∗ = {s1, s2, . . . , sk} : Optimal seed set;

P1 =
{

S1
1, S1

2, . . . , S1
Ω0

}
← Initialization(G, Ω0, k)

for g = 1 to MaxGen do
Pt ← ∅
Repeat

Randomly select two different chromosomes from the population Pg as the parent
chromosomes Spi and Spj
(Sci, Scj)←Crossover (Spi, Spj, pc)

Pt ← Pt ∪
(

Sci, Scj

)
Until (all chromosomes in Pg have been selected)
for (each chromosome S in Pt and Pg) do

Pg
m ←Mutation (S, pm)

end for
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for (each chromosome Sm in Pg
m) do

Pg
l ←Local_Search (Sm, pmi, pma)

end for
Pg+1 ←Selection_Operator (Pg

l );
end for
Output the current best individual;

5. Experiments

In order to verify the performance of the designed RIMMA, experiments on three
synthetic networks are conducted first, including scale-free (SF) networks [3], random (ER)
networks [4], and small-world (SW) networks [37], and then those on realistic networks
are presented. In this paper, we implement the comparison of various existing seed
selection algorithms such as simplified memetic algorithm (MA-sim), genetic algorithm
(GA), simulated annealing algorithm (SAA), and degree-based algorithm (DBA) with the
RIMMA. The factor Rs in Equation (2) is used to evaluate the performance of seeds selected
by algorithms. Further, experiments are conducted on several land transportation networks
to validate the effectiveness of the developed algorithm.

To compare the Monte Carlo simulation method and the 2-hop fast approximation
method, we also conduct experiments with a small-scale network. The above two methods
are used to evaluate the influence of the seeds obtained by the four algorithms. The
numerical values and computation time of the two evaluation methods are shown in Table 1.
σ(S) represents the influence of seeds evaluated using the Monte Carlo simulation method.
σ̂(S) represents the influence of seeds evaluated using the 2-hop fast approximation method.
There is almost no difference in the performance of the two evaluation methods, but the
computation time of the Monte Carlo simulation method is more than ten times that of the
2-hop fast approximation method. This also shows that the Monte Carlo simulation method
is not suitable as the fitness function of the evolutionary algorithm, and this method cannot
tackle the evaluation task on networks of a large scale.

Table 1. Differences between the two influence evaluation methods.

INDEX RIMMA GA SAA DBA

σ(S)/time (s) 10.341/2.3 s 10.338/2.3 s 10.276/2.3 s 10.125/2.3 s
σ̂(S)/time (s) 10.340/0.2 s 10.337/0.2 s 10.276/0.2 s 10.124/0.2 s

The various parameters of RIMMA are set as follows. The maximum number of
iterations MaxGen is 150, the size of population Ω is 50. We conducted a simple experiment
to determine the parameters pc, pm, pmi, pma. The experimental method is as follows. In
the same network, only the test parameters are changed and other parameters remain
unchanged to test the performance of the algorithm. The final experimental results are
shown in Figure 10. According to the results in Figure 10, when the parameter pc is set to
0.6, the performance of the algorithm is better than when pc is set to the other four values,
and the same is true for pm and pmi. Additionally, when pma is set to 0.4, the performance
of the algorithm is better than setting the other four values. Therefore, we set pc, pm, pmi to
0.6, and pma to 0.4. In order to ensure comparability, GA also uses similar parameters. The
parameters of MA-sim are consistent with the RIMMA. The only difference is that the local
search of the node neighborhood is omitted from the local search operator, and only the
global search of the node is retained.
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Figure 10. Performance of the algorithm with different parameters.

5.1. Experiments on the Synthetic Networks

SF networks, ER networks, and WS networks with different scales are generated
to compare the proposed RIMMA with other existing algorithms in this experiment. The
experiments are conducted on three artificial synthetic networks with 100, 300, 500, and 1000
nodes (N) where the average degree of the network is set to 4. Results of each algorithm in
a specific network are averaged over 20 independent realizations. As aforementioned, the
parameter ρ of the factor Rs is set to 0.2. The specific value of the influence maximization
performance quantitative index Rs of the seed set is given in Table 2.

