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Abstract: Due to the need for controlling many ageing and complex structures, structural health
monitoring (SHM) has become increasingly common over the past few decades. However, one
of the main limitations for the implementation of continuous monitoring systems in real-world
structures is the effect that benign influences, such as environmental and operational variations
(EOVs), have on damage sensitive features. These fluctuations may mask malign changes caused by
structural damages, resulting in false structural condition assessment. When damage identification is
implemented as novelty detection due to the lack of known damage states, outliers may be part of the
data set as the result of the benign and malign factors mentioned above. Thanks to the developments
in the field of robust outlier detection, the current paper presents a new data fusion method based on
the use of cointegration and minimum covariance determinant estimator (MCD), which allows us to
visualize and to classify outliers in SHM data, depending on their origin. To validate the effectiveness
of this technique, the recent case study of the KW51 bridge has been considered, whose natural
frequencies are subjected to variations due to both EOVs and a real structural change.

Keywords: structural health monitoring; novelty detection; cointegration; robust outlier analysis;
environmental and operational variations; sensor data fusion; natural frequencies; acceleration signals

1. Introduction

The main engineering disciplines associated with damage detection are undoubtedly
structural health monitoring (SHM) and non-destructive evaluation (NDE). Even though
the most recent NDE techniques have proven to be very effective in case of composite
laminates or pipe inspection [1], SHM procedures offer many advantages when applied to
the case of real-world civil structures. First, SHM is based on permanent sensors, while
in NDE, the devices (i.e., eddy-current probe, X-ray generator, etc.) are usually brought
to the desired point of the structure. Therefore, SHM can be conducted in real-time, or at
least very frequently, in an automated fashion, while NDE is performed sporadically or on
request. Second, the choice of SHM philosophy allows us to install a limited amount of
inexpensive sensors to obtain reliable measurements; on the other hand, the local nature of
the physical effects exploited in NDE requires us to install a dense layout of transducers to
reach an adequate coverage area.

Dealing with data-based approaches to SHM, damage sensitive features are extracted
from these measurements and machine learning methods are used to build a statistical data
model [2]. In general, damage detection procedures exhibit better.

Performances within supervised learning scenarios, where class labels (i.e., damage
levels and locations) are identified in advance. Unfortunately, for the majority of practical
SHM applications it is not possible to obtain known damage state data, but only data
from conditions assumed as “normal”. In this case, the SHM implementation relies on
unsupervised learning methods, such as novelty detection, which only require data from
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the undamaged state (baseline) of the structure [3]. Then, a statistical model of the normal
conditions is obtained based on the feature distributions and new data are tested for
conformity to the model.

The idea of novelty detection using outlier analysis is not a new one and many SHM
application examples can be found [4–6]. This well-established statistical method essentially
seeks for the presence of outliers in the data, i.e., observations that appear inconsistent
with the rest of the data set and therefore are believed to be generated by an alternate
mechanism. A classic discordancy measure used in the previous studies to reveal the
presence of outliers is the Mahalanobis squared distance (MSD) [7]. MSD indicates how far
a generic point is from the cloud points center of mass, taking into account the shape of the
cloud as well. However, the major limitation of such a distance is that it suffers from outliers
“masking effect”. Given that MSD is characterized by sample mean and covariance, any
outliers present in the baseline data set have a negative influence on the estimation of mean
and covariance. This increases the occurrence of false negatives, since new observations
associated with small distances could instead hide the presence of outliers. Within a SHM
context, a potential issue is represented by the influence that environmental and operational
variations (EOVs) have a structure features. This effect is particularly evident for civil
infrastructures such as bridges, whose measured responses are constantly subjected to
important variations induced by wind, humidity, traffic, human loading [8] and, above
all, temperature [9–12]. Since changes due to these benign reasons typically manifest with
the same order of magnitude of those due to structure degradations, they could appear as
outliers in the data masking any potential indication of ongoing structural damage.

To solve the problem of inclusive outliers in the training data, robust statistical meth-
ods are considered in a wide range of researches, including SHM [13–15], to provide
unbiased estimates of mean and covariance parameters computed from a smaller subset of
data whose behaviour is assumed to be close to the true population values. Alternatively,
data normalization techniques such as principal component analysis [9], autoencoders [16]
or cointegration [17–21], are adopted to project the data into a different space to remove
or at least reduce the effect of environmental and operational changes. Although previ-
ous methods proved their effectiveness in creating a normal condition training set clear
from the influence of external factors, they are unable to distinguish which of the outliers
indicated in the data are “benign” and which are “malign”. This distinction would repre-
sent a significant advancement for SHM practices, as it would make possible to identify
external benign variations at an early stage, remove them from the analysis, so leaving
the algorithm free to detect only real structural anomalies. Within SHM, the hierarchy of
the damage identification process can be classified into four levels [22]: damage detection
(level 1), damage localization (level 2), damage quantification (level 3) and damage progno-
sis (level 4). Different techniques are usually applied according to the desired SHM level.
Recent advances in the SHM field offer methods, such as the Mode Shape Curvature or the
Curvature Damage Factor [23], that can achieve up to level 4; however for civil structures it
is usually accepted that the procedure is not optimized for such level of detail, due to the
high complexity of the system which requires a trade-off between the level of the diagnostic
system and the expense of training it adequately. Level 1 is also distinguished from the
others, as it can be accomplished without the knowledge of the structure behaviour when
it is damaged. This is why the goal of this paper is to propose a novel approach based
on the use of cointegration and robust outlier statistics aiming at improving the damage
detection strategies for real-world structures. Furthermore, as the techniques applied at
the different levels mentioned above are found to be complementary, the possibility of
having an efficient algorithm characterized by accurate detection and low computational
complexity allows us to improve also the higher levels information of the SHM process.

