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Abstract: Heart rate variability (HRV) is closely related to changes in the autonomic nervous system
(ANS) associated with stress and pain. In this study, we investigated whether HRV could be used to
assess cancer pain in mice with peritoneal metastases. At 12 days after cancer induction, positive
indicators of pain such as physiological characteristics, appearance, posture, and activity were
observed, and time- and frequency-domain HRV parameters such as mean R-R interval, square root
of the mean squared differences of successive R-R intervals, and percentage of successive R-R interval
differences greater than 5 ms, low frequency (LF), high frequency (HF), and ratio of LF and HF
power, were found to be significantly decreased. These parameters returned to normal after analgesic
administration. Our results indicate that overall ANS activity was decreased by cancer pain and that
HRV could be a useful tool for assessing pain.

Keywords: pain; autonomic nervous system; heart rate variability; electrocardiogram; peritoneal
metastasis

1. Introduction

Pain is an abnormal sensation of the body alerts that is usually caused by an injury,
localized tissue damage, or illness [1]. There are different types of pain: acute pain, which
lasts for a short period of time and goes away when the cause is treated, and chronic pain,
which persists for more than six months and can be the underlying cause of diseases such
as rheumatoid arthritis, osteoarthritis, fibromyalgia, multiple sclerosis, and cancer [2–4]. In
many cases, chronic pain is very complex and can progress to a psychological level after
the physical problem has healed. Therefore, the treatment and management of chronic pain
have a great impact on quality of life.

Pain assessment is important for providing analgesia, and a numerical rating scale
(NRS) or visual analog scale (VAS) have been considered good clinical practice to quantify
pain in patients [5]. Although these methods are becoming common tools for measuring
pain intensity, there are still limitations, such as individual variations, validity of correlation
between specific diseases and pain intensity, and inability to apply in noncommunicating
patients. Therefore, several methods have been investigated for pain assessment, including
heart rate variability (HRV) analysis [6]. HRV is a well-established indicator of cardiac
autonomic activity mediated by changed parasympathetic and sympathetic levels [7]. These
two competing branches of the autonomic nervous system (ANS) simultaneously send
signals to the heart and cause a fluctuation in heart rate. HRV could reflect the affective
and physiological aspects of pathogenesis and is emerging as a possible descriptor of pain
assessment. For example, post-laparotomy pain in mice was assessed by heart rate and
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HRV, where heart rate was increased, whereas interbeat interval and standard deviation
of interbeat interval were decreased. These changes returned by analgesics injection,
suggesting that these parameters were associated with pain [8]. HRV was increased
by persistent inflammatory pain states in rats, and Poincaré plot descriptor and pNN18
represented robust indicators of pain [9]. Cardiovascular autonomic parameters such as
blood pressure, heart rate, and high-frequency power were increased in the rat model of
chronic constriction injury of the sciatic nerve [10]. HRV analysis has also been widely
studied in clinical practice. An analgesia nociception index (ANI) has been developed
for pain measurement during surgical procedures, where parasympathetic activity was
evaluated by monitoring the HRV balance between the nociceptive stimulus and the
level of analgesia [11–13]. Prolonged pain in newborn infants was assessed by using HRV
analysis, and postoperative pain was associated with a decrease in high-frequency HRV [14].
Autonomic dysregulation with increased resting heart rate and reduced HRV has been
evidenced in patients with chronic pain disorders, such as low back pain, neck–shoulder
pain, and fibromyalgia [15]. These studies suggest that HRV could be a useful tool for
assessing pain disorders.

Therefore, this study aimed to investigate whether cancer pain leads directly to dys-
regulation of the ANS and can be assessed by HRV. We monitored changes in time- and
frequency-domain HRV parameters and physiological responses with cancer progression
in a peritoneal metastasis mouse model. Two weeks after cancer induction, the effect of
analgesic administration on the HRV in the cancer model was analyzed.

2. Materials and Methods
2.1. Animal

All animal experimental procedures were approved by the Institutional Animal Care
and Use Committee of Korea Institute of Science and Technology (Certificate number:
KIST-2021-06-073). The experimental protocol was performed in accordance with the
recommendations for the care and use of laboratory animals. Thirteen BALB/C male mice
(DBL Co., Ltd., Chungbuk, Korea) of 10 weeks of age were used for this study, and mice
were individually housed in conditions of a controlled 12 h/12 h light/dark cycle with free
access to food and water. All animals had a one-week adaptation period prior to surgery,
and individuals with abnormal weight changes were excluded from the study through
periodic weight measurement. All animals were randomly divided into two groups: naïve
(n = 5) and cancer (n = 8).

