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Abstract: This paper presents a comprehensive overview of current deep-learning methods for
automatic object classification of underwater sonar data for shoreline surveillance, concentrating
mostly on the classification of vessels from passive sonar data and the identification of objects of
interest from active sonar (such as minelike objects, human figures or debris of wrecked ships). Not
only is the contribution of this work to provide a systematic description of the state of the art of this
field, but also to identify five main ingredients in its current development: the application of deep-
learning methods using convolutional layers alone; deep-learning methods that apply biologically
inspired feature-extraction filters as a preprocessing step; classification of data from frequency and
time–frequency analysis; methods using machine learning to extract features from original signals;
and transfer learning methods. This paper also describes some of the most important datasets cited
in the literature and discusses data-augmentation techniques. The latter are used for coping with the
scarcity of annotated sonar datasets from real maritime missions.

Keywords: deep convolutional neural networks; underwater acoustics; objects’ classification

1. Introduction

The importance of developing accurate automatic object classification methods for
underwater sensor data in general, and Sound Navigation and Ranging (sonar) data in
particular, is directly related to the variety of potential applications depending on them.
Examples of marine classification tasks include the inspection of underwater structures
for the offshore industry [1,2], the identification of underwater archaeological remains [3],
the surveillance of shorelines [4], counting and classifying the behaviour of marine life for
biological research [5] and the identification of vessels [6] to cite a few. Acoustic signals in
the sea also mean environmental pollution affecting marine life [7–9] and humans where
ships are nearby port areas [10–12]. However, the present paper is only concerned with
object detection and classification from sonar data. Traditionally, human sonar operators
have been primarily responsible for this task. When it comes to computer analysis, early
work in this field predominantly comprised time–frequency analyses, such as the use
of Fourier transforms to temporal data segments [13]. In contrast, most recent work is
based on the application of deep-learning methods to accomplish this task in an automatic
way [14–16]. Due to the rapid development of this field in recent years, a systematic review
of deep-learning methods applied to the classification of underwater acoustic data is a
timely and relevant task.
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This paper presents an up-to-date literature review of current deep-learning meth-
ods for automatic object classification using underwater sonar data for the surveillance
of littoral waters. Therefore, this paper will concentrate mostly, but not solely, on the
classification of vessels from passive sonar data and the identification of objects of interest
from active sonar (such as minelike objects, human figures or debris from wrecked ships).
In general terms, the contribution of this work is to provide a systematic description of
the state of the art of this field, highlighting important methods, strategies and published
results in the classification of acoustic underwater signals by current machine-learning
methods. In particular, this review identifies five main strategies cited in the current litera-
ture on the subject: the application of Deep Learning (DL) methods using convolutional
layers alone (Section 3.1); DL methods that apply biologically inspired feature extraction
filters as a preprocessing step (Section 3.2); classification of data from frequency and time–
frequency analysis (Section 3.3); methods using machine learning to extract features from
original signals (Section 3.4); and transfer learning methods, that aim to use pretrained
models fine-tuned with small sonar datasets (Section 3.5). This paper also describes the
various datasets cited in the literature (Section 4), and discusses the desired features that a
dataset should have to push forward the research boundaries of this field. There is a clear
scarcity of publicly available, labelled datasets of underwater acoustic signals, preventing
reproducibility and repeatability of the results, greatly hindering the development of this
field (in contrast with the fast progress of image classification in the past few years [17]).
In order to cope with this issue, and also with the complexity in obtaining sonar data from
real maritime missions, besides the use of transfer learning, various data-augmentation
techniques are described in the literature (summarised in Section 4.1). Early techniques and
datasets used in this task have been summarised previously in [14–16,18], and the present
survey contributes to this group by collating the main ingredients needed to accelerate the
development of this area, namely, an up-to-date account of the current methods, existing
datasets, and a summary of techniques commonly used for solving the small sample size
problem: data augmentation and transfer learning.

The next section introduces the background knowledge on the physics of underwater
acoustics (Section 2.1), classic sound processing methods (Section 2.3), and Deep Neural
Networks (Section 2.4), that constitute the context in which research on the classification of
underwater acoustic data is developed.

2. Background Knowledge

This section presents a summary of underwater acoustics, classic signal process-
ing methods and general deep-learning algorithms. These constitute the background
knowledge needed to understand and analyse the current methods for the autonomous
classification of underwater sonar data in the maritime domain.

2.1. Underwater Acoustics

The acoustic signal produced by a vessel moving in the sea is mainly composed of a
broadband component (with a continuous spectrum), that is generated by the propeller and
its hydrodynamic interactions; and a narrow band component (whose spectrum consists
of line components at discrete frequencies), owing to the propulsion system and other
mechanical parts [19]. The automatic classification of this type of signal is a challenging task,
as the signal is also dependent on the vessel’s speed, the age and state of the propulsion
system, the highly variable background noise and the diversity of sound propagation
mechanisms in the ocean. The latter aspect is also a source of complexity in active sonar
applications. As identified in Section 3 below, the characteristics of sound propagation
underwater, however, are largely ignored in most literature concerning machine-learning-
based underwater acoustic signal classifiers, even though it is essential for interpreting
the accuracy of the classification results. In order to provide an appropriate context for
this issue, this section presents a brief summary of underwater acoustics, mainly based
on [20–22].
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Sound propagation in the ocean is dependent on properties of the water column
(temperature, salinity and pressure) and effects related to the ocean floor (scattering and
reverberation). For a temperature T (measured in Celsius), a depth below the surface z
(in meters) and salinity S (parts per thousand), the sound speed (c) in the ocean can be
represented by the following equation [21]:

c = 1449.2 + 4.6T + 0.055T2 + 1.39(S− 35) + 0.016z. (1)

Equation (1) is one possible way of defining the dependency of the speed of sound
with oceanographic variables, other formulations are presented in [23].

Sound rays respect Snell’s law of refraction, which expresses that the rate between the
cosine of the ray angle θ(z), with respect to the horizontal plane, at local sound speed c(z)
and depth z, is constant:

cosθ(z)
c(z)

= constant. (2)

Therefore, a negative sound–speed gradient (e.g., in a thermocline) causes sound rays
to bend downwards; the opposite happens with a positive gradient (e.g., in deep ocean
where changes in pressure are greater than changes in temperature). In other words, sound
bends toward regions of low sound speed [20]. This implies that distinct sound profiles
should be considered for warmer and colder geographic regions, time periods of the day or
seasons of the year. Ocean volume also causes attenuation of the sound signal, which is
directly proportional to the acoustic frequency.

In more general terms, the influences of oceanographic properties on the sound
propagation paths can be classified into three basic classes: very short range, deep water,
and shallow water propagation [20]. Very short range propagation includes the direct path and
the surface reflected path, the former refers to sound waves that travel without interacting
with the sea surface or bottom; the latter refers to sound waves that are reflected by the
air–sea interface. The interference of these two paths creates the so-called Lloyd mirror
pattern [24], which makes object detection and classification in shallow waters (such as in
a harbour or port) a challenging task [25]. Deep water (or long range) propagation paths
can mostly be characterised by Snell’s law of refraction, apart from the bottom bounce effect,
in which sound rays are reflected by the ocean floor in a process that is dependent on
the signal frequency and that is also sensitive to seabed characteristics. In shallow waters
(depths up to a few hundred meters from the surface to the ocean bottom), the effects
of surface reflection, bottom bounce and distinct temperature regimes in distinct seasons
have to be taken into account. During the summer period, following Snell’s law, sound
rays bend more toward the bottom than during the winder months, this implies that the
bottom bounce effect is more prominent during the hotter periods of the year, and therefore,
the sound propagation in shallow waters has higher losses in the summer than during the
winter. The rough winter surface conditions also have to be considered, as they generate
large scattering losses at high frequencies, since more energy is needed to maintain the
mechanical vibrations in these situations [22].

Scattering, due to rough boundaries or small obstacles, is another process that causes
loss in the acoustic signal. In contrast to reflection, scattering happens with wavelengths
at the order of the obstacles, causing parts of the acoustic field to be randomised [26].
Scattering due to rough surfaces cause a frequency-dependent attenuation of the acoustic
field, whereas volume scattering (usually due to near-surface bubbles, bubble clouds or
biological obstacles, such as air-filled swim bladders and zooplankton) decreases with
depth and presents variations at distinct periods of the day [20].

Classical signal processing methods, such as cepstral analysis [13], are able to attenuate
some of the effects of reflection interference and scattering losses, but only at short ranges
with a high signal-to-noise ratio [25]. Nevertheless, these effects represent some of the main
challenges for sonar systems (briefly introduced below), and they should be considered in
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the evaluation of any underwater acoustic classifier, since misclassifications are likely to
result if the confounding effects of temperature, depth and boundary conditions are not
taken into account by the system.

2.2. Sound Navigation and Ranging (SONAR) Systems

In general terms, a sonar system consists of a sensor, or an array of sensors (hy-
drophones, that are essentially transducers or underwater microphones), converting acoustic
pressure underwater to electrical voltage [21].

Passive sonar systems detect acoustic signals emitted by objects of interest (ship’s
propellers, seismic/volcanic or biological signals, for instance). The application of these
systems assumes that all the information necessary for the detection, classification and
tracking of underwater objects is available in the signal emitted by the objects themselves.
Active sonar systems, on the other hand, have sound projectors that are transducers,
converting electrical voltages to acoustic pressures. These projectors emit acoustic pulses
(called transmit waveform), whose reflections are measured by the hydrophones. In these
systems, the information necessary for achieving the inferential objectives reside in the
reflection and scattering that the original signal suffers upon interacting with objects in
the environment.

Any sonar application (involving machine-learning processing or not) should take
into account the limitations of the sensing apparatus. Usually, this is measured by ac-
counting for each part of the system, including the system’s components, the effects of the
underwater environment, and the characteristics of sound or scattering from the target.
This accountability is summarised in sonar Equations (3) and (4) [21], resulting in the
Signal-to-Noise Ratio (SNR) of the system. For a source level (SL), a propagation loss (PL),
a noise power level in the processing band (NL) and an array gain (AG) (all measured in
decibels), the basic passive sonar equation is given by:

SNRPassive = SL− PL− NL + AG. (3)

The basic active sonar Equation (4) also takes into account the target strength (TS),
and the propagation losses from the sound projector (PLa) and from the object of interest
(PLb), considering SL as the source level of the sound projector:

SNRActive = SL− PLa + TS− PLb − NL + AG. (4)

While (3) and (4) somewhat incorporate the main underwater sonar sensing variables,
including temperature, depth, salinity, air–sea and bottom–sea interfaces, rough boundaries
and biological obstacles, most existing research on the application of machine-learning
methods for the classification of underwater acoustic data (as we shall see below) ignores
these effects, and does not evaluate the classification tasks with respect to the performance
of the sonar system in distinct oceanographic situations.