Later in this paper it will be shown how, thanks to the mutual use of cointegration
and robust outlier analysis, the underlying nature of outliers is revealed, allowing one
to separate the effects due to environmental and operational factors out of those due
to damage. Into details, cointegration is first used to create a linear combination of the
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original measured variables u = β1y1 + β2y2 + . . . + βnyn, where u is referred to as coin-
tegration residual, in which all the effects of EOVs are deleted. Other recent successful
implementations of cointegration to eliminate environmental and operational trends from
damage sensitive features can be found in [24–28]. The expression of the cointegration
residual can equivalently be reformulated as a linear relationship where a generic vari-
able yi is selected as response and the remaining variables becomes the regressors xi,
i.e., yi = b1x1 + b2x2 + . . . + bnxn + ui, thus enabling to predict the behaviour of yi. Since
to distinguish between outliers and leverage points one has to consider the response yi in
parallel with the regressors xi, the minimum covariance determinant (MCD) estimator is
then adopted to compute the robust discordancy measures of the regressors. They indicate
the distance of a certain observation belonging to the space of input features from a region
associated with the bulk of the data. The combination of the two previous tools lead to
a new diagnostic representation in which the cointegration residual is plotted against
the robust distances calculated by applying the MCD estimator on the input variables of
the model. This kind of visualization permits to automatically classify the observations
according to the process which originates them.

To the best of authors’ knowledge, the issue of characterizing and separating the effects
of multiple outliers within the context of SHM has only been presented by Dervilis et al.
in [29]. This work illustrates the use of robust regression analysis and robust discordancy
measures to demonstrate that environmental and operational conditions can manifest
themselves differently, when compared to damaged conditions. With respect to this study,
the use of cointegration used in this work in place of a simple linear regression offers
important advantages, especially in the case of real-world structures. Here, the number of
features increases and the external factors affecting these features are often not measurable
or known a priori. Even in the case in which temperature is found to be the dominant
factor, the existing relationships between temperature and structural response are hard to
establish, since they require us to manage complex phenomena such as non-uniform solar
irradiations, thermal inertia, changes in the material properties and boundary conditions.
Therefore, if all the influencing factors are not properly included in the model, linear regression
may produce unreliable predictions in the response. In addition, SHM data often exhibits a
non-stationary behaviour, mainly induced by EOVs, which may cause the issue of spurious
regressions. Cointegration represents a viable solution to overcome these limitations as it is a
technique which does not strictly require the direct measurement of EOVs, but only a set of
non-stationary time series representing the output of a given process.

The presence of actual damage for in-service structures is something that is hard to find.
That is why damage detection strategies are often validated using a numerical model of the
structure, where different damage scenarios are simulated to reproduce realistic damage
conditions [30–32]. Alternatively, many works rely on the use of experimental data from the
well-known Z24 bridge benchmark study [33–35], where long-term continuous monitoring
took place during the year before demolition and progressive failure tests were performed.
In order to increase the availability of validation cases related to different types of real
structures and damages, the method proposed in this paper considers the experimental
data from the monitoring campaign of the KW51 railway bridge in Leuven [36] over a
period of 15 months, recently acquired by the research group from the Structural Mechanics
Section of the KU Leuven University.

This data set represents a challenging situation, as it includes data subjected to the
contemporary presence of both changing environmental conditions and different structural
states, i.e., before, during and after an operation of retrofitting to resolve a construction error
that emerged during inspections. Since structural modifications associated with the retrofit
manifest, among others, with changes in natural frequencies having a similar variability of
those due to environmental parameters [37], the effect of confounding influences is here
rather critical. Furthermore, a very limited number of publications inherent to this case
study are currently available. In [38], the authors developed an automatic procedure to
identify natural frequencies and strain mode shapes of the bridge deck starting from the
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strain time histories measured by a dense network of fiber-optic Bragg Grating sensors.
Using these modal data, the influence of temperature fluctuations and that of retrofitting
are extensively investigated. In [39], indeed, natural frequencies are used to evaluate
the performance of linear regression and robust principal component analysis as damage
detection techniques. The ability to remove variations due to environmental changes as
well as to identify actual changes in the structural behaviour introduced by retrofitting
are discussed.

The layout of the present paper is organized as follows. First, an introduction to
the theoretical background on robust outlier detection and cointegration are explained in
Sections 2 and 3, respectively. Then, Section 4 describes the proposed approach for outliers
discrimination, based on the combined use of cointegration and minimum covariance
determinant. After this, Section 5 presents the main characteristics of the KW51 bridge,
which represents the case study analyzed in this work. Finally, in Section 6, the technique
is tested on the experimental data from the KW51 bridge and the expected performances
are evaluated on this real database.

2. Robust Outlier Detection
2.1. Minimum Covariance Determinant (MCD)

Outliers are observations that do not follow the pattern of the majority of the data.
For multivariate point clouds, outliers become difficult to detect because we can no longer
rely on a visual perception of the problem. A classical method to quantify the presence
of outliers is to compute the Mahalanobis Squared Distance (MSD), which is given by the
following equation:

MSD2
i = (zi − µz)

T Σ−1(zi − µz) (1)

where zi is the generic multivariate observation, µz designates the mean of the sample
observations and Σ is the sample covariance matrix. The MSD indicates how far zi is from
the center of the distribution of the training data (location), taking into account the shape
of the distribution as well (scatter).