2.2. ECG Electrode Fabrication and Implantation

A flexible wire electrode was fabricated to record electrocardiograms (ECGs) in a
mouse model [16]. Figure 1a shows the fabrication process. A spiral shape was produced
using a stainless-steel wire with a diameter of 0.1 mm. Then, the side end of the wire was
fixed and uniformly wrapped around the stainless-steel fiber with a diameter of 0.86 mm.
Medical-grade silicone (Ecoflex, 00-30) was mixed, and the air bubbles were removed in a
vacuum chamber. The custom-made molds consisted of two side cap molds. After slowly
injecting silicone into the molds, a spirally formed wire was placed in the center of the
mold containing silicone. The molds were assembled, and then the silicone was cured at
80 ◦C for 60 min. The electrode was carefully separated from the molds and immersed in
70% ethanol under UV light overnight.

For electrode implantation, mice were anesthetized with 2% isoflurane and 0.9 L/min
100% O2. The hair of the head, neck, and chest was shaved. Two incisions were made in
the left abdomen below the heart and the right upper shoulder, and two electrodes were
fixed to the incised tissues. The opposite side of the electrodes subcutaneously led to the
head connector. All incisions were sutured, and the head connector was secured to the
skull using dental cement (Figure 1b).
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Figure 1. An overview of the experimental procedures and illustration. (a) Fabrication process of the
flexible wire electrode. (b) Implantation of the ECG electrode in mice and the peritoneal metastasis
cancer model.

2.3. Peritoneal Metastasis Cancer Model

Mouse colon carcinoma (CT-26) cells were purchased from the Korean Cell Line
Bank (KCLB, Seoul, Korea). Fetal bovine serum (FBS), RPMI-1640 media, and antibiotic
solution (1% penicillin and streptomycin) were purchased from Welgene Inc. (Gyeongsan-
Si, Gyeonsangbuk-do, Korea). CT-26 tumor cells were maintained in RPMI-1640 medium
supplemented with 10% FBS and 1% antibiotic solution at 37 ◦C in a humidified incubator
containing 5% CO2. Seven days after electrode implantation, mice were administered an
intraperitoneal injection of 1 × 106 CT-26 cells.

2.4. ECG Recording and HRV Parameter Extraction

ECG was recorded for baseline measurements of 5 min every four days. ECG signals
were digitized at a sampling rate of 32 kHz using a digital data acquisition system (Neu-
ralynx, Tucson, AZ, USA). To reduce circadian and environmental effects on heart rate
fluctuations, all recordings were performed at the same time and in an isolation recording
chamber. All ECG signals were analyzed using MATLAB R2015b (MathWorks, Inc., Natick,
MA, USA). Table 1 shows the formulas used to calculate HRV parameters [17,18]. First,
ECG signals were bandpass filtered by a 3rd-order Butterworth of 0.5~50 Hz, and the
R-peak was detected using the Pan–Tompkins algorithm with some modification [19]. The
interval between two successive R-peaks (RRI) was accumulated over a 3 min time window
for short-term ECG recordings. The mean R-R interval (mean RRI), square root of the mean
squared differences of successive R-R intervals (RMSSD), and percentage of successive R-R
interval differences greater than 5 ms (pNN5) were calculated for the time-domain analysis
of HRV. For frequency-domain analysis, a tachogram was reconstructed at a 10 Hz sampling
rate using cubic spline interpolation of the RRI, and the power spectrum was estimated
by using Welch’s method. Low-frequency (LF) and high-frequency (HF) bands were set to
0.1–1.0 Hz and 1.0–4 Hz, and the ratio of LF and HF power (LF/HF) was analyzed.
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Table 1. Descriptions and formulas used to calculate heart rate variability parameters.

Parameter Unit Formula Description

Time-domain HRV parameters
MeanRRI ms t ∑N

i=1 RRi
N

Mean variability of interbeat interval

RMSSD ms
√

∑N−1
i=1 (RRi+1−RRi)

2

N−1
Reflects parasympathetic activity

pNN5 % Count((RRi+1−RRi)>5 ms)
N−1 × 100 Reflects parasympathetic activity

Frequency-domain HRV parameters

LF ms2 Reflects both parasympathetic and
sympathetic activity

HF ms2 Reflects parasympathetic activity

LF/HF Reflects parasympathetic and
sympathetic balance

2.5. Pain Assessment

To assess pain after CT-26 tumor cell injection, each of the four categories was evaluated
in both the naïve and cancer groups. Four categories were calculated based on each
parameter for physiological characteristics, posture, appearance, and activity [8,20]. Table 2
shows normal and abnormal behaviors for pain assessment. Mice were assigned a score of
0 or 1 for each category.

Table 2. Categories used to calculate pain.