Ignoring these variables limits the use of ML methods in applications that demand a
high-level of trust, such as in defence systems or in the inspection of underwater built struc-
tures (such as deep-sea mining facilities). In these applications, classic acoustic processing
strategies (not involving machine-learning algorithms) are still the first-choice methods
because these effects can be explicitly accounted for.

A review of the literature on classic acoustic signal processing strategies for sonar
data is outside the scope of this paper. However, as some machine-learning algorithms
use these methods to preprocess the data, a few basic concepts pertaining to them are
introduced below.

2.3. Main Concepts in Classic Acoustic Processing Methods

Acoustic signals can be understood as one-dimensional signals that oscillate in ampli-
tude through time. Besides the many applications that can be developed using the temporal
information of audio signals, some characteristics of this kind of data are best obtained
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in the frequency domain. In the particular case of underwater acoustic signal processing,
the frequency domain is usually more informative [21]. To this end, Fourier transforms
(FT) are used to obtain the frequency content of a time-domain signal [27]. The result of an
FT on an autocorrelation function is called power spectrum that, informally, represents how
much of the original signal is at a particular frequency.

Features related to amplitude and frequency can be directly analysed from the power spec-
trum, but the information of how the frequency varies with time is lost in this representation.

To fill this gap, two-dimensional time–frequency features can be extracted by passing
a windowing function through the time signal and extracting the FT for each window of
the original data. This procedure is called Short-Time Fourier Transform (STFT), and the
unified resultant output is called the spectrogram of the signal. Spectrograms are typically
plotted with time on the x-axis, frequency on the y-axis and magnitude on the z-axis. They
can be thought of as a series of time-segmented FTs put in chronological order. The analysis
of the harmonic behaviour of this spectrographic data is also an important feature for
sound analysis in general [28–30], and can be obtained with the extraction of their cepstrum
representation. The cepstrum is the result of the inverse FT of the signal spectrum logarithm,
and is used to obtain the periodic structures in spectra [31]. The cepstrum is also commonly
understood as the power spectrum of the logarithm of the power spectrum [21]. As the
term cepstrum is a reversion of the first syllable of spectrum, operations on cepstra are also
known as quefrency analysis (a semireversed spelling of frequency) [32].

Although acoustic signals are commonly represented as a one-dimensional continuous
time series, humans do not perceive sound as a linear progression across frequency [33].
The Mel scale [34] is a logarithmic scale, emphasising low-frequency signals over high-
frequency ones, and it is sometimes used for acoustic signal representation, aiming to
mimic the human aural perception. On this scale, spectra represent the frequency features
closer to the way sound is perceived by humans. Additionally, the frequency variations
can be represented using the cepstrum of the Mel scale. The coefficients extracted from
that cepstrum are called the Mel Frequency Cepstrum Coefficients (MFCC). The general
process to extract MFCC from input signal is described in detail in [35]. Informally, MFCC
is obtained by first sampling the original signal, then extracting the amplitude spectrum of
each sample. After this process, the signal amplitude is converted to a logarithmic scale
and also converted to the Mel scale. Finally, a discrete cosine transform (DCT) is taken to
obtain the final form of MFCC.

Due to the fact that FT is composed of a sum of sinusoidal functions, this representation
is not well-localised in time and space, since sine waves are functions with infinite duration.
The wavelet transform was introduced to improve the representation of signals that have
abrupt changes in time and space domains. A wavelet is a wave whose oscillation has
a finite duration, which is defined in time, and has a zero mean [36]. Wavelets can be
represented in many different formats, such as morlet, mexican hat, biorthogonal and
others. Using the concepts of scaling, representing the frequency and duration of the
wavelet, and shifting, representing the time positioning of the wave, this representation
can capture both, high- and low-frequency features. The output of a wavelet transform
is a matrix whose coefficients are functions of the scale and time information. Wavelet
decomposition has proven to be suitable for analysing signals that contain information at
different frequencies and time [37–39].

In the field of digital image processing, one common strategy used for texture analysis
is the application of Gabor filters, which are linear filters that behave as a band pass,
extracting frequencies in specific directions according to predefined kernels. There is some
evidence that certain cells in the mammalian visual cortex (responsible for the perception
of texture) can be approximated by such filters [40]. A common recent strategy in the
definition of computational models of perception is to use Gabor filters as low-level visual
primitives. Inspired by visual perception, some recent methods in acoustic processing use
Gabor-filter banks on the sound spectra as a preprocessing step, achieving accurate results
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on acoustic processing tasks, such as the classification of environmental sounds [41], music
genre recognition [42], and speech analysis [43,44], to cite a few.

When applied correctly, time–frequency analysis can yield useful insights into data. It
does this by extracting and emphasising important signal characteristics, such as how fre-
quency components (spectrogram) or harmonics of the frequency components (cepstogram)
change over time. However, these approaches are nothing more than changing the way
the data are represented and presented. They do not perform any sort of classification or
categorisation of the information within the data. Traditionally, these higher-level pattern-
matching tasks were performed by humans or basic linear or statistical models. However,
over the last few years, machine learning in general, and neural networks in particular,
have become the dominant way to classify patterns in noisy data. The following section
will cover the basic understanding of deep neural networks.

2.4. An Informal Introduction to Deep Neural Networks

There have been significant recent developments in Deep Learning (DL) methods,
mostly pushed by object detection and classification in images [45,46] and visual question
answering [47]. Spectrographic (and cepstographic) representations of acoustic data are
analogous to visual images in that they represent a signal across two dimensions (x, y
spatial dimensions for images and time, frequency for spectrograms). Therefore, in order
to introduce applications of DL in the classification of sonar data, a brief introduction to the
application of these methods in image classification is in order.

The goal of object detection is to find instances of specific object classes in multiarray
inputs, including colour images, videos, images from EM spectra or from other sources.
Although this task is mainly investigated in the domain of computer vision [17], recent
advances in Neural Network (NN) architectures, specialised in processing visual inputs
(most notably Convolutional Neural Networks (CNN) [48]), have motivated the creation
of new methods which have vastly improved the results of existing object detection and
classification challenges [49]. Furthermore, many datasets of annotated images are readily
available online, such as MS-COCO [50] and ImageNet [51], enabling the fast benchmarking
of new methods. The open source availability of large, annotated image datasets has
provided the appropriate basis for the rapid development of this field [52].

Informally, a CNN [53,54] extends the concept of an Artificial Neural Network (ANN)
by adding a set of layers that function as feature filters (the convolutional layers), that, by en-
hancing specific aspects of the input, learn the features to be classified. More specifically,
a CNN is usually structured in many stages. Initially, the input data are processed by
a sequence of layers of two types: convolutional and pooling. The convolutional layers
compute a sum of products, named convolution, with their input and a set of kernel weights,
called receptive fields. This operation is applied at every spatial location of each element of
the input data using a number of spatial increments called strides. A bias (or y-intercept)
value is added to the result of this operation at each location, and the final value obtained is
passed through an activation function. This is used to generate an input to the next layer as
an array called feature map. Feature maps represent the extracted features from the original
input (e.g., edges, points or blobs, considering images). Pooling layers are responsible for
merging similar features by a subsampling process. Usually, the final stage of a CNN is a
traditional, fully connected neural network, that learns class probabilities for the features
picked out by the convolutional layers. The learning process of CNN occurs as an extension
of back-propagation in fully connected neural networks, which propagates the gradient of
an objective function through all the NN parameters (weights). This procedure is computed
by gradient descent, for which various optimisation methods exist (such as Stochastic Gra-
dient Descent (SGD), minibatch gradient descent method (MSGD), and Adaptive moment
estimation (ADAM), amongst others [55]). A more complete, up-to-date introduction to DL
and CNNs is described in [52].

Most deep-learning models for object recognition that exist today are variations of the
basic CNN structure briefly explained above, with a distinct number, type and distribution
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of convolutional and pooling layers, or with some extra constraints on the way data are
processed. There are three most-prominent CNN architectures that have a considerable
influence on the image-classification area: AlexNet [56]; VGGnet [57]; and ResNet [58].

The AlexNet model [56] was proposed to solve the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [49], a competition for automatic object detection and
classification based on the ImageNet [51] database. The model achieved an accuracy that
was more than 10% better than the other state-of-the-art proposals in the competition.
The original AlexNet architecture was composed of eight layers with learnable parameters,
comprising five convolutional layers (with kernel sizes of 11 × 11, 5 × 5, 3 × 3, 3 × 3,
3 × 3), with layers one, two and five each followed by a Max Polling layer, and finally
three successive fully connected layers. One of the major contributions of this model is the
use of the Rectified Linear Units (ReLu) function as the activation layer. Before AlexNet,
the most commonly used activation layers were based on sigmoid functions and tanh
functions. ReLu offered a significant improvement in training time, as it is a simple
max {0, x} function that presents a solution to the Vanishing Gradient (VG) problem [59].
As the Deep-Learning Networks go deeper (increasing the number of layers), there is a
tendency for the value of gradients in the back-propagation algorithm to decrease. Due
to the limits of sigmoid (0 to 1) and tanh (−1 to 1), the values of the derivatives become
closer (but not equal) to zero, which causes the weight updates to be smaller as the error is
propagated through the network, impacting the ability of the first layers to find appropriate
weights in reasonable computational time. The ReLu function does not have the same
limitation, since it has gradient of 1 when its input is greater than zero, and 0 otherwise,
and so the back-propagation value does not diminish as it moves through the layers of
the network.

To improve the convergence time of AlexNet, the VGGnet (or simply VGG) [57]
was proposed to cope with the need to reduce the number of parameters necessary to
obtain each feature map. The idea underlying this model is that the features that are usually
learned with larger kernel sizes could be reproduced using a combination of smaller kernels
(e.g., 3 × 3), reducing the number of parameters to be computed. This implies a reduced set
of parameters, representing a faster execution and an improved robustness to overfitting.
As we shall see later in this survey, VGGnets seem to be the model of choice in most work
on the classification of objects from sonar data, as they present a good trade-off between
classification accuracy and hyperparameter complexity.