The main disadvantage of the traditional MSD as expressed in Equation (1) is that it
is sensitive to the “masking effect” of multiple outliers. Since the MSD is characterized
by sample mean and covariance, any outlier present in the training data set will have a
relevant influence on the estimation of mean and covariance; in this way, small distances
could be assigned to new observations, resulting in increased chances for false negatives.
This problem is frequent in many SHM applications, where the lack of a priori knowledge
for the damaged conditions does not allow to exclude the outliers from the analysis at a
preliminary stage. Consequently, the use of more robust methods for the estimation of
mean and covariance in presence of inclusive outliers is of significant interest.

The pioneering work in this area was proposed in [40], in which a robust estimation
of the covariance matrix was provided by iteratively removing subsets of data with the
highest MSDs, until the covariance converged to within a desired tolerance. That estimator,
however, has a breakdown value which is strictly related to the data dimensionality. The
breakdown value represents the smallest fraction of observations that can significantly bias
the estimated parameter from its true population value. Some years later, Rousseeuw [41]
proposed the minimum volume ellipsoid (MVE) method, which attempts to find an ellipse
of minimum volume that encloses a subset of data, under the assumption of normally
distributed multivariate features. If MVE is found, then outliers can be detected as points
outside the boundaries of the ellipsoid. Although it has a 50% breakdown value, it is
computationally not so efficient and, therefore, was replaced by a superior estimator called
minimum covariance determinant (MCD) [42], which has the same breakdown value, but
provides the possibility to implement more efficient algorithms for its computation [43,44].
In the present paper, the FAST-MCD algorithm is adopted, whose implementation details
can be found in [45]. The code used in the analysis for the computation of the MCD
estimator was provided by a MATLAB library of robust statistical methods called LI-
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BRA [46]. Readers can find an explanation of the main steps of the FAST-MCD technique
in the following.

Suppose that a multivariate dataset is stored in an n× p matrix [Z] = (z1, . . . , zn)
T

where zi =
(
zi1, . . . , zip

)T is the ith observation, so n stands for the number of observations
and p for the number of variables. Robust estimates for the location µMCD and the scatter
[ΣMCD] of [Z] can be obtained by the computation of the MCD. The goal of the MCD
method is to select n/2 < h ≤ n observations whose classical covariance matrix has the
lowest possible determinant, i.e., the lowest possible variance of the data. The raw MCD
location estimate is then the average of these h points, whereas the raw MCD estimate
of scatter is their covariance matrix, multiplied by a consistency factor. Since the MCD
estimates can resist up to (n− h) outliers, the breakdown value h, or equivalently the ratio
α = h/n, determine the robustness of the estimator. When a large number of outliers is
expected, h should be chosen close to αn with α = 0.5. Otherwise, an intermediate value
for h, such as 0.75n, is recommended to obtain a higher finite-sample efficiency. When p/n
is small, some data points can become co-planar, making the outlier detection problem
hardly feasible. Therefore, it is recommended that when n/p > 5 to choose α = 0.5. Finally,
the MCD estimates of location and scatter is affine equivariant, meaning that they stay
the same under affine transformations in the data. This makes them immune to different
variables scales and rotations.

The exact MCD estimator is hard to compute, as it requires an exhaustive investigation
of all h-subsets out of n. The authors of [45] developed the FAST-MCD algorithm, based
on a Concentration step (C-step) which avoids such a complete enumeration. The main
computation steps are described here. Given [Z] = (z1, . . . , zn)

T , let H1 ⊂ (1, . . . , p) be a
subset of size h. Then, µ1 and Σ1 represent the mean and the covariance matrix of the data
in H1. If |H1| 6= 0, the relative distances are calculated as:

d1(i)
2 = (zi − µ1)

T Σ−1
1 (zi − µ1) (2)

Then, H2 is chosen such that {di(i); i ∈ H2} = {(d1)1:n, . . . , (d1)h:n} where
(d1)1:n ≤ (d1)2:n . . . ≤ (d1)n:n are the ordered distances and compute µ2 and Σ2 based
on H2. Then, |Σ2| ≤ |Σ2| with equality if and only if µ2 = µ1 and Σ2 = Σ1. If |Σ1|> 0 , the
C-step easily yields a new h-subset with lower covariance determinant than Σ1, i.e., more
“concentrated” than Σ1. C-steps can be iterated until a stopping criterion is satisfied. The
stopping criterion is when |Σnew| = 0 or when |Σnew|=|Σold|. For the first case, since the
covariance matrix is singular, the new candidate subset is rejected and the previous subset
is restored as an optimal solution. The sequence of determinants obtained in this way must
converge in a finite number of steps because one has only a finite number of h-subsets.
However, the final calculation of |Σnew| could not converge to the global minimum of the
MCD objective function. Therefore, an approximation of the MCD solution is obtained by
randomly selecting several subsets H1 as initial guesses, applying the C-steps to each and,
in the end, keeping the one with the lowest determinant.

