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Part A: 
Modelling the uniqueness of each class in each feature is the key 

challenge in multi-class detection in acoustic biomedical signals. To fully 
explain this issue and justify our approach, here we divide it into two sections 
to explain the motivations of including variance and distribution separately.  

Inclusion of variance into the model 
The incorporation of variance of features into the model (instead of 

using standard normalization) has two key reasons:  1) the feature variances 
in different classes are very different, implying a high inter-class variance 
ratio; and 2) each feature has its unique inter-class variance ratios. To validate 
this, we first calculated the variance of each feature in each class. Next, we 
calculated and plotted (see Figures S1 in this response letter) the inter-class 
variance ratios 

ఙೕ,ೖసೢ೓೐೐೥೐ఙೕ,ೖస್ೝ೐ೌ೟೓  (in red) and 
ఙೕ,ೖస೎೚ೠ೒೓ఙೕ,ೖస್ೝ೐ೌ೟೓ (in blue) for all features ( 𝑗 =1, … ,72 ). As we can see, for almost all features, the variances in 3 classes are 

quite different. Such inter-class variance ratio can even go as high as >1e6 (see 
Figures S2 and S3 for the distributions of some features). Therefore, it is 
necessary to incorporate the variance information at the class level. 
Moreover, since the inter-class variance ratio is not constant across different 
features –the ratios in some features are more drastic than others, implying 
the necessity to incorporate the variance at the feature level too.  

 



 

Figure S1. Variances of features by class. For easy comparison, the variances 
of breath are scaled to 1 for all features. 

Inclusion of distribution into the model 
The motivations of including distribution into the models are two-fold: 

a) the distribution types are different in different features/classes, and b) 
using mean/variance cannot capture the multimodality of class centroids. To 
see a), we randomly picked a few features and demonstrated the distribution 
differences between 3 classes in Figure S2. On the left subplot, cough and 
breath sounds are skewed to the right but wheeze is highly skewed to the left; 
on the right subplot, cough sounds are flat, but breath and wheeze are 
squeezed to the right tails. As these distribution patterns vary by output 
classes as well as features, the detection algorithm should characterize the 
uniqueness of each class in each feature.  

 



Figure S2. The distribution patterns of features by classes. Bar shades are the 
relative frequencies for each class and curves are the fitted probability density 
distributions. 

When the feature values follow a simple distribution (for example, 
Gaussian), then incorporating mean and variance into the model might be 
sufficient to calculate the distances to the class centroids. However, this is not 
true in our detection problem. In fact, the feature values are distributed in 
bimodal or multimodal fashion (see Fig. 3). On the left subplot, we showed 
the multimodal patterns in breath sounds; in the middle subplot, we showed 
the bimodal distribution of wheeze, and in the right subplot, we showed the 
bimodal distribution of both cough and non-cough sounds. In view of the 
multimodality, we have adopted the probabilistic measure into our model by 
learning the empirical distribution patterns from historical data. By doing so, 
the proposed model has a better representation of the relative between a 
sample and the class centroids.    

 

Figure S3. Bimodal and multi-modal distributions of features in three classes. 
Bars are the relative frequencies for each class and curves are the fitted 
probability density distributions.  

Part B: 
Here we investigate the feature sensitivity in 3 outcomes and the overall 

prediction (see Figure S4), using a game theory approach, designed as 
follows: 

For each feature: 

1. Remove the feature from current dataset, and build a K-MDC model. 
Record the average model performance in 3 outcomes and the overall 
detection accuracy. 

2. Build another K-MDC model by forcing the model to take this feature. 
Record the average model performance in 3 outcomes and the overall 
detection accuracy. 

3. Calculate the improvement of model performance (if any) when this 
feature is forced to be included.  

As we can see, the wheeze prediction appear to be more sensitive to 
adding/removing certain features, while other outcomes are more robust. 



However, as K-MDC learns to minimize the mutual information when 
building models from the features, adding/removing a single feature has little 
impact to the overall prediction performance, where the largest improvement 
in detection accuracy is less than 2.5%.  

 

Figure S4. Sensitivity analysis of features in each outcome and overall 
accuracy. Performance change is measured by the improvement (if any) 
when the current feature is included in the model.  

Note that the sensitivity analysis is not covered in the main context, 
mainly because of the heterogeneity of sound signals. For instance, the cough 
sounds can come from various airway diseases with various spectral patterns 
(Debreczeni et al. 1987), hence the sensitivity to these spectral features will be 
largely dependent on the prevalence of diseases in the collected sounds. A 
systematic and conclusive sensitivity analysis would require large acoustic 
data from various airway diseases, which is not feasible in the current study.  

Part C 
We have performed the computational complexity analysis. From the 

Equation 5 and Equation 6, we can see that the computation complexity of 
training is proportional to the amount of training data and the square of 
feature size and the computation complexity of prediction is proportional to 
number of features. The computation complexity of various models is 
summarized below in Table S1. Note that due to the design and 
implementation, the computation complexity of SVM models can be quite 
different. Here we report the results by Fleizach and Fukushima (1998) and 
Abdiansah and Wardoyo (2015). It is obvious that computation complexity 
of prediction stage is more critical because training stage can always be 
conducted offline but classification has to be repeated continuously on 
wearable devices. Therefore, our proposed K-MDC (𝑂ሺ𝑘ሻ) is computationally 
more efficient than SVM and KNN, and equivalent to NB. Note that the 



computation complexity of ANN is largely dependent on the number of 
hidden layers and the architecture, but is generally more computationally 
expensive than other classifiers. 

Table S1. Computation complexity of machine learning classifiers using Big 
O notation.  𝑛 is the size of training data, k is the number of selected features, 
and K is the number of nearest neighbors in KNN. ‘-’ implies that the 
computation complexity is not applicable or cannot be directly expressed. 

Classifier Training Classification 
K-MDC 𝑂ሺ𝑛𝑘ଶሻ 𝑂ሺ𝑘ሻ 

ANN - - 
NB 𝑂ሺ𝑛𝑘ሻ [29] 𝑂ሺ𝑘ሻ 

SVM 
𝑂ሺ𝑘𝑛ଶሻ to 𝑂ሺ𝑘𝑛ଷሻ [28] 

𝑂ሺ𝑘ሻ to 𝑂ሺ𝑘𝑛ሻ 

KNN - 𝑂ሺ𝑘𝐾ሻ 

 