Although the use of ReLu activation functions greatly improved the robustness of
deep-learning models with respect to the VG problem, DL models were still difficult to
train, and the accuracy of deeper models failed to perform better than shallower networks.
ResNet [58] addressed this problem by introducing an identity shortcut connection between
the convolutional layers. This identity shortcut connection is used to skip one or more layers,
sending the output of previous layers to some layers ahead. This model is based on using a
copy of the input data as base elements for the output values, forming a set named residual
blocks. Residual blocks are composed of two sequential weight layers and one shortcut
(identity layer) which connects the input directly to the output of the block. Sometimes,
the weight layers, which can be convolutional, will not have the same dimensions, so a
different type of shortcut is used, such as a convolutional with size reduction or even a
padding applied on the input feature. The residual blocks aim to solve the degradation
problem. This states that the accuracy function increases with the network depth only up
to a certain number of layers, after which, adding more layers to the network causes the
accuracy to decrease and the loss to increase relative to the shallower network. This is due
to the complexity present in deeper models, which impacts the learning ability of the back-
propagation algorithm. Identity shortcuts affect the updating of weights in the intermediate
layers (those that are in parallel with the identity), generating an adaptability of the learning
process only in cases where accuracy is improved. Thus, only the relevant layers (in terms
of accuracy improvement) are considered in the final forward-pass of the trained network,
and those layers that cause degradation generally converge to zero weights.
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Another issue that any work in DL should consider is overfitting, which occurs when
this model fits exactly with its training data, but does not generalise well to data outside the
training set [60]. There are numerous strategies to tackle this issue, such as early stopping
(stop the training before the model incorporates noise); expand the training set (more data
implies a more accurate model); feature selection (this identifies the most relevant features
to be learned, ignoring redundant ones); ensemble methods (that aggregate the output of a
set of classifiers, selecting the best output by a voting process); and, finally, regularisation
(that, in general, limits the amount of variance in the model by penalising input parameters
with large coefficients). Regularisation methods have received great attention from recent
studies [61], since they are solely related to the algorithms, and not to data quality or
classifier competitions. One particular regularisation method worth mentioning in this
review is Dropout, that ignores randomly chosen neurons (with a certain probability) during
the training phase, so that a reduced network is obtained as a result. This strategy reduces
the possibility for codependency among neurons, which is one factor that causes overfitting.

In the object-detection area, however, there are numerous architectures available that
are also used for underwater acoustic signal processing. A useful method for grouping
generic object-detection methods is to categorises them into two groups: one-stage detectors
and two-stage detectors, as described below.

The one-stage detector category [62] includes algorithms such as You Only Look Once
(YOLO) [63] and the Single-Shot multi-box Detector (SSD) [64], that use a single CNN to
predict the bounding boxes locations, as well as the class probabilities of objects of interest.
The original YOLO algorithm applies a single neural network to the input image. This
network divides the image into a grid, while also generating bounding boxes using that grid
as a base. Once the bounding boxes have been generated, class probabilities are assigned
to each of them. In this way, YOLO considers the whole image at test time, making its
predictions dependent of the global context depicted. In addition, the detection problem is
treated as a regression, simplifying the pipeline, prioritising performance. More recently,
new versions of the YOLO algorithm have been released (e.g., Fast YOLO [65], YOLOv2 [66],
YOLOv4 [67] and PP-YOLO [68]) with increasing accuracy and processing speed.

Another neural network that fits into the one-stage detector category is the Single-Shot
Detector (SDD) [64], which attempts to balance high accuracy and performance on object
detection based on a feed-forward convolutional network. The model is based on the VGG
convolutional neural network [57]. The SSD model extends VGG-16 with six additional
convolutional layers, each producing feature maps at the scale of the targets. The additional
layers defining an SSD model detect and classify large objects using feature maps of low
resolutions, whereby high-resolution maps are used to detect and classify smaller objects.

In two-stage detectors, the system undertakes two distinct functions: the detection
of regions of interests and the classification of objects in the regions of interest. The algo-
rithm called Regions with CNN Features (R-CNN) [69] falls into this category, as well as
its variation Fast R-CNN [70] that, instead of selecting regions from the input, generates
regions from the convolutional feature maps. Fast R-CNN is faster than R-CNN since in
the former the feature map is generated only once, rather than for every region selected
(as imposed by the latter). The Faster R-CNN algorithm [71] eliminates the selective search
method used in both R-CNN and Fast R-CNN, and uses a separate CNN (called Region
Proposal Network (RPN)) to predict region proposals directly from the convolutional feature
maps. The major contribution of these methods is the improvement of the accuracy and
performance combined.

2.5. Neural Networks for Data Generation and Data Simplification

Two important classes of neural networks (that are largely outside the class of CNNs),
Autoencoders (AEs) and Generative Adversarial Networks (GANs), are used to solve a
variety of tasks related to the automatic classification of underwater acoustic data, as they
are typically applied to generate data analogous to training data, rather than to classify
objects of interest within the data.
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In many instances, input data are a combination of an underlying pattern (signal)
contaminated with noise. Noise is essentially uncorrelated with signal, thus with enough
examples it is theoretically possible to abstract out desired patterns from noisy data. Au-
toencoders (AE) are an example of a NN model that executes this task [72,73]. Briefly, an AE
attempts to replicate the components of the input that represent the common patterns,
or signals of interest, while ignoring noise. In this way, AEs are more akin to a nonlinear de-
noising filter than a classifier since they do not attempt to categorise components within the
input data [74]. Furthermore, AEs are an example of self-supervised learning (even though
they are trained by means of supervised learning methods) since they do not need labelled
input data to train from as they merely try to replicate a lower dimensionality/complexity
version of the input. Since they can remove noise and simplify data, AEs can be used as a
preprocessing step before a classical classifier (such as a SVM) [75] or even as components
within a deep CNN [76,77].

Generative Adversarial Networks (GANs) [78] are two component deep neural net-
works that may or may not have convolutional layers. The first component, called generator,
is trained to reproduce the patterns observed in the input data, generating as output syn-
thetic data points that could have been part of the input (training) set. The other component,
called discriminator, is trained to determine if the input is from the real dataset or synthetic
data from the first GAN component. The two components making up the GANs architec-
ture are trained simultaneously in a two-player adversarial zero-sum game. The training
of a GAN stops when the discriminator classifies as real most of the synthetic examples
generated by the generator, meaning that the first component is reliably creating data that
are indistinguishable from the training set. Recently, GANs have been used as an important
data-augmentation strategy, generating new datasets for training underwater acoustic
object classifiers, as we shall see further in this paper.

2.6. Evaluation Metrics for Detection and Classification

Results of ML classification procedures in general (and detection in particular) can
be summarised by a confusion matrix, which is a two-dimensional matrix representing
in one of its dimensions (usually its rows) the correct instances of each class, whereas the
other dimension (usually its columns) represents instances of the predicted class. In a binary
classification task, with a distribution of P real positive instances and N real negative
instances, the entries in a confusion matrix represent the number of true positives (TP)
(correct predictions of the positive class, shown in its main diagonal); true negatives (TN)
(correct predictions of the negative class); false positives (FP) (wrong predictions of the
positive class); and, false negatives (FN) (wrong predictions of the negative class). The most
usual metrics for evaluating a classification task are based on calculating rates from subsets
of these values, such as accuracy ( TP+TN

TP+TN+FN+FP ), that measures the overall portion of
correct classifications; precision, ( TP

TP+FP ) that is the fraction of correct positive instances
identified by the classifier over all instances identified as positive for each class; recall,
or sensitivity ( TP

TP+FN ), that measures the fraction of correct positive instances identified by
the classifier over all positive instances for each class; among others [79,80]. The F1 score
provides the weighted harmonic mean between precision and recall. Another important
factor for evaluation purposes is the concept of support, which is the number of instances of
each class in the test dataset (an imbalanced support has to be corrected, e.g., by sampling
or rebalancing, in order to avoid bias in these metrics). These concepts can be extended
to multiclass classification tasks by microaveraging or macroaveraging. The latter treats all
classes equally by calculating the metrics for each class independently before taking the
average, whereas the former averages over the combined contributions of all classes [80].
The area under the precision–recall curve for each class gives another important metric
called Average Precision (AP), whereas the Mean Average Precision (mAP) score is obtained
by taking the mean of AP over all classes.

These traditional metrics, however, propagate the underlying biases, ignore the trust-
worthiness of negative instances and do not take into account the chance-level
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performance [79,81]. Other common metrics that partially solve these issues include Co-
hen’s Kappa coefficient [82] and Mathews Correlation Coefficient (MCC) [83]. Cohen’s
Kappa coefficient represents the degree of agreement between two predictors (or raters),
calculated by means of the Accuracy (Acc) and the random accuracy (RA) (which is the
agreement with a random classifier): (Acc−RA)

(1−RA)
. The random accuracy can also be calculated

using a confusion matrix:

RA = p1 p2 + (1− p1)(1− p2), where

p1 =
TP + FN

TP + FP + TN + FN
and

p2 =
TP + FP

TP + FP + TN + FN
.

Cohen’s Kappa is an useful metric for imbalanced datasets; however, the interpretation
of its value is problematic [84].

Mathews Correlation Coefficient (MCC) measures the differences between actual and
predicted classes in a way that is analogous to χ2 statistics applied on a confusion matrix:

MCC =
TN · TP− FN · FP√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
.

MCC is a more reliable metric, whereby a high score is assigned only if the prediction
was correct for the four base categories (TP, FP, TN and FP), taking into account the size
of P and N [85]. We omitted from this overview the metric known as Area Under the
Curve (AUC), which captures in a single value the Receiver Operating Characteristics
(ROC) curve. Although AUC has been used to classify the accuracy of target detection
algorithms [86], its extension to the analysis of multiclass classification is currently not
totally understood [80,87].

Recently, Powers [79] argued that the notions of informedness and markedness over-
come the issues related to most common metrics, such as accuracy, precision, recall and
other related concepts. In its simplest form, informedness (or bookmarker informedness—
BI) ( TP

TP+FN −
FN

TN+FP ) measures how informed the rater is about true positives and true
negatives (BI is recall with a correction for the negative instances); whereas markedness
( TP
(TP+FP) −

FN
TN+FN ) measures how trustworthy the system’s predictions are (which is basi-

cally precision with a correction to account for the negative instances). The notion of area
under the sample complexity curve (AUSCC) was recently introduced in [88] to provide
an unbiased evaluation of ML models for the classification of underwater acoustic signals,
taking into account the sample sizes per class. AUSCC is defined by the area under the
curve, representing mean accuracy with respect to the number of samples in the training set.

Sokolova and Lapalme [80] present an analysis of 24 evaluation metrics for ML clas-
sification tasks, showing the existence of invariance properties across the metrics. These
properties allowed the definition of a taxonomy matching the appropriate metrics with
qualities of the datasets, such as representativeness of class distribution, reliability of class
labels, and the unimodality or multimodality of the classes. These findings have yet to be
applied for the evaluation of underwater acoustic automatic classification tasks, whose
current literature (as we shall see later in this paper) assumes accuracy or mAP as the main
evaluation metric.