It can be seen that in three artificial synthesis networks with different scales, the seed
set selected by all evolutionary algorithms including RIMMA, MA-sim, and GA achieve a
higher Rs value than the seed set obtained by other algorithms. This phenomenon indicates
that these seed sets have a better ability to spread influence under uncertain deliberate
attacks. The seed sets selected by the degree-based algorithm have the worst performance
of influence propagation. It also shows that only relying on the information of the original
network such as the degree is inadequate, and the obtained seed set often cannot cope
with the network structure damage when the network is attacked. Specifically, the degree-
based algorithm preferentially selects the nodes with a higher degree of network, while the
malicious attack also preferentially selects these nodes. When the number of attacked nodes
is large, all the seeds have been attacked and cannot spread influence. When the number
of attacked nodes is small, only a few seeds in the network can still spread influence.
Therefore, the seed set selected by the degree-based algorithm scores a low Rs, and such
seeds may not tackle the robust influence maximization task.

Table 2. Rs performance comparison of seeds selected by different algorithms on three synthetic
networks with different scales.

NETWORK N RIMMA MA-SIM GA SAA DBA

SF

100 10.33951 10.33763 10.33724 10.27430 10.12350
300 10.39330 10.39202 10.38694 10.30001 10.07035
500 10.37831 10.37818 10.37654 10.28429 10.06847
1000 10.38623 10.38380 10.38086 10.27163 10.04240

ER

100 10.44711 10.44512 10.44495 10.36656 10.14899
300 10.49732 10.49529 10.49528 10.38567 10.08195
500 10.50606 10.50525 10.50349 10.39711 10.07562
1000 10.51805 10.51729 10.51593 10.38548 10.02223

SW

100 10.40811 10.40824 10.40782 10.35068 10.13332
300 10.43799 10.43788 10.43650 10.36159 10.04350
500 10.44381 10.44228 10.44194 10.38061 10.04867
1000 10.46810 10.46741 10.46730 10.38103 10.10572
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Comparing the three evolutionary algorithms, the RIMMA tends to achieve better
results, and seeds selected by RIMMA can obtain the best influence propagation perfor-
mance when the network is attacked. MA-sim and GA are inferior. It is worth mentioning
that in the SW network with 100 nodes, the influence propagation performance of the
seed set selected by the MA-sim is slightly better than that of the seed set selected by the
RIMMA, which may be caused by the small scale of the network and the unique neighboring
connected structure of SW networks. The convergence process of the three evolutionary
algorithms is further analyzed. Figure 11 shows the convergence curves of the three algo-
rithms on SF networks with different scales. For large-scale or small-scale SF networks
and ER networks, the performance of the initial seed set selected by RIMMA is significantly
better than the sets selected by the other two evolutionary algorithms due to the addition
of diversified structural information in the initialization, and RIMMA maintains superiority
over the whole evolution process. The advantage of RIMMA is not so marked compared
with other networks on SW networks, but the algorithm is still effective for selecting pow-
erful seeds. In general, the experimental results verify that the RIMMA can be well applied
to common synthetic networks with different scales, and the generality is considerable.
The computation time of each algorithm is shown in Figure 12 compared with the other
three algorithms, RIMMA is computationally expensive. However, the experiments prove
that these excess costs are reasonable, and RIMMA provides a more competitive solution
for decision makers.

Figure 11. The evolution process of three evolutionary algorithms on (a) large-scale SF network,
(b) small-scale SF network, (c) large-scale ER network, (d) small-scale ER network, (e) large-scale SW
network, (f) small-scale SW network.
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Figure 12. Result of computation time for the four algorithms in SF network with 100 nodes.

5.2. Experiments on the Realistic Land Transportation Networks

In order to further verify the performance of the algorithm, two real-world networks
are selected in this section, and the above five algorithms are used to select seed sets to
make comparisons. The first is a logistics transport network in a certain area of Berlin,
denoted as GB [38]. This network consists of 224 nodes and 376 edges, where each node
represents a freight station and each edge represents a viable transportation route between
freight stations.

The second is a larger-scale robot network based on the existing robots in Sun Yat-sen
University as shown in Figure 13. According to the distribution, it can be divided into
two types: random distribution and cluster distribution. The random robot network is
denoted as GR1 and the cluster robot network as GR2, which both consist of 200 nodes. In
these networks, each node represents a robot, and each edge represents the communication
between robots. Different from other networks, the communication between nodes in a
robot network is closely related to the distance between nodes. In other words, due to
physical equipment, two robots cannot communicate with each other when they are far
apart unless the distance between two robots is within a threshold range.