2.2. Threshold Estimation Based on Extreme Value Statistics

Dealing with unsupervised methods, where data from a damaged state are not used
to help with the damage detection process, the selection of an appropriate threshold to dis-
criminate between normal and not normal behaviors of a structure is difficult to determine.
Many research studies make use of statistical process control (SPC) for unsupervised dam-
age detection to monitor such parameters as sample mean and standard deviation [47,48].
SPC is based on the assumption that the distribution of multivariate data is Gaussian,
with the MSD subsequently approximated by a chi-squared distribution with p degrees
of freedom, where p is the dimension of the feature vector. Therefore, the selection of
control limits is the same as the quantile of the underlying distribution associated with the
desired confidence level. However, this assumption of normality may result in an improper
description in the behaviour of the extreme values of the data, which are associated with
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the tails of the distribution. As the problem of damage identification specifically focuses
attention on these tails, an approach based on Monte Carlo simulation and extreme value
statistics [13] is adopted in this paper for a proper threshold setting. The procedure to
calculate the threshold is described in the following:

1. A p × n matrix is created (p is the number of dimensions and n the number of
observations), where each p-dimensional observation is generated from a normal
distribution, having zero mean and unit standard deviation.

2. The desired discordancy measure (i.e., MSD or MCD) is calculated for all the observa-
tions, where mean and covariance are estimated depending on the selected classical
or robust methods. The largest value for each matrix is stored.

3. The process is repeated for a large number of iterations in order to create a vector of
extreme distances. Then, all the values are sorted in decreasing order. The threshold
value depends on the choice of the critical values α. In the following analysis, α is set
equal to 5 per cent, giving a 95 per cent confidence limit.

3. Cointegration Basics
3.1. Order of Integration and Unit Root Tests

The theoretical foundations behind the concept of cointegration are based on a clear
understanding of the ideas of stationarity and non-stationarity. A stationary time series is
one whose statistical moments are not dependent on time. In case this assumption does not
apply, the process is said to be nonstationary. To quantify the degree of non-stationarity of
the time series, the order of integration is introduced. More specifically, if a nonstationary
time series yt becomes stationary after differencing it d times, then yt is said to be inte-
grated of order d, denoted as yt ∼ I(d). Just to give an example, I(1) defines a series
which becomes stationary after differencing it once, while I(0) indicates a stationary series.
Different statistical methods have been proposed to determine the order of integration of
a time series. One of the most popular is the Augmented Dickey–Fuller (ADF) test [49],
which involves fitting the data to the following regression model:

∆yt = c + βt + ρyt−1 +
p

∑
j=1

bj∆yt−j + εt (3)

where ∆yt = yt – yt−1, p is the number of lagged difference terms to correct for higher-order
correlations, εt is the model residual, c and βt represent a constant and a linear trend terms
which can be eventually added depending on the complexity of the model. The ADF
procedure provides an estimate of the parameters of Equation (3) using the least-squares
methods and then tests the null hypothesis of ρ = 0. The test statistic on ρ is calculated as:

tρ =
ρ̂

s(ρ)
(4)

where ρ̂ is the estimate of parameter ρ and s(ρ) is the standard error of the estimated
parameter. Because the t-statistic does not follow one of the typical distributions (Gaussian,
t-Student, etc.), it should be compared with the critical values of its asymptotic distribution,
whose values are tabulated and provided by Dickey and Fuller, depending on the desired
significance level α. If

∣∣tρ

∣∣ <
∣∣tcr,α

∣∣, the null hypothesis is accepted, meaning that yt has a
unit root and is I(1). If the null is rejected, the test is repeated for ∆yt and if the hypothesis is
then accepted, yt is an I(2) series. If rejected, the procedure is repeated until the integrated
order of the process is established.

In this work, the ADF test is used at first to assess the degree of non-stationarity of the
input variables. Then, it is adopted after cointegration to verify that the residual obtained
from the regression model becomes stationary. This means that cointegration successfully
lowered down the order of integration of the original variables, i.e., removes the common
trends which caused signals to be nonstationary.
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3.2. Linear Cointegration

As previously stated, two or more nonstationary series are cointegrated if a linear
combination of them can be found to be stationary. Let Yt = (y1t, y2t, . . . , ynt) be a
multivariate nonstationary, I(1) time series. The series are cointegrated if there exists a
vector β = (β1, β2, . . . , βn) such that:

ut = βTYt = β1y1t + β2y2t + . . . + βnynt (5)

is a stationary univariate time series. Here, the vector β is referred to as cointegrating vector
and the linear combination βTYt describes the long-run equilibrium relationship between
the time series. Usually for a multivariate series such as Yt there could be more than one
possible cointegrating relationship and a number of general approaches are introduced
to estimate the cointegrating vectors. Among them, the Johansen procedure represents
an efficient maximum likelihood estimator [50], which seeks a white Gaussian residual
from the cointegrating relation. This method offers the possibility to estimate multiple
cointegrating vectors at the same time and to produce a test statistic to determine the
number of cointegrating vectors. An alternative approach to estimate the cointegrating
relations is the Engle–Granger (EG) two-step procedure [51]. The first step of this method
provides to consider a set of measured variables which have a regression model equation
of the form:

y1t = b2y2t + · · ·+ bnynt + εt (6)

where the time series have the same order of integration and the cointegrating vector
b = (1, −b2, . . . ,−bn) is unknown and has to be estimated using ordinary least-squares
methods. The regressed variable y1t can be selected arbitrarily from the data set, without
loss of generality. The estimated regression parameters are then used to form an error
correction model (ECM) [52], which describes the long-run relationships between vari-
ables. It is not necessary here to discuss about the nature of the ECM, since a simplified
implementation of the EG procedure is sufficient for SHM purposes.

The second step then verifies if the obtained cointegration residual εt is stationary
using the ADF test. If εt is stationary, there is cointegration within the series, i.e., the
regression equation has captured all the long-term relationships between variables. In this
case, a control chart can be directly used to monitor the behaviour of the residual. On the
contrary, if εt is nonstationary, there is no cointegration within the series.