3. Machine Learning for the Classification of Underwater Acoustic Signals

This section contains a review of the methods used for classification of underwater
acoustic signals. These methods are separated into five main classes: methods that use
convolutional neural networks alone; methods that apply biologically inspired feature-
extraction filters as preprocessing; methods that use data from frequency and time–frequency
analysis; methods using ML models as feature extraction layers; and classifiers based on
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transfer learning. Tables summarising these methods are presented below, relating the
datasets used, the highest test result reported and a short description of the main contribu-
tion of each work.

3.1. Classification Using Only CNNs

Generally, in a time-series classification problem, the strategy is to first transform the
data and represent it as a spectrogram or cepstrogram, then to obtain two-dimensional
features by applying distance-based or feature-based methods [89]. The result of this
process is used as input to a classifier. Although the application of this two-stage approach
is not uncommon in this domain, the use of unprocessed audio signals that are directly
filtered through convolutional kernels is also an option to tackle classification in the acoustic
domain, as summarised in Table 1 and discussed below.

Table 1. An overview of methods for classification using convolutional filters alone. In the ‘Metric’
column, ACCY stands for accuracy.

Reference Network Dataset Metric Main Contributions

Yang et al., 2019 [90] Auditory Deep CNN Ocean Network
Canada signals a 81.96% ACCY

The use of a bank of multiscale deep convolutional
filters as a first processing stage, making possible the
creation of an end-to-end NN.

Hu et al., 2018 [91] CNN + ELM Civil Ship b 93.04% ACCY
The substitution of the final fully connected layer of
a CNN for an ELM classifier, improving the generali-
sation of the model.

Doan et al., 2020 [92] UATC-DenseNet
Real-world passive
sonar data b 98.85% ACCY

The analysis of the use of a number of convolutional
blocks and layers, and different layer configurations
and input features.

Tian et al., 2021 [93] MSRDN Ocean Network
Canada signals a 83.15% ACCY

The development of a deep residual network using
the soft-thresholding proposed in [94] and the con-
volution kernel proposed in [95].

a Dataset uses public data with nonpublic preprocessing techniques. b Dataset is proprietary and unavailable
for reproduction.

An end-to-end NN called “Auditory Perception-inspired Deep Convolutional Neural
Network” (ADCNN) [90] was defined for underwater acoustic target recognition. It used a
bank of multiscale deep convolutional filters as the first stage of the model to decompose the
raw time domain signal into a set of distinct frequency domain signals. Each convolutional
filter was followed by a max-pooling layer and several fully connected layers. After this,
a fusion stage was defined in order to unify those components into a more informative
representation (where the main distinguishing features were prominent). The data flow
then goes through a decision layer, which produces the classification result. This process
can be understood as an adaptive strategy where the subnetworks learn, directly from the
input data, how to extract the intrinsic characteristics of the acoustic signal. The ADCNN
model was able to execute each stage of the data-processing and classification pipeline,
starting from noise decomposition, passing through feature extraction and finishing with
the classification output. In contrast, the decision layer can also be replaced by other types
of classifiers, such as Extreme Learning Machine (ELM) [96], which typically provides good
generalisation performance when compared with densely connected neural networks for
classification. Results presented in [91] show that the resulting CNN+ELM model was able
to achieve a 93.04% recognition rate on a dataset of civil ships, representing an improvement
of, at least, 6.79 percentage points when compared with other approaches that used classical
features as inputs and fully connected layers as classifiers. The final analysis showed that
the features generated by the one-dimensional convolutional layers acted as band-pass
filters, similarly to the ADCNN model.

Similarly, a CNN model called Underwater Acoustic Target Classification DenseNet
(UATC-DenseNet) [92] was designed to classify underwater acoustic targets from raw
audio signals. This model is composed of a deep CNN with dense architecture that was
trained to recognise 12 classes of signals. The dataset used was labelled by a sonar expert,
containing 11 different classes of sounds and one class corresponding to the ambient
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sound. The impact on the final model accuracy was investigated by tuning the number of
convolutional filters, the depth (number of layers) of the neural network model, the different
layer configuration and the different input features. The results reported show that a
particular model architecture (with six convolutional filters with a kernel size of 1 × 15),
using the original sound data as input without preprocessing layers or filters, outperformed
other classical methods, such as CNN-extreme learning machine [91], ResNet18 [58] and
SqueezeNet [97]. The authors claimed that this performance improvement was due to the
fact that the UATC-DenseNet optimised the use of features represented in multiple layers
by an appropriate use of skip-connections (an argument that resembles the justification for
the success of ResNet, cf. Section 2.4). Moreover, this work pointed to an important future
direction that this type of research should take, which is the identification of topologies
and parameters that are more appropriate for this kind of classification problem.

A multiscale residual deep neural network (MSRDN) (inspired by [94]) was developed
in [93] to classify passive underwater acoustic signals by modelling the original signal
waveform directly. The aim of using unprocessed original signal in this work was to avoid
the loss of the waveform fine structure when converting it to the time–frequency domain
and to reduce the dependency of the classification task on the window size of Fourier
Transform (FT) and the hop length of the FT window. Tests using Ocean Networks Canada
(https://data.oceannetworks.ca (accessed on 20 December 2021)) (ONC) public dataset
have shown that MSRDN outperformed other DL methods whose inputs were based on
time–frequency representations.

The gain in the automatic classification of raw audio signal relies on the possibility
of extracting information without imposing any a priori hypothesis on the nature of the
object to be identified and the medium in which it is immersed. This idea was explored
two decades ago, and led to an early US patent [98]. In this work, a system that combines
an unsupervised self-organised mapping (SOM) network [99] with learning vector quanti-
sation (LVQ) [100] was proposed to provide high performance in classifying the roughness
of the ocean floor from raw sonar data. This line of research, implemented in modern
state-of-the-art hardware, which facilitates embedded parallel processing, could lead to
deeper, more frequent instances of SOM networks and finer LVQs, possibly leading to more
detailed representations of the seabed.

Virtually every efficient convolutional neural network in use today was first developed
for image processing tasks. Therefore, most applications of CNNs to acoustic signals
are based on adapting the methods initially developed for images. The development
of dedicated acoustic feature-extraction strategies (using convolutional layers alone) to
process audio signals is still an issue to be explored in this field.

3.2. Classification Using Biologically Inspired Feature Extraction Filters

Using as analogy the methods by which biological systems filter audio signals, a class
of classifiers has evolved that uses bioinspired filters as a preprocessing step for detection
and classification (Table 2).

Table 2. An overview of ML methods for classification using biologically inspired filtering algorithms.
In the ‘Metric’ column, ACCY stands for accuracy, and AP stands for Average Precision.

Reference Preprocessing Network Dataset Metric Main Contributions

Le et al., 2020 [62] Gabor filter
banks

Deep Gabor Neural
Network Australian DSTG data b 79.93%

AP
The use of Gabor filter to extract textures and
outlines from the sonar images.

Shen et al. 2020, 2019,
2018 [101–103] Cochlea model Auditory Inspired CNN Ocean Network Canada

signals a
87.2%
ACCY

The use of Gabor filter layers inspired on the
Cochlea model.

Wang et al., 2018 [104] Mel-filter bank Inception, Xception,
VGG and Densenet Whale FM 84.40%

ACCY
The accuracy comparison of traditional
methods and CNNs for the same scenarios.

Khishe and
Mohammadi, 2019 [105] MFCC Fully Connected Sonar dataset b 97.12%

ACCY
The accuracy comparison of metaheuristic
algorithms and the use of fully connected NN.

Wang et al., 2019 [106] GFCC and
MFCC Fully Connected Six class dataset b 94.3%

ACCY

A combination of MFCC and GFCC was used
as feature extraction showing time performance
improvement.

a Dataset uses public data with nonpublic preprocessing techniques. b Dataset is proprietary and unavailable
for reproduction.

https://data.oceannetworks.ca
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Gabor-like spatial functions were applied as a bioinspired preprocessing stage in [62]
for the automatic detection of minelike objects (MLOs) from side-scan sonar images. This
method not only takes inspiration from the similarity of these functions with respect to
early processing in the mammalian visual perception (cf. Section 2.3), but also from the
fact that convolutional filters in CNNs often converge to Gabor functions [107]. The fea-
tures extracted from these filters are commonly used as inputs for the deep network
models [107,108]. In particular, a Gabor Neural Network (GNN) [107] uses Gabor filters at
the first layers of a CNN, before any more generic convolutional layers, providing a set of
initial features to be classified. The model was evaluated on a dataset of MLOs in sonar
imagery provided by the Australian Defence Science and Technology Group (DSTG) in
a naval mine-shape recovery operation in Australia. On that dataset, GNNs presented a
better performance, with an average precision (AP) of 79.93%, than other state-of-the-art
models, such as R-CNN, Fast R-CNN, Faster R-CNN, YOLOv3, Tiny YOLOv3 and SSD300,
obtaining average precision metrics that varied from 9.41% to 72.76%. Furthermore, the pro-
posed model presented a reduction factor of four with respect to the number of parameters
needed for the other methods. As an end-to-end approach, the GNN represented a fast and
reliable alternative to the other relevant MLO detection methods [109–112]. This was an
indication that constraining certain network parameters, essentially prescribing their shape
rather than using a generic structure, could be beneficial, since this reduces the number
of parameters that need to be trained, hence reducing the amount of training data and
training time required.

Ship-type classification from hydrophone data using CNNs was investigated
in [101–103], where an algorithm was proposed that used a cochlea model to decompose
the acoustic signal into target features. This was implemented as a convolutional layer with
auditory filters that resemble the GNN [62]. The original (nonannotated) data used in this
study is freely available at Ocean Networks Canada (https://www.oceannetworks.ca/
(accessed on 20 December 2021)) (ONC). The results showed that the proposed auditory-
inspired CNN had a high accuracy (87.2%), outperforming a standard CNN (83.2%), a stack
of autoencoders [113] (81.4%) and various traditional object recognition algorithms, such
as a combination of wavelet transform with PCA [114] (74.6%) and a support-vector ma-
chine [115] (68.2%). However, Shen et al. [101] do not report the exact devices that were
used, the precise period of data collection, or the labelled data used. Therefore, even though
the original raw data are freely available, it is impossible to reproduce the results reported
in that work.