Figure 13. Wheel mobile robots (TurtleBot2) in Sun Yat-sen University.

Figure 14 shows the experimental results of tested algorithms on three realistic net-
worked systems. More specific performance of each algorithm is shown in Table 3. It can
be concluded that RIMMA is also superior over the other four algorithms in the experiment,
and seeds selected by the algorithm can achieve the maximum propagation when the net-
work is under attack. Note that the performance of GA is better than MA-sim in GR1 and
GR2. This may be due to the particularity of the robot network connection, which limits the
effectiveness of the global search operator in MA-sim. The local search operator in RIMMA
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can effectively find seeds with considerable propagation performance. Figure 15 shows the
topological structure of GR1 and GR2 robot networks, in which the blue diamonds represent
the selected seeds, from which we can see the structural characteristics of seeds with robust
influence ability. One feature is that the degree of seeds is relatively smooth. If two seeds
are closely connected, the generated influence may be overlapped, which tends to cause
duplicated transmission resources. Due to the limited number of seeds, inactive seeds in
other areas may not be handled. Secondly, the proportion of seeds with a large degree is
small. As the target of malicious attack is to remove hubs in the network first, such nodes
thus cannot achieve the spreading task and the obtained Rs value tends to be inferior.

Figure 14. The Rs performance comparison of five algorithms on three networks.

Table 3. Rs performance comparison of seeds selected by different algorithms on three realistic
networks.

NETWORK N RIMMA MA-SIM GA SAA DBA
GB 224 10.30328 10.30262 10.30187 10.19373 10.14699
GR1 200 10.61319 10.60826 10.61282 10.49883 10.12651
GR2 200 10.87442 10.87051 10.87071 10.64649 10.20853

Figure 15. The topologies of robot networks and seeds selected by RIMMA.

Experiments on three realistic networks further demonstrate the effectiveness of
RIMMA, and also reveal that the proposed algorithm can provide some countermeasures
for decision makers to solve realistic problems. For the Berlin logistics network, robust
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influential seeds can serve as an alternative solution to improve the overall transportation
efficiency when attacks happen. For the robot networks, the seeds selected from the network
are generally the key robots. These robots are crucial to complete the communication and
information interaction tasks between robots under situations such as structural attacks and
other emergencies. In summary, the RIMMA designed in this paper can effectively solve the
problem of robust influence maximization, whether for some common artificial synthetic
networks of different scales or some actual networks. On the other hand, the significance of
determining seeds with robust influence ability is also shown in some real-world systems.

6. Conclusions

In this paper, based on the existing research on network influence maximization, the
concept of robustness was introduced, and the problem of robust influence maximization
was defined. Considering the challenges and problems in the land transportation network,
the selection strategy on critical nodes under structural damage was studied. Both the in-
formation diffusion process and structural perturbances were considered, and the ultimate
goal was to find seeds with robust influence ability against structural damages. Firstly, the
IC model was adopted to simulate the diffusion process, and the 2-hop influential range
of seeds was concentrated. Referring to the existing literature, an evaluation factor was
designed to numerically evaluate the influence propagation performance of seeds under
attacks. Then, RIMMA was designed to solve the robust influence maximization problem.
The algorithm fully considers the optimal information from both neighboring and global
areas, and the seed set with the maximal robust influence in the network is expected. Finally,
experimental results on synthetic networks and realistic networks revealed that the perfor-
mance of RIMMA is competitive compared with existing algorithms, valuable candidates
are obtained for decision makers. The results provide references for solving problems such
as knowledge mining, system control, and emergency management of several networks,
which contribute to the development and application of land transportation systems.

In the future, there are still several difficult problems that can be further studied. First
of all, the propagation model employed in this paper is the IC model. More propagation
models such as the WC model and the LT model are to be studied. Then, many parameters
in the experiments are configured as fixed values, including the damage ratio ρ in the
measure Rs. Consequent studies on the problem of RIM with uncertain parameters are
desired. Finally, how to solve the problem of robust influence maximization in complicated
systems such as the multiplex network [39] and the interdependent network [40] are also
worthy of further investigations.
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