In this work, the Engle–Granger procedure is preferred to the Johansen approach to
test for cointegration because it offers the advantage of having a highly consistent and more
intuitive estimator of coefficients, which have already been demonstrated to fit well in case
of SHM applications [33,52].

3.3. Main Steps to Run Cointegration within SHM Applications

This section resumes the main steps adopted in this paper to estimate the cointegrating
relationships over a given set of monitored variables. The Engle–Granger two-step proce-
dure described above is implemented as a core technique to test for cointegration, under
the assumption that linear dependencies exist between variables. The overall method can
be extended to any kind of SHM applications having similar characteristics.

• Select a set of suitable monitored variables belonging to the same process and sharing
common trends.

• Run the ADF test on the variables to determine the order of integration (this should be
the same for all the variables).

• Split the original data set in two parts, one for training and one for testing. Training
data are used to estimate the regression model, while test data are used to check for
variations in system behaviour. To obtain a reliable model, training data should not
include any damaged conditions, but should include a comprehensive time span and
resolution of healthy data under different environmental and operational conditions.
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• Run the ADF test on the model residual to assess its stationarity. If this situation is
verified, the linear cointegrating relationship is successfully established and common
trends are removed. Then, the cointegration residual represents a good indicator of
the health status of the structure and can be used for damage detection purposes.

4. Proposed Hybrid Approach for Outlier Discrimination
4.1. Identify Leverage Points in Regression

In linear regression, observations are classified as (xi, yi), where xi is the p-dimensional
vector of predictors and yi is the one-dimensional vector of the response. When xi is far
away from the majority of the distribution of the predictors, that point is identified as a
leverage point. Therefore, the definition of a leverage point only depends on the behaviour
of xi, without considering the response yi. If both xi and yi lie far from the region associated
with the bulk of the data, this observation becomes a bad leverage point. This point can be
very critical, since it attracts or even tilts the classical least square regression. If (xi, yi) is
still far, but follows the linear relation, it is called a good leverage point, since it improves
the precision of the regression estimates. Therefore, in the end, to distinguish between
good and bad leverage points, it is necessary to consider both xi and yi and to know the
linear relationship established by the majority of the data.

To facilitate the comprehension of the terminology just introduced, Figure 1 shows the
different categories of points that may be found in case of simple linear regression. The
majority of the data are regular observations and are indicated by (a). Data belonging to (b)
and (d) deviate from the linear pattern and thus are called regression outliers, but points
in (c) are not. Both (c) and (d) indicates clusters of leverage points, since their xi values
are outlying. As a result, points in (c) are good leverage points, while points in (d) are bad
leverage points. Finally, observations in (b) can be categorized as vertical outliers, because
they are regression outliers but not leverage points.

Figure 1. Example of simple linear regression showing (a) regular observations, (b) vertical outliers,
(c) good leverage points, (d) bad leverage points.

4.2. Description of the Residual Outlier Map

The main results for the case study analyzed in the next section are presented using a
residual outlier map similar to that introduced in [29,53]. In these works, the map displays
the least trimmed squares (LTS) residuals [53] versus the robust distances calculated using
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the MCD estimator on the input variables and it is very useful to classify the observations
between regular, good and bad leverage points, according to the adopted regression model.
In this paper, residuals are established from cointegration analysis. However, this does not
change the general interpretation of the results, as both the methods are based on the same
theoretical principle, i.e., linear regression.

In more detail, the computation of robust distances reveals leverage points, but can-
not distinguish between good and bad ones, because yi is not considered. At the same
time, residuals identify regression outliers yi without telling which of them are leverage
points. The residual outlier map combines the previous information to provide a powerful
visualization in which the inherent nature of the data is revealed.

An illustrative example of the residual outlier map is reported in Figure 2. The two
horizontal red lines represent the threshold for the regression residual and depend on its
statistical distribution, while the vertical red line is the threshold for the MCD distances.
These threshold values divide the plot into six regions categorized with different labels,
according to the behaviour assumed by the observations described above.

Figure 2. Graphical representation of residual outlier map.

5. Application to SHM: The Railway Bridge KW51

The case study presented in this study is the KW51 bridge, a steel railway bridge
that crosses the Leuven–Mechenel canal close to the city of Leuven, Belgium (Figure 3a).
Experimental data used in this work have been acquired by the research group from the
Structural Mechanics Section of the KU Leuven University and are available online as a
benchmark case study.

The KW51 is a steel single-span arch bridge of bowstring type, with a length of 117
m and a width of 12 m. The two-track deck is suspended from the arch with thirty-two
inclined braces and it is made of two main girders stiffened by thirty-three transverse
beams. The bridge is supported by four neoprene bearings at its extremities, which directly
sit on two concrete abutments.

The KW51 has been monitored since 2 October 2018. In the period from 15 May to 27
September 2019, the bridge was retrofitted to resolve a construction error that emerged
during inspections. At the beginning of the retrofitting, the scaffolding was installed on
the bridge, adding mass to the structure and, therefore, modifying its modal properties.
Then, the retrofitting intervention took place, which consisted of strengthening the bolted
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connections of the braces with the deck and the arch by means of welded steel plates
(Figure 3b).

Figure 3. (a) The KW51 bridge in Leuven and (b) Example of bolted connection between a brace and
the arch of the bridge (Reprinted from ref. [54]).