The classification of large-scale acoustic signals was evaluated in [104], with a com-
parison among four popular CNN models (VGGnet, Inception, Xception, and DenseNet)
and a classical baseline approach. The main aim of this comparison was to evaluate the
improvement of using CNNs instead of classical acoustic classification methods. Mel-filter
bank features were used to extract features from the signals. As the Mel scale emphasises
lower frequencies over the higher ones (approximating the human auditory perceptions),
using Mel-filter banks resulted in more lower frequency filters than filters on higher fre-
quencies. This work showed that the logarithmic encoding of frequencies produced results
10 percentage points higher than linear encoding, which is further evidence that the use of
preset preprocessing stages can result in improvements over random and generic starting
points for a NN.

As CNNs can be understood as a combination of feature extraction layers (convolu-
tions) and a classifier (the final densely connected layers), a few other recent contributions
investigate the use of a single fully connected neural network to classify passive sonar data,
receiving the extracted features from bioinspired methods as inputs. For instance, a fully
connected neural network was used in [105] to classify data from two hydrophones, picking
out signals from three distinct propellers running on a closed-water circuit cavitation tunnel.
The raw data from the hydrophones were preprocessed into a feature vector formed by
the discrete cosine transforms of the MFCC. The classifier used metaheuristic algorithms
for optimising the weights and biases of the NN, aiming to avoid local minima, while

https://www.oceannetworks.ca/
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accelerating learning convergence. The results presented were only compared with other
metaheuristic algorithms training the same neural network, but not against state-of-the-art
deep-learning methods. The data used are not available to reassess these results, making
reproduction, or even comparison with the performance of modern classification systems,
impossible. Nevertheless, the use of metaheuristics (usually inspired by insect behaviours)
for optimising the NN training opens an avenue for investigating the application of these
methods to finding the optimal structure of a NN, or for fitting the hyperparameters of
more complex architectures [116].

Mel-frequency cepstral coefficients can be used as input to fully connected neural
networks and directed to the problem of underwater acoustic recognition of ship types,
marine mammals and underwater background noise with weak targets [106]. The method
proposed in [106] used a combination of Gammatone Frequency Cepstral Coefficients
(GFCC) and mode decomposition on the MFCC to extract features from the signal, that
were then input to the neural network. Results obtained with this method suggest that by
not using a CNN to learn the features saves computing time, as no redundant features are
generated. However, comparisons were only executed against variations of the authors’
own algorithm, and not with respect to state-of-the-art CNNs.

Much of the work presented in this section was developed following a problem solving
strategy, whose focus is on error minimisation under specific conditions, when the real effort
should instead be employed on a problem understanding approach, where the background
knowledge about the interrelation between environment conditions, SNR, and machine-
learning tools dictates the future development of suitable combinations of filters with
DL models. Nevertheless, in general, the use of bioinspired preprocessing steps in ML
classification procedure has been shown to reduce the complexity of the ML training
procedure, accelerating the learning process while avoiding local maxima.

3.3. Classifying Data from Frequency and Time–Frequency Analysis

Frequency and time–frequency analysis has been used to preprocess acoustic signals
in order to enhance the most distinctive data features, facilitating the classification process.
Table 3 presents a summary of important methods related to this idea, as described below.

Table 3. An overview of ML methods for classification from frequency and time–frequency analysis.
In the ‘Metric’ column, ACCY stands for accuracy, AP stands for Average Precision, and mAP stands
for Mean Average Precision.

Reference Preprocessing Network Dataset Metric Main Contributions

Ferguson et al.,
2017 [25] Cepstrum, Cepstrogram CNN Recorded boat

radiated noise a
99.78%
AP

The cepstral representation of inputs for
a NN and an improved distance
estimation from acoustic noisy sources.

Choi et al., 2019 [6] pCSDM, mCSDM CNN, RF, SVM
and FNN

Simulated acoustic
data a >95% ACCY Comparison between CNN and FNN.

Miao et al., 2021 [117] ACT TFFNet Whale FM 92.1% mAP
The combination of ACT with the EFP to
generate a high-resolution
time–frequency representation.

Kim et al., 2021 [118] DWT CNN Underwater
acoustic signals a 100% ACCY

The wavelet transform to obtain noise
robustness and data augmentation as
data source. The results converged with
an 8-fold reduction in the number of
epochs.

Cinelli et al., 2018 [119] Spectrogram, delta,
delta–delta frequencies

Fully Connected
and CNN

Brazilian Marine
dataset a 88.1% AP

A comparative study of the accuracy of
different ML architectures for various
input layers.

Vahidpour et al.,
2015 [19] Image Histograms Fully Connected Five classes

acoustic dataset a 95.13% ACCY b
The generation of a short-time Fourier
transform-based binary image as input,
improving noise robustness.

Bach et al., 2021 [120] Signal demodulation CNN ShipsEar 90% ACCY

An algorithm for detecting the
fundamental frequencies of a signal
according to the amplitude variation,
improving the performance of a CNN.

a Dataset is proprietary and unavailable for reproduction. b Results obtained at 10 dB of SNR.

Conventional algorithmic approaches to vessel classification and ranging from hy-
drophone data perform well at close range (<180 m) but their performance degrades quickly
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at longer ranges. These methods are also inaccurate in the presence of noise [121]. Using
cepstrographic inputs to a CNN can overcome the shortcomings of the conventional ap-
proaches. The combination of cepstral filtering and CNNs greatly extends detection ranges
and robustness to noise compared to an algorithmic method, but has slightly reduced
accuracy at short range due to expressive bias [25]. Analogously, the performance of a
standard CNN in the classification of surface vehicle propeller cavitation noise (VPCN) in
shallow water has shown to be improved by analysing the amplitude variation of signal to
detect the fundamental frequencies of VPCN [120]. Results described in [120] suggest that
this method outperforms traditional classification methods. However, the fundamental
frequencies of the target object need to be known beforehand, and it is assumed that they
are independent of environmental conditions (which may not be true in the general case).

Ship classification from acoustic data is considered a binary classification problem
in [6], aiming at identifying surfaces of underwater vessels. As the audio signals are re-
ceived on an N-element vertical line array, each element of the original array is considered
to generate two initial representations: the phone-space and the mode-space Cross-Spectral
Density Matrices (pCSDM and mCSDM, respectively). A CSDM is a time–frequency repre-
sentation used to compare different signals, similar to the covariance matrix, representing
the distribution of power across the frequency spectrum over time. The absolute values
of each CSDM element were used as the source for generating the two other matrices.
Altogether, the generated matrices were used as input to several distinct machine-learning
models: Random Forest, Support Vector Machine, a Feed-forward Neural Network and
a CNN. All algorithms presented excellent performance, with an error rate below 5%.
The training procedure employed in [6] used only simulated data considering a source
with high SNR (2 dB to 5 dB), whereas the validation task was performed on a pair of
simulated datasets: the first had an SNR of 2 dB to 5 dB; and the second had an SNR of
−1 dB to 0 dB. The results reported confirm that the proposed machine-learning meth-
ods were robust with respect to SNR. However, it is unclear whether this result would
generalise to real sonar data. Additionally, results suggest that phone-spaced data inputs
are more suitable to ML methods than mode space, as the former are independent from
environmental information.

In the need to improve the time–frequency representation of underwater acoustic
signals, a method for sonar classification based on Anisotropic Chirplet Transforms (ACT)
and deep learning was proposed [117]. Chirps are signals whose frequency increases or
decreases with time. Similar to the relation of Waves to Wavelet (cf. Section 2.3), a chirplet
is the time-limited representation of a chirp. They were first proposed to identify small
iceberg fragments using sonar data [122], as those signals propagate on a radial chirp
waveform. ACT was used in [117] as a preprocessing stage for an underwater acoustic
communication dataset and for identifying whale sounds, then it was fed into a deep
CNN, called time—frequency feature network (TFFNet). Additionally, an efficient feature
pyramid (EFP) technique was defined by aggregating the context information of the features
maps at different scales, widening the network instead of increasing its depth. This caused
more features to be learned from the input data. The combination of ACT with the EFP
method was compared against Random Forest and Support Vector Machines, achieving
higher accuracy with less resources (memory and time). This result was attributed to
the fact that ACT generated a high-resolution time–frequency representation, providing
features that would not be achieved using other known transforms, such as STFT.

Discrete wavelet transform (DWT) was used in the classification of underwater acous-
tic signals with noise robustness in a method composed of four stages [118]: white noise
elimination based on the DWT; an imaging stage, where the spectrogram of the discrete
wavelet coefficients was obtained; a data-augmentation method (cf. Section 4.1); and the
final classification stage. The data resulting from this four-tier process were then used as
input to a standard CNN, composed of four convolutional layers, a dropout and a fully
connected layer. The use of wavelet transform was shown to be effective at enhancing
noise robustness in the system, achieving 99.7% classification accuracy with an SNR of 0 dB,
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greatly outperforming six other CNN architectures. The reason behind the improvement
on noisy environments was attributed to the application of a threshold and also to the
DWT coefficients on the noise elimination stage, impacting directly the performance of the
wavelet denoising.

When using spectrograms of hydrophone data, a basic four-convolutional-layer CNN
has been shown to outperform a fully connected NN with either 0 or 512-neuron hidden
layers [119]. Furthermore, improved results were observed when both spectrograms and
delta frequency images (i.e., the first difference of signal features, an approximation of the
first derivative) were used as inputs over the use of spectrograms alone or in combination
with delta–delta frequency images (i.e., the second difference of signal features). However,
due to possible overfitting of the system resulting from small dataset size, high interclass
similarity and a large number of model parameters, this finding may have limitations. This
problem could be avoided using data-augmentation techniques (see Section 4 below).

A fully connected neural network was applied to recognise ships in hydrophone
data [19]. In order to do this, the original signal was treated by traditional image-processing
methods (mainly a short-time Fourier transform) to generate a binary image, based on
the frequency spectrum of signal segmentation. This process was shown to improve the
analysis of short-time transient sound behaviours, generating a better representation of the
signal to be inputted into the binary image generation. An experiment with three different
SNR (without noise; 5 dB and 10 dB) compared the accuracy of the proposed model with
a fractal-based method, showing that NN have a better noise robustness for all analysed
scenarios. Results also indicate that for the five-class classification problem, the feature
extraction method proposed achieved a high-performance recognition with just 11 features.

Research has found that the classification of acoustic signals is improved when the data
are presented in a time–frequency representation, such as a spectrogram or cepstrogram.
Moreover, prefiltering in the time–frequency domain further improves classification as
does the inclusion of convolutional layers within the classifier model.

3.4. Applying Machine-Learning Methods for Feature Extraction

This section discusses machine-learning methods used for extracting features from
data, facilitating classification tasks. A summary of the methods overviewed in this section
is presented in Table 4.

Table 4. An overview of methods for classification using machine learning for feature extraction. In
the ‘Metric’ column, ACCY stands for accuracy.