The monitoring system of the KW51 bridge comprises a dense network of sensors
which provides measurements of acceleration on the bridge deck and the arches, strain on
the bridge deck and on the diagonals connecting the bridge deck with the arches, strain
on the rails, displacement at the bearings, and a set of relevant environmental parameters
such as temperature, relative humidity and wind speed.

Acceleration measurements represent the quantities of interest for this study. The
acceleration of the bridge deck and the arches are acquired by means of 12 uniaxial ac-
celerometers with a sensitivity of 1000 mV/g (model PCB393B04). The layout of the
measurement network of the bridge is shown in Figure 4. Six accelerometers are installed
on the bridge deck, where four sensors measure the acceleration in the vertical direction
(z) and two sensors measure the acceleration in the lateral direction (y). The remaining
six accelerometers are installed at the intersection between the arches and the diagonals,
where they measure the accelerations in the lateral direction (y).

Figure 4. Layout of the acceleration measurement setup of the KW51 bridge. The side view shows
the sensors installed on the connections between the diagonals and the arches, while the top view
illustrates the sensors installed on the bridge deck. (Adapted from ref. [54]).



Sensors 2022, 22, 2177 11 of 19

Acceleration data are acquired and collected every five minutes using a National Instru-
ment (NI) data acquisition system, made of a NI DAQ 9178 chassis and three NI 9234 ICP
modules, which account for signal conditioning and A/D conversion. A sampling fre-
quency of 1651.6 Hz is selected.

Ambient vibration data have been used to perform an automated operational modal
analysis (OMA) on an hourly basis. The result is the availability of the evolution of the
modal parameters (natural frequencies, damping ratios and mode shapes) of the railway
bridge over time. For a complete description about the measurement setup, data processing
and the available data characteristics readers can refer to [36]. For the purposes of this
paper, the four natural frequencies related to the vertical global modes of the bridge deck
are considered, referred to as f1, f2, f3 and f4 in Figure 5a. Data samples relate to a period
of 15 months, from 2 October 2018 to 15 January 2020. These set of frequencies are of
particular interest since they are the only identifiable by OMA with a good success rate
also during the retrofitting process, which starts at observation 2675. Missing data that are
present in the original dataset are removed as a data pre-processing procedure.

Figure 5. (a) Time history (hourly based) of natural frequencies associated with the global vertical modes
of the bridge deck. Vertical dashed lines indicate the frost period, while vertical solid line indicates the
beginning of retrofitting interventions; (b) Upper panel: time history of the second natural frequency of
the bridge deck, where the five analyzed scenarios are plotted in different colors; Lower panel: time
history of air temperature (horizontal red line indicates air temperature equal to 0 ◦C).

The observations considered for the analysis are classified into five scenarios associated
with five distinct structural conditions. To better understand the behaviour assumed by the
natural frequencies during these periods, the upper panel of Figure 5b offers an in-depth
view of the evolution over time of the second natural frequency f2, where the different
scenarios are highlighted with different colors. Air temperature readings from the same
period are plotted in the lower panel.

Scenarios S1 and S2 refer to the normal conditions of the structure, where the bridge
is exclusively influenced by environmental and operational parameters. It can be noted
here that the variability of data points is mainly driven by the influence of temperature. In
particular, two large peaks are clearly visible in S2 between samples 1404 and 1530. These
fluctuations are also observed in the behaviour of other bridges [34,55] and they are highly
related to very cold periods, where the temperature decrease below 0 ◦C causes a stiffness
increase due to the freezing of the asphalt layer of the bridge deck.

The retrofitting period is divided into three main regions. The first region (S3) is
where a slight decrease in the natural frequency value owing to the presence of the first
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part of the scaffolding (i.e., added mass) on the bridge is observed; however, its effect on
the modification of the structural properties is negligible and EOVs still remain the major
source of variation in natural frequencies. The second region (S4) is related instead to
the evolution of the retrofitting activities, where all of the bolted connections between the
diagonal braces and the deck and arch were strengthened, resulting in a gradual stiffness
increase and therefore in a gradual increase in the natural frequencies. Finally, the third
region (S5) belongs to the period after completing the retrofitting, where a permanent
shift of the natural frequency values is observed with respect to the initial conditions.
It should be stressed that, even when structural modifications due to retrofitting occur,
natural frequencies still remains sensitive to the influence of temperature, as can be seen
from the fluctuations that are present both during and after the retrofitting.

All the scenarios described above are resumed in Table 1, with the corresponding
name and data points. Data before retrofitting (S1 and S2) are used for the training of the
proposed algorithms in order to fully characterize the structure behaviour during normal
operating conditions, while the remaining datasets are used for testing and are assumed to
be a proof for structural modifications of different extent.

Table 1. Description of the different analyzed scenarios.

Scenario Description Data Points

S1 Before retrofitting 1–1403; 1531–2674
S2 Before retrofitting (cold temperatures) 1404–1530
S3 Retrofitting: 1st stage 2675–3058
S4 Retrofitting: 2nd stage 3059–3755
S5 Post retrofitting 3756–4196

6. Results and Discussions

The univariate MSD and MCD distances are calculated for each of the four natural
frequencies in order to highlight the presence of outliers in the data, as shown in Figure 6.
For the computation of MCD estimates, a breakdown value h = 0.75n has been selected,
where n represents the number of observations in the training period. MSD and MCD
threshold limits are calculated as described in Section 2.2, given a 95% confidence limit.
First of all, one can observe that the Mahalanobis-squared distance is less sensitive to
identify outliers. For the specific case of frequency f4, the damaged condition has not even
been identified. This is because observations related to the freezing period are (correctly)
included in the computation of the metrics, since they belong to the normal conditions of
the structure, but they biased the estimation of mean and covariance.

On the contrary, the minimum covariance determinant estimator, thanks to its major
robustness to outliers, better reveals the presence of abnormal behaviors, resulting in a
higher MCD index if compared to the MSD index. The large distances observed in the
training period associated with the frequency fluctuations are due to very cold temperatures
and represent suitable candidates to test the ability of the proposed combined approach
in discriminating outliers due to environmental conditions out of those due to retrofitting.
This aspect is investigated in detail in the next section.

Once outliers are revealed, further processing is required in order to transform the
original variables into a new feature which is made insensitive to the external influences
due to environmental and operational factors and, therefore, create a suitable normal
condition training set. This is achieved in this work by establishing a regression model
of natural frequencies, based on the concept of cointegration. The basic idea from the
point of view of cointegration is that, once cointegration relationship between variables is
built, the model error describes their long-term equilibrium. If cointegration relationship is
estimated from data when the structure operates under normal conditions, it is expected
that natural frequencies are influenced by the same set of external influences and, therefore,
their combination produces a model error which is stationary.
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Figure 6. Comparison between univariate MSD and MCD distances for the four natural frequencies.

The stationarity of residual in this case has a dual function. On one hand it permits
us to remove common trends from the original data; on the other, it allows us to check for
system variations induced by damage, which may manifest as a deviation from equilibrium
conditions. Although the relationship between temperature and each of the natural fre-
quencies of the bridge are found to be nonlinear in case of very low temperatures, relations
between natural frequencies themselves within the same period are found to be linear. This
is because the different dynamic responses of the structure are driven in a similar manner
to the external influence of temperature.

For this reason, linear cointegration is applied in the following analysis. To satisfy
cointegration assumptions, all variables included in the regression model must be I(1). The
order of integration for the time series of the four natural frequencies is determined using
the ADF test. Results are resumed in Table 2 and show that all the series are nonstationary
and integrated of order one at the 95% confidence level.

Table 2. ADF test results for the four natural frequencies series.

Variables ADF t-Statistic 5% Critical Value Stationarity?

f1 0.041 −1.942 NO
f2 0.030 −1.942 NO
f3 −0.091 −1.942 NO
f4 −0.072 −1.942 NO

Then, the two-step Engle–Granger procedure is implemented. Because it is neces-
sary to select one of the natural frequencies at a time to serve as regression response,
there exist four possible models, namely, f1 = h( f2, f3, f4) + ε1, f2 = h( f1, f3, f4) + ε2,
f3 = h( f1, f2, f4) + ε3, f4 = h( f1, f2, f3) + ε4 , where h represents a function which de-
scribes the independent variable as a linear combination of the regressors and εi is the
model error. Once regression coefficients are estimated, the ADF test is applied to the
training residual and the obtained results are reported in Table 3. Since all the ADF test
statistics are significantly smaller than the 5% critical value, it is possible to conclude that
all residual series are stationary and, therefore, cointegration relationships exist between
natural frequencies.
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Table 3. ADF test results for the training residuals.

Variables ADF t-Statistic 5% Critical Value Stationarity?

ε1 −14.491 −1.942 Y
ε2 −18.629 −1.942 Y
ε3 −17.557 −1.942 Y
ε4 −12.301 −1.942 Y

The prediction ability of all the four models are quite similar and tend to have a
good fit to the experimental data. However, among all possible models, the one with a
residual with the most negative ADF t-statistic, namely f2 = h( f1, f3, f4), is selected as the
candidate for the following analysis. Indeed, this model is the one able to create the most
stationary combination of the original variables, i.e., it is the most effective in suppressing
the original common trends.

Figure 7 shows the control chart of the residual time series obtained from cointegration.
The confidence interval is set to 95%, which corresponds to the range µ ± 2σ, where µ and
σ are the mean and the standard deviation of the residual calculated from the training data.
As one can clearly see, the residual series is very sensitive to structural changes.

Figure 7. Control chart of cointegration residual from model f2 = h( f1, f3, f4). The upper and lower
red lines represent the training residual mean plus or minus two times the standard deviation.

During the training period, when the structure is assumed to be in a normal condition,
fitted data follow the measured data very well. This is reflected by the residual behavior,
which remains stationary, any effect from temperature is effectively deleted and the large
fluctuations of the frequency values due to low temperatures are well predicted too. Moving
to the testing region, deviations between the model predictions and the experimental
data occur. First, an average decrease in residual values between observations 2700 and
2800 is observed, probably related to the added masses of the scaffolding on the bridge,
which causes a decrease in the natural frequency with respect to fitted data. Second,
from sample 3059 onwards, retrofitting takes place, producing a gradual stiffening of the
bridge connections. Natural frequencies increase as well, but with a different relationship
with respect to those built during cointegration. As a result, the residual series becomes
nonstationary with a sudden jump in magnitude, which strongly points to the occurrence
of damage.
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At this point, the residual outlier map can be used to classify the observations in the
six different regions introduced in Section 4. The plot of the cointegration residual versus
MCD robust distances are presented in Figure 8.

Figure 8. Plot of cointegration residual versus MCD robust distance for model f2 = h( f1, f3, f4).
Numbers from 1 to 6 refer to the different regions of the residual outlier map described in Section 4.2.