Reference Preprocessing Network Dataset Metric Main Contributions

Luo et al.,
2021 [123]

RBM based au-
toencoder

BP Neural
Network ShipsEar 92.6%

ACCY

Claims a better feature extraction
performance than the conventional
feature extraction methods.

Denos et al.,
2017 [124] Autoencoder NN CNN Synthetic real-

istic images a
0.87
F1-Score

The combination of AE with CNN
provided an application based on
image object-detection models (R-
CNN).

Kamal et al.,
2021 [125]

Convolutional
Filters

Deep con-
volutional
LSTMs

Indian ocean
acoustic
dataset a

95.2%
ACCY

The proposal of an adaptive fil-
ter to generate time–frequency rep-
resentation based on Short-Time
Fourier Transform.

a Dataset is proprietary and unavailable for reproduction.

The scarcity of underwater acoustic data for training ML classification algorithms is a
common statement in most related publications. In order to address this issue, Boltzmann
Machine (RBM) autoencoders have been proposed in [123], aiming at reconstructing the
original data to be used in the classification of vessels in passive sonar data. NN models that
include RBM as a denoising element have been shown to greatly outperform the traditional
Gaussian Mixture Model (GMM) with a Gammatone Frequency Cepstral Coefficient feature-
extraction layer. In this way, the use of an unsupervised feature-extraction approach
with RBM autoencoder (to provide noise extraction and signal reconstruction) and the
combination of the power spectrum and demodulation spectrum into the input data
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(recognising important rhythm features of the original sound) have been shown to be a
highly effective method for identifying ships from passive sonar signals.

The detection of underwater MLOs from synthetically generated data was attempted
in [124], using a two-stage process. First, a one-class classification problem was solved by
applying an autoencoder neural network to detect the target object (i.e., a mine and its
shadow) without classifying the background; and second, the outputs of the autoencoders
were used as inputs to a CNN that produced the class probabilities. In this context, detection
occurs when the error between the input image snippet and the corresponding MLO
generated by the autoencoder at the centre of that snippet is minimum. Although the results
presented consider only computer-generated cylindrical mines, the use of autoencoders to
extract mines before the application of a convolutional neural network reduced the amount
of examples needed to train the latter. This process is akin to the Region Proposal Network
implemented in the faster R-CNN [71] (described in Section 2.4). However, instead of
searching for generic regions, autoencoders were used to identify specific shapes of MLOs
within the input data.

Analogously to a Fourier transform, which can be represented as a convolution of the
signal with the filter-bank impulse response, a set of convolutional filters was used in [125]
as feature extractors to generate a time–frequency representation of the signals, which are
compressed to the log scale to emphasise low frequencies. Then, the data served as input
to two-dimensional convolutional layers, which acted as spectrotemporal feature learners,
attached to a Bidirectional-LSTM layer with a trainable attention module, that was used to
capture temporal relations. This system was tested on a dataset obtained in shallow waters
in the Indian Ocean, achieving high-accuracy results. The analysis of the learned features
showed that the convolutions applied were able to produce a behaviour equivalent to a
Short-time Fourier transform, with adaptive parameters learned from the original raw data.

Machine learning is proving to be an important tool for underwater target classifica-
tion where both unsupervised and self-supervised learning strategies (autoencoders) are
applied to autonomously extract relevant features from acoustic data. Novel methods are
successfully employing a combination of classic signal processing methods (such as STFT)
with ML architectures [125] as a strategy to compensate the signal complexity by selecting
its most distinctive features for the classification procedure. However, a challenging task
still remains, that is, to find suitable hyperparameters for the DL architectures. Tools for
automated machine learning [126] could provide an avenue to mitigate this issue. However,
to the best of our knowledge, this is still a task for future work in this field.

3.5. Transfer Learning

A classic supervised learning task assumes the existence of a large amount of labelled
data of the domain in which the learning will be applied. In most application domains,
and in particular in the classification of sonar data, the labelled data available are not
sufficient to train models that are reliable enough to be useful in situations that demand a
high degree of accuracy, such as the automatic surveillance of shorelines. Transfer learning
(TL) [127] is a machine-learning technique that solves this issue by leveraging the reduced
amount of labelled data in a domain (target domain) by transferring and reusing the model
learned on a distinct, but related, domain (source domain). In other words, TL methods
extract the knowledge from one or more source tasks and apply it to a target task. TL has
many advantages in the development of ML algorithms, such as shorter training times and
the enhanced robustness of using models that have already passed initial tests. In particular,
the ability of TL to produce good results with reduced datasets causes a positive impact
on the classification of underwater acoustic data, since the acquisition and consequent
availability of data is a constraining factor in general. This section discusses a few key
contributions in this area, as summarised in Table 5.
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Table 5. An overview of ML methods using transfer learning. In the ’Metric’ column, ACCY stands
for Accuracy, and mAP stands for mean average precision.

Reference Based Network Dataset Metric Main Contributions

Huo et al., 2020 [128] VGG-19 Seabed Objects-KLSG 97.76%
ACCY

Fine tuning method with
semi-synthetic dataset.

Fuchs et al., 2018 [129] ResNet50, CNN-SVM ARACAT dataset 90%
ACCY

Results show that ImageNet can be used
effectively by a CNN to extract general
features that can then provide better accuracy
when training a sonar classifier with
small datasets.

Valdenegro-Toro et al.,
2021 [88]

ResNet 20, MobileNets,
DenseNet121, SqueezeNet,
MiniXception, and
Autoencoder

Marine Debris Turntable and
Watertank, and Gemini 720i
Panel-Pipe a

96.31%
ACCY

Reported results that reinforce the idea of
achieving better accuracy with less data when
using transfer learning.

Nguyen et al., 2019 [130] AlexNet and GoogleNet CKI, TDI-2017 and TDI-2018 a 91.6%
ACCY

The reuse of CNN architectures applied to
image classification tasks.

Valdenegro-Toro, 2017 [131] LeNet and SqueezeNet Ocean Systems Lab water
tank dataset a

98.7%
ACCY

Showed that transfer learning achieves
acceptable accuracy even when the source and
target sets have no classes in common.

Ge et al., 2021 [132] VGG-19 Seabed Objects-KLSG and
proprietary data a

97.32%
ACCY

Achieves high accuracy rate even with a small
sample size obtained from a synthetically
generated dataset.

Yu et al., 2021 [133] Transformer and YOLOv5s

Two side-scan sonar datasets
were constructed sonar
images of shipwrecks and
submerged containers.

85.6%
mAP

The proposal of side-scan sonar automatic
target recognition method, including
preprocessing, sampling, target recognition
and target localization, using the SOTA
YOLOv5s model and an attention mechanism.

a Dataset is proprietary and unavailable for reproduction.

TL has been used to create an automatic, multiclass object classifier using data from
side-scan sonars for a range of applications, including the detection of sunken ship wrecks
and aircraft, drowning victims, and MLOs [128]. A CNN model was created based on
transfer learning, where a VGG-19 network was pretrained with ImageNet data and all
of its trained layers. The last fully connected layers of this model were transferred to a
new CNN, which was fine-tuned with a semisynthetic sonar dataset. The results reported
in [128] were compared with more traditional methods for object classification, such as
Support Vector Machines, a shallow CNN [134] and Deep Forests [135], where the TL-CNN
showed better performance and accuracy. However, no comparison was described with
respect to state-of-the-art methods for object classification from sonar, such as GNNs [62]
(described at Section 3.2). Nevertheless, this work demonstrated that having small amounts
of labelled training data need not preclude the creation of a useful and accurate classifier.

Following from the finding that TL is potentially beneficial, a set of pretrained neural
networks for sonar images have been produced which are aimed at providing a basis for
improving sonar classification results by means of transfer learning [88]. The aim was
to accelerate the development of object classification for underwater acoustic data, using
as analogy the positive momentum given to image classification with the introduction
of ImageNet [51]. The models trained include various state-of-the-art convolutional and
autoencoder architectures, that were trained on the Marine Debris Turntable (MDT) dataset
(described in Section 4 below). The pretrained models are freely available for download
(https://paperswithcode.com/paper/pre-trained-models-for-sonar-images (accessed
on 20 December 2021)). The results presented support the authors’ initial hypothesis that
transfer learning using pretrained models can be used successfully to obtain high accuracy
in the classification of sonar data, using fewer samples to retrain the models. Moreover,
although various machine-learning models were trained, there was no architecture that
showed a superior performance over all training/test scenarios, which is a common issue
found in machine learning, known informally as the “no free-lunch theorem” [136], where
no one model is the best under all situations. The MDT dataset was used in [131] to evaluate
the performance of transfer learning using the recognition accuracy as a function of the
feature vector size, the object size as well as the training set size. Results show that CNNs
(even when trained with distinct datasets from the target) are capable of learning relevant
features, improving the accuracy of classification using transfer learning. Additionally,
CNN models are largely invariant to the object size, and finally, a combination of ADAM

https://paperswithcode.com/paper/pre-trained-models-for-sonar-images
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optimiser with Dropout regularisation was shown to be a good strategy to cope with the
small sample size problem.

Analogous to the work described in [88], a CNN was pretrained with images from
the ImageNet dataset [51] and fine-tuned with a small sonar dataset for the classification
of forward-looking sonar (FLS) data [129]. The main hypothesis underlying this work
was to use the CNN to extract general features from optical images, that would enable
accurate classification of sonar data by training (using transfer learning) using a small
sonar dataset. The maximum accuracy achieved in this study was 97%, thus supporting
the hypothesis that the feature-extraction process, obtained with pretrained CNN, was
effective for classifying low-resolution FLS images.

A distinct policy for transfer learning for sonar image classification was followed
in [132], where a convolutional neural network (VGG-19) was pretrained on the ImageNet
dataset [51] and then fine-tuned to classify side-scan sonar data. This fine tuning was
accomplished using a synthetic dataset obtained by transforming optical images into
side-scan sonar outputs by means of a style-transfer algorithm (see Section 4). This work
achieved an accuracy of over 97% in the classification of real sonar images for the CNNs
that were fine-tuned with the synthetically generated dataset, which suggests that transfer
learning (even using synthetic data to fine-tune the model) is the best strategy to take when
large, annotated datasets are not available.

Instead of defining the entire end-to-end pipeline, two off-the-shelf CNN classifiers
(pretrained in ImageNet dataset) were applied in [130]: AlexNet [56] and GoogLeNet [137],
that were fine-tuned to identify human body shapes from sonar images. Two classes of
datasets were used in this work: the first was obtained in a controlled environment and
augmented synthetically (cf. Section 4.1); the second was obtained from real maritime
situations off the west coast of Korea. The accuracy obtained testing the CNN with the real-
world set of images revealed a poor performance of AlexNet overall, whereas GoogLeNet
obtained an accuracy of 91.6% when trained with input data with various noise levels.
This finding suggests that the GoogLeNet architecture, which is characterised by having
convolutional filters of multiple sizes operating at the same level (therefore, making the
network wider rather than deeper), is a suitable strategy for automated classification in
this domain.

Side-scan sonar images were used as inputs to a real-time automatic target recognition
(ATR) method that applied a combination of a transformer attention mechanism [138]
and the YOLOv5s model [133], named TR–YOLOv5s. A complete pipeline was proposed,
including preprocessing, sampling, target recognition and target localisation. Focusing on
real-time operation, a two-fold strategy was pursed. Firstly, a preprocessing downsampling
method was applied to the side-scan sonar input, maintaining the aspect ratio between the
along-track direction and the cross-track direction. Secondly, the YOLOv5s architecture
was used, aiming to take advantage of the fast detection speed and the high precision rate
of the original model. Additionally, due to the sparse presence of targets on the seabed,
the use of the transformer attention mechanism in the detector allowed the identification
of areas of interest from the side-scan sonar images, focusing the operation of the model
on the targets, and not on the background or blank areas. The YOLOv5s model reused the
weights trained on the COCO dataset, improving the generalisation ability and reducing
the final training time. Additionally, the application of the transformer helped to overcome
the problem of the different target–background ratio between object detection datasets and
side-scan sonar datasets.

Transfer learning is applied as an alternative to the scarcity of real-word data to train
DL models, enabling the reuse of well-established results obtained from other domains.
The reuse of trained architectures has shown positive results on the convergence and
adaptability of two-dimensional convolutional filters, where features learned from colour
images (such as the ones present on ImageNet dataset) are transferred to process 2D acoustic
data. Unless some effort (and funding) is directed toward providing an underwater acoustic
analogue of ImageNet, transfer learning, combined with data-augmentation methods
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discussed in the next section, is the next best valid option for developing useful DL models
for sonar classification.

4. Datasets and Data-Augmentation Methods

CNNs have proved to be an important tool for automatic data classification. However,
they are data hungry, as a large amount of labelled data points is needed to properly train
and validate the models. This is a critical issue in the classification of underwater acoustic
data, since most datasets are not publicly available, owing to the financial and technical
complexity in obtaining such data and also to their potential defence-sensitive information.
Therefore, much work in this area is conducted using synthetic data only [124], or on a
limited set of real data augmented with semisynthetic examples for training [62,128,139].
There are, however, a few datasets commonly used in the literature, that are summarised in
Table 6.

Table 6. A summary of some datasets available.

Dataset Description

Ocean Network Canada (ONC) [140]
A variety of (nonannotated) datasets containing continuously monitored data for relevant ocean variables on
the east, west, and Arctic coasts of Canada are collected, maintained, and distributed by Ocean Networks
Canada via their Oceans 3.0 data portal at https://data.oceannetworks.ca (accessed on 8 February 2022)

DeepShip: An Underwater Acoustic Benchmark
Dataset [141]

DeepShip is a benchmark dataset (constructed with data from ONC) for underwater ship classification which
consists of 47 h and 4 min of recordings of 265 different ships belonging to four different classes (background
sound was not available). This dataset is available for download at
https://github.com/irfankamboh/DeepShip (accessed on 20 December 2021)

ShipsEar: An underwater vessel noise database [142]

ShipsEar is a database containing underwater recordings of ship and boat sounds, which has 90 recordings of
11 different vessel types. It also has some useful information about the recordings, such as channel depth,
wind, distance and location, to cite a few. This dataset is available for download at
http://atlanttic.uvigo.es/underwaternoise/ (accessed on 20 December 2021)

Five-element acoustic dataset [143]

The main purpose of this dataset is to facilitate research on Doppler correction techniques for underwater
acoustic transmissions. The dataset is composed of 360 communication packets with a duration of 0.5 s
generated by a transceiver and captured by five hydrophones at nine different positions, and is available for
download at http://users.ece.utexas.edu/~bevans/projects/underwater/datasets/ (accessed on 20
December 2021)

Fish classification with Dual-Frequency
Identification Sonar (DIDSON) [144]

Fishery acoustic observation data were collected using Dual-Frequency Identification Sonar (DIDSON) with
the purpose of classifying fish species. From 100 h of data, 524 clips were extracted with eight species
labelled. The dataset is available for download at https://osf.io/sxek6/ (accessed on 20 December 2021)

Passive sonar spectrogram images derived from time
series [145]

The main purpose of this dataset is to facilitate solutions for the problem of detecting tracks in a spectrogram.
It contains 4142 spectrograms generated from synthetic and also real small-boat data. The dataset is available
for download at https://sites.google.com/site/tomalampert/data-sets?authuser=0 (accessed on 20
December 2021)

Marine Debris Turntable (MDT) dataset [88]

This dataset was obtained from a forward-looking sonar (ARIS Explorer 300) placed in a water tank in which
a rotating turntable was used to allow various poses for the objects observed. The MDT dataset contains
2471 images with 12 classes of object, including bottle, pipe, platform and propeller, and it is available from
https://github.com/mvaldenegro/marine-debris-fls-datasets (accessed on 20 December 2021)

The next section describes data-augmentation methods, how they are commonly used
for the classification of underwater acoustic data, and the methods available to evaluate
their quality.

4.1. Data Augmentation and the Classification of Underwater Acoustic Data

This section presents some of the data-augmentation strategies used for training
classifiers for underwater acoustic signals, as summarised in Table 7.

Table 7. An overview of the data-augmentation strategies.

Reference Year Data-Augmentation Method

Berg and Hjelmervik [139] 2018 Real target detections were copied multiple times and only a fraction of false
alarms considered.

Le et al. [62] 2020 MLO image snippets overlaid on seabed background images.
Huo et al. [128] 2020 MLO image snippets overlaid on seabed background images with simulated shadows.

Denos et al. [124] 2017 Generated photo-realistic pictures from 3D mine object modelling combined with syn-
thetically generated seabed background.

Choi et al. [6] 2019 Simulated data from a normal-mode propagation model, generated from Monte-Carlo
simulation considering a vertical line array (VLA).

Luo et al. [123] 2021 Reconstruction of audio signals using the output from a RBM auto-encoder.

https://data.oceannetworks.ca
https://github.com/irfankamboh/DeepShip
http://atlanttic.uvigo.es/underwaternoise/
http://users.ece.utexas.edu/~bevans/projects/underwater/datasets/
https://osf.io/sxek6/
https://sites.google.com/site/tomalampert/data-sets?authuser=0
https://github.com/mvaldenegro/marine-debris-fls-datasets
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Table 7. Cont.

Reference Year Data-Augmentation Method

Kim et al. [146] 2017 Denoising of sonar images using the structures generated from an auto-encoder.

Kim et al. [118] 2021 Convoluted acoustic signals and impulse response signals, with white Gaussian noise
added to generate extended audio signals.

Phung et al. [147] 2019 GAN generated sonar images of MLO.

Sung et al. [148] 2019 Ray-tracing method used to generate sonar images followed by a GAN to translate it into
more realistic images.

Karjalainen et al. [149] 2019 Synthetic contact sonar images created using ray-tracing then refined using Cycle-
GAN [150].

Rixon Fuchs et al. [151] 2019 Used a GAN on simulated data, to generate high resolution sonar data (long arrays) from
low resolution counterparts (short arrays).

Jegorova et al. [152] 2020 Relied on the pix2pix architecture to create the Markov Conditional pix2pix GAN archi-
tecture, generating realistic-looking SSS images.

Ge et al. [132] 2021 Generated SSS data from optical images using a neural style-transfer.
Nguyen et al. [130] 2019 Added background noise (salt and pepper) and polarised noise to sonar images.

Data-augmentation methods aim to build synthetic data by transforming the existing
labelled data using various transformations. Data-augmentation approaches can be based
on time series, going from basic augmentations of time or frequency domains (such as
cropping, slicing, and adding noise) to more advanced methods (such as Deep Generative
Models, Statistical Generative Models, Decomposition-based, and others) [153]. The aug-
mentations can be implemented either online, when the data are being augmented during
the training stage, representing a new layer of the NN or a preprocessing stage during
execution, which directly impacts the execution time; or offline, which is when the data are
augmented before the execution of the training rounds, impacting directly on storage space.

One of the known problems with antisubmarine sonars is the number of false alarms,
especially in nearshore regions due to the complex structure of sound propagation in these
areas (cf. Section 2.1) [154]. An augmented dataset was introduced in [139] for training
an ensemble of CNNs to classify false alarms from sonar data obtained in a nearshore
environment. The base data used to this end was obtained from towing an active, lower
frequency, sonar array in the Norwegian Trench close to the coast. In order to obtain a
balanced set of examples to train the CNN model, since the number of false alarms is much
greater that the number of true positives, each target detection was copied a number of
times, while only a fraction of the false alarms were considered. The results presented
show an unquestionable improvement in the classification of false alarms, in comparison
with the usual method of thresholding a signal-to-noise ratio of the detections. It is worth
pointing out that this augmented dataset was only used in the training phase, whereas
the test set consisted only of original (nonaugmented) data points. Analogously, a data-
augmentation procedure was performed in [118] by convolving an acoustic signal and an
impulse response signal. Then, white Gaussian noise was added to finally produce the
extended signals. After the data-augmentation process, a set containing 30,000 images of
30 different classes of underwater acoustic signals was generated. The results reported
showed a reduction in overfitting and an improvement in generalisation ability with the
use of the augmented dataset.

The Deep Gabor Neural Network [62] (cited in Section 3.2 above) also relied on a large
number of training data to be tuned. In order to generate a dataset large enough for training
the models, the original dataset was augmented by overlaying MLOs image snippets on
images of various seabed backgrounds. To avoid invalid data generated from the augmen-
tation, the overlaying process preserved the shadow direction of the MLO aligned to the
shadow direction in the background image. However, there is uncertainty about the realism
of the augmented dataset used. In a similar approach [128] (cited in Section 3.5), in order to
generate semisynthetic images, a model extracts objects of interest (such as an aeroplane or
a drowning victim) from the original image, superimposes these onto a randomly selected
seabed background, and simulated shadows are then added according to the probability
distribution of a real sonar reference image. The quality of the generated dataset was
evaluated, in order to avoid bias, by means of two methods: one subjective, based on the
evaluation of the images by human subjects; and one objective, where the Fréchet Inception
Distance [155] was used to measure the statistical deviation of the semisynthetic samples in
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contrast with those obtained directly from the sonars. The results show that the proposed
system outperformed traditional ML methods, suggesting that a performance improvement
can be achieved when using semisynthetic data generation in the training phase.