Specifically, most of data related to scenarios S1 and S2 are classified as regular
(region 3 of the map), as they are characterized by small residual and small MCD distances.
This is in agreement to the actual behaviour of the structure, i.e., healthy conditions.
Similarly, observations from scenario S3 are associated with region 3, as the presence of
the first part of the scaffolding causes only a slight variation in the modal properties of
the bridge and thus an increase in the MCD input distances which is negligible, except
for few points that appear as vertical outliers. In the latter case, this means that the
cointegration relationship is no longer respected. Typically, vertical outliers indicate a
model misspecification and thus involve a better comprehension of the main phenomena
and a model reformulation. However, this is not the case, since the situation that originates
vertical outliers is well-defined and related to an external known cause (temporarily added
masses) which cannot be estimated and thus its influence on the modal properties cannot
be assessed.

In the map, some points from scenario S2 (very cold temperatures) are attributed to
a region of benign variations (region 2). Indeed, they represent good leverage points, as
the MCD distances of regressors assume high values, but at the same time, the residual is
within the control limits, indicating that the cointegration relationship established during
normal conditions is still respected.

On the other hand, observations from scenarios S4 and S5 are mostly related to region 4,
i.e., they are bad leverage points. This time, as well as input variables are characterized
by high MCD distances, residual amplitude also increases since the equilibrium described
by cointegration is violated due to the different behaviour induced by retrofitting. Once
again, the residual outlier map is able to separate the observations based on the current
state of the structure. Consistent with the development of the retrofitting activities, it is
possible to observe that data points related to scenario S4 migrate from region 3 (healthy
conditions/negligible changes) to region 4 (damage state/relevant structural modification),
while data points after the completion of the retrofitting lie permanently within region 4.
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7. Conclusions

In this paper, a novel approach based on the use of cointegration and robust outlier
detection is described as a means of characterizing outliers in the data. When structures are
operating in situ and outside a controlled environment, the measured features may change
over time due to the influence of benign reasons, mainly environmental and operational
factors that are unrelated to damage. Different outlier detection methods have been used
to reveal the presence of anomalies with respect to the baseline conditions, and outliers
are often interpreted as critical points to be discarded although they may contain relevant
information. On the other hand, when groups of outliers are included in the analysis,
they could bias model estimates and the subsequent performance. Consequently, it is
of key importance to reveal the nature of outliers according to the underlying processes
that generate them. Thanks to this analysis, one can detect benign variability in advance,
creating normal conditions clear of external influences, thus enhancing the possibility to
identify real damages.

This is exactly the central target of this work, which focuses on explaining that outliers
due to environmental and operational variations appears in the data in a different way
with respect to those due to damages or structural modifications. The proposed method
has been applied on the experimental data of the KW51 railway bridge, which represents
a realistic case study subjected to the contemporary influence of EOVs and a gradual
structural modification due to retrofitting.

Natural frequencies associated with the vertical modes of the bridge represent the
input features for the procedure. Observations are divided in five scenarios associated with
different structural conditions. First, data samples from the period before retrofitting, where
the structure is assumed to be healthy, are used as training data to establish a cointegration
relationship where one frequency (predictor) is expressed as a linear combination of the
others (regressors). Data samples acquired during and after the retrofitting are used instead
for testing purposes. The stationarity of the training residual obtained after cointegration is
assessed through a unit root test and confirms that EOVs trends are effectively removed; at
the same time, deviations from stationary conditions are observed in the testing residual
after retrofitting which strongly points to the occurrence of damage.

Then, the information from the cointegration residual is used in conjunction with the
robust discordancy measures (MCD) of the regressors to create a residual outlier map, which
allows us to distinguish the observations in six different regions based on the different
structural conditions. Samples related to the healthy state of the structure are correctly
classified as regular. Samples measured in correspondence to very cold temperatures
are treated as good leverage points and, therefore, associated with a region of “benign”
variations; indeed, in this case, even though the MCD distances of the regressors are far
from the bulk of the distribution, the cointegration relationship established during normal
conditions is still preserved. Finally, it is observed that retrofitting causes a gradual change
of the modal properties of the structure which is different from that induced by EOVs. As a
result, not only high MCD distances of the regressors are obtained, but also high residual
amplitudes, which testify that the equilibrium conditions established by the cointegration
relationship are violated. Again, this aspect has been properly captured by the residual
outlier map, which identifies these observations as bad leverage points and locates them in
a region of “malign” variations.

Future studies should be oriented towards the extension to nonlinear robust regression
methods, so as to also include those features characterized by nonlinear relationships.
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Nomenclature

As scientific texts uses different notations for vectors, matrices, statistical variables
and abbreviations, the conventions applied in this paper are provided in the table below.

Symbol/Abbreviation Description
MSD Mahalnobis squared distance
MCD Minimum covariance determinant
zi Multivariate observation
µz,Σ Sample mean and covariance matrix
n Number of samples
p Number of features
[Z] Multivariate feature matrix (n× p)
h Breakdown value (n/2 < h ≤ n)
Hi Subset of [Z] (h× p)
µi,Σi Sample mean and covariance for data in Hi
di(i) MCD distance measure
ADF Augmented Dickey–Fuller
yt Generic time series
yt~I(d) The time series yt is integrated of order d
tρ ADF t-statistic
EG Engle-Granger
b = (1, −b2, . . . , −bn) Cointegrating vector
εt Cointegration residual
xi p-dimensional vector of predictors
yi One-dimensional vector of the response
f 1,f 2,f 3,f 4 Natural frequencies of the KW51 bridge deck (vertical modes)
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