Photorealistic sonar pictures generated from 3D models were used in [124] (described
in Section 3.4). As the training phase proposed in this work was focused on extracting the
characteristics of the objects of interest, the areas of the data points (images) generated for
training were mostly occupied by MLOs, while the background (seabed) was composed of
white noise, preventing the AE model from learning spurious features from seabed textures.
In contrast, the test set represented realistic backgrounds (synthetic renderings of seabed),
while MLOs occupied a very small part of each image. The main limitation of this method
was the difficulty in representing the sonar echo, which was ignored on the experiments
reported. The presence of sonar echo generated from the mine itself can mask the real
shape of the MLO, but it had a minor influence on learning the shadow concept [124].

Synthetic datasets were used as inputs to the DL models, reproducing the shallow-
water environment of the East Sea in South Korea [6]. Simulated data from a normal-mode
propagation model (KRAKEN [156]—Ocean Acoustics library: https://oalib-acoustics.org/
(accessed on 20 December 2021)) was used, resulting in a set with a high signal-to-noise
ratio compared to real-world data. There were two distinct datasets used in this experiment,
one generated with a distributed SNR with values from 2 dB to 5 dB, and another with an
SNR from −1 dB to 0 dB. The data generated were modelled by Monte-Carlo simulation
considering a vertical line array (VLA), then reorganised into two cross-spectral density
matrices (one defined on phone space and the other on mode space) that were used as
inputs to four ML algorithms: random forest, SVM, feed-forward neural network (FNN)
and CNN. The convolutional model produced the best accuracy results; however, it also
showed high variability with respect to the input data representation (where a phone-space
representation presented as a more suitable input type, as discussed in Section 3), whereas
the FNN was not affected.

A data-augmentation technique was used in [123] to double the size of the dataset used
to create the ShipsEar dataset (Section 3.4). In this augmentation procedure, the original
data were divided into five categories, with 600 samples each, then an RBM autoencoder
was applied to reconstruct the original signals. The main idea was to generate an output
signal with the same overall characteristics of the input signals, but decoded from the
high-level probability distribution generated on the encoder stage of the RBM. The method
was tested with four different synthetic datasets: a sinusoidal function with noise; a higher
frequency sinusoidal function with noise; a cosine function with noise; and power spectrum
data of the real signal. The mean squared error (MSE) between the reconstruction and
the original samples was in the range of 0.0115 to 0.5649, meaning that the difference
between the two signals was minor and the properties were maintained. Therefore, using
an autoencoder to extract the most relevant features from the signal and then in the decoder
stage reconstructing the sound is a powerful strategy, as it can generate new signals with a
representation derived from the same properties as the input data.

Similarly, an autoencoder based on a convolutional neural network was applied to
perform sonar image noise reduction [146], generating a dataset of high-quality sonar
images from a single image by applying the learnt autoencoder structures on the original
sonar images for obtaining new examples.

There has been recent work on the application of Generative Adversarial Networks
for generating new synthetic examples (trained to be similar to the items in a real acoustic
dataset), in order to cope with the limited sample size in this domain. A typical GAN
was applied to generate sonar images of MLOs [147], with which a combination of CNN
and hierarchical Gaussian process classifier (CNN+HGP) was trained. The results show
only a moderate improvement in the accuracy of the CNN+HGP classifier when using the
augmented dataset (1.36 percentage points, achieving a maximum accuracy of 81.56%); a
similar improvement was observed with respect to a stand-alone CNN (an improvement
from 56.5% without the data augmentation to 57.2% with the GAN-generated dataset).

https://oalib-acoustics.org/
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Analogously, sonar data were generated using GAN in [148,149], where a simulator based
on a ray-tracing method was used to generate simple synthetic sonar images containing
shadows, background and foreground regions, and a GAN was used to make these simu-
lated images similar to the data obtained from real sensors. GANs were also successfully
used in [151] to produce high-resolution (long-array) sonar images from low-resolution
(short-array) data. Sonar images were obtained by a GAN in [152] that accurately repro-
duced the data obtained by a moving vessel, creating analogous distortions due to the
moving sensor. This idea can be used to train machine-learning systems both for vessel
control and also for obtaining better images, given the vessel’s motion.

Side-scan sonar data were simulated in [132] using optical images translated into
sonarlike images by a neural style-transfer (NST) algorithm [157]. NST is a technique that
takes two images (called content and style reference) and blends them together, resulting in
an output image that looks like the style reference. This is accomplished by optimising
a loss function consisting of three parts: the content loss, which measures the distance
between content and synthetic (generated) image by means of features extracted in the deep
layers of a CNN; the style loss, which measures the distance between colour and texture
(at various spatial scales) between the content and generated image; and finally, the total
variation loss, which measures the spatial continuity between pixels of the synthetic image.
The data were used to balance an uneven dataset, verifying that a model trained with
synthetic data can improve both the classification accuracy and the convergence time.

A dataset for human body recognition from sonar images was proposed in [130], where
the training portion of the dataset was obtained in a controlled environment, a 10 m-deep
tank with a submerged dummy positioned 4 m below the surface. Additionally, the test
dataset was obtained in the turbid waters of the west coast of Korea. A total of 31 base
images were obtained in the controlled environment, that were augmented with various
levels of background noise (salt and pepper) and polarising noise, resulting in datasets
with 186 and 1860 images, respectively; whereas 30 images were obtained from the marine
environment. The use of augmented data in the training stage proved to generalise well to
the real-world problems, providing a classification accuracy of 91.6% using GoogLeNet as
the classifier.

Data augmentation has proven itself to be a viable solution for the lack of anno-
tated datasets, becoming an initial step for most of the studies related to the underwater
acoustic domain. Self-supervised learning techniques, such as GANs and Autoencoders,
are generally used for data generation, paving the way to more complex applications
involving the combination of classical data-augmentation strategies with the ML approach.
Although there has been an undeniable advance in this area, most approaches do not assess
the characteristics of the data generated in comparison with the original ones, but measure
the quality of the procedure through the accuracy of the classification, which represents a
problem in the generalisation of such techniques.

5. Discussion and Concluding Remarks

A review of the literature related to the application of deep-learning methods for
automatic object detection and classification of underwater acoustic data was presented in
this paper. The literature discussed here mostly involves the classification of vessels from
passive sonar data or the identification of objects of interest from active sonar. The present
paper started with an informal introduction to underwater acoustics, which was then fol-
lowed by a brief discussion of methods for acoustic data classification (including traditional
tools as well as machine-learning-based methods), providing the background knowledge
necessary to present the state of the art on the application of deep-learning methods to
object detection and classification tasks from sonar data. This literature review (Section 3)
was organised in five parts: (i) the application of deep learning (DL) methods using convo-
lutional layers alone; (ii) DL methods that apply biologically inspired feature extraction
filters as a preprocessing step; (iii) data classification from frequency and time–frequency
analyses; (iv) methods using machine learning to extract features from original signals; and,
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(v) transfer learning methods. The chosen organisation of contributions is not intended to
generate pairwise disjoint sets of works, as various references could be part of multiple
classes (e.g., any method cited in (i)–(iv) could be used in a transfer learning setting (v)).
Instead, this structure was used to make explicit some of the main strategies in machine
learning that have been used in the classification of sonar data.

This paper also summarises some of the most important datasets cited in the literature,
pointing out the notable scarcity of publicly available curated and annotated datasets (an
issue that is often reported in research papers in this field [18]). Confidentiality issues,
the cost and complexity of running real maritime missions, combined with the expen-
sive task of curating, annotating and storing large amounts of data, are the main reasons
for the nondisclosure of datasets. However, it also renders this type of research largely
insubstantial, since without a common body of data, comparing and benchmarking so-
lutions is a virtually impossible task. This lack of common datasets becomes even more
evident when we take into account the complexity of the underwater domain (described in
Section 2.1), where a number of factors influence the quality of data (such as time of day,
season of the year, geographic regions, type of sensor, depth, pressure, etc.). To the best of
our knowledge, there is no reference that evaluates the impact of these parameters with
classifiers’ performance.

A variety of data-augmentation techniques have been used for coping with the scarcity
of annotated datasets from real maritime missions (as described in Section 4). In fact, most
of the literature overviewed in this paper uses some type of data-augmentation method
to obtain a balanced dataset. Recent literature has described important positive results
with the use of transfer learning (TL) techniques to tackle this issue as well (cf Section 3).
However, it remains to be proven whether or not a distinct source domain (in TL), or the
use of synthetic data, can fully represent the highly stochastic nature of the underwater
acoustic domain.

The necessity to take a more scientific standpoint in the problem of automated classi-
fication of underwater acoustic data seems to be an imminent next step towards making
progress in this field. Future work should consider making explicit the conditions of
data acquisition and should also present a clear comparison of novel results against state-
of-the-art methods using a common dataset. In order to accomplish such comparisons,
both code and datasets used in the experiments should be made available along with
their related publications. Otherwise, the very purpose of publishing results is defeated.
Thus, it is of paramount importance that there is the creation of a set of freely available,
curated, and annotated datasets for benchmarking, as well as the application of common
appropriate evaluation procedures, possibly following the taxonomy proposed in [80].
This task could be easily accomplished with the creation of a sonar classification com-
petition, similarly to the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
(https://www.image-net.org/challenges/LSVRC/ (accessed on 20 December 2021)) that
greatly motivated the fast development of artificial intelligence techniques to computer
vision [49]. Associated with this, more investigation should also be conducted towards
understanding and evaluating the existing state-of-the-art deep-learning architectures,
and the various possible instantiations of their hyperparameters, applied to the classifica-
tion of underwater acoustic signals. Additionally, the effect of the relative size of objects
of interest with respect to background, the impact of training set size, the signal-to-noise
ratio, as well as the consideration of environmental factors in the classification procedures,
are important open issues that should be tackled in the future development of machine
learning for underwater acoustic object classification.

The results summarised in this work show that accuracy is the most popular metric
used for evaluating the underwater acoustic classification task, even though it is prone to
produce biased results in certain situations (along with precision and recall [79]). Moreover,
although accuracy is used for comparative analysis in the various publications in this area,
these results cannot be generalised across distinct publications, since the test conditions
(datasets, and underlying evaluation parameters) are unclear or unavailable. Therefore, it is

https://www.image-net.org/challenges/LSVRC/


Sensors 2022, 22, 2181 25 of 30

virtually impossible to conclude on which methods are currently the most successful, or on
promising future developments in this field. The metric values in Tables 1–5 were cited in
this paper for completion purposes only, since the fundamental contribution of this review
(given the current state of development of this field) is the description of the key recent
ideas and the identification of some main pitfalls that future research should consider.
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