Categories Pain Sign Parameter (+/−)

Physiological characteristics
10% or more body weight change

Above normal body temperature (35.8~37.4 ◦C)
Diarrhea

Posture Hunched posture

Appearance

Rough hair coat
Pinched face

Distended abdomen/swollen
Reluctance to move

Activity Not grooming

Physiological characteristics of pain were defined as body weight, body temperature,
and diarrhea. When the body weight was increased or decreased by more than 10%
compared to the previous measurement or when body temperature exceeded the normal
temperature range of 35.8~37.4 ◦C, it was determined to be a signal of physical abnormality.
In addition, diarrhea or bloody stools were considered symptoms of positive pain reactions.
The rough hair coat, pinched face, and distended abdomen were identified as parameters
of an appearance pain index. In the posture evaluation, a hunched posture was regarded
as abnormality. In the activity category, the activity was evaluated as decreased when
mice did not move or grow for more than 30 sec within 5 min of the observation time.
Pain assessment was performed from video clips recorded simultaneously with the ECG
measurement. A score of 0 was assigned to normal mice, while a score of 1 was allocated
for the corresponding category when a positive reaction for the parameter was observed in
mice. Therefore, the most painful case was given a score of 4.

2.6. Analgesic Evaluation

To evaluate the effect of analgesics in a cancer model, the changes in HRV according
to analgesic administration were analyzed 14 days after cancer induction. Tramadol is
a centrally acting weak µ opioid agonist that has been widely used to treat both acute
and chronic pain [20]. The cancer group was randomly assigned into two groups: the
cancer+saline (CS, n = 4) group and cancer+tramadol (CT, n = 4) group, which included
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saline and 5 mg/kg tramadol, and ECG was recorded one hour after saline and tramadol
injection.

2.7. Statistical Analysis

All data are expressed as the mean ± standard error of the mean (SEM), and SPSS
Statistics V25 was used for statistical analysis. The Mann–Whitney test was used for
statistical analysis of the pain assessment, while the Kruskal–Wallis test was used for
statistical analysis of the differences in HRV. The Bonferroni correction method was used as
a post hoc test. The statistical significance (p-value) of each section is indicated by * p < 0.05.

3. Results
3.1. Pain Assessment

The body weight of the cancer group was not noticeably different from the naïve group
until day 8 but was significantly increased on day 12 (cancer vs. naïve, 30.9888 ± 0.9593 g
and 27.98 ± 0.4492 g). Body temperature was also similar in the cancer group and the naïve
group until day 8 but decreased significantly on day 12 (cancer vs. naïve, 35.6125 ± 0.3907 ◦C
and 36.24 ± 0.02449 ◦C). Diarrhea symptoms could be observed on day 8 in most mice in
the cancer group. The characteristics of appearance due to pain could be observed mainly
in mice in the cancer group after day 8. In addition, low activity was observed in the cancer
group on day 8. Tumor formation was visually confirmed by laparotomy of the cancer
group mice. The tumor formed a bundle of masses, like small beads, along the mesenteric
membrane and colon (Figure 2b). The results of comparing the pain score between the
cancer group and the naïve group are shown in Figure 2a. The pain score of the cancer
group was significantly increased at day 12 (cancer vs. naïve, 3.625 ± 0.1830 and 1.2 ± 0.3742).
From these results, we confirmed that pain occurred 12 days after injection of CT-26 tumor
cells in our experiments.
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Figure 2. Pain assessment of naïve and cancer groups. (a) The pain score in the cancer group was
significantly increased at day 12 compared to that in the naïve group. (b) Representative image of
tumor formation at 12 days after CT-26 injection. * p < 0.05 vs. naïve.

3.2. Changes in HRV According to Cancer Induction

Figure 3 shows HRV parameters calculated from the RRI during the 3 min ECG record-
ings. The time-domain HRV parameters, mean RRI, RMSSD, and pNN5, were similar in the
cancer group and the naïve group until day 8 but significantly decreased at day 12 (mean RRI:
cancer vs. naïve, 98.6941 ± 3.8106 ms and 135.8685 ± 7.3151 ms/RMSSD: cancer vs. naïve,
3.5971 ± 0.7143 ms and 11.1277 ± 2.0890 ms/pNN5:cancer vs. naïve, 7.4111 ± 4.6096 % and
49.7319 ± 8.5886 %). Generally, HF is regarded as an index of parasympathetic activity, and
LF reflects both sympathetic and parasympathetic activity [21]. The total power of the cancer
group decreased over time, and HF and LF were significantly lower at day 12 compared to
the naïve group (HF: cancer vs. naïve, 0.2134 ± 0.07924 ms2 and 0.002221 ± 0.9787 ms2/LF:
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cancer vs. naïve, 0.2926± 0.1373 ms2 and 4.950 ± 2.020 ms2/LF/HF: cancer vs. naïve,
1.5099 ± 0.2970 and 2.3742 ± 0.2595).
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3.3. Changes in HRV According to Analgesic Administration

To confirm the relationship between cancer-induced HRV changes and pain, an anal-
gesic administration experiment was performed. As shown in Figure 4a, the mean RRI of
the CS group was significantly decreased compared to that of the naïve group (CS vs. naïve,
108.6370 ± 4.2429 ms and 146.3713 ± 4.9446 ms), while the mean RRI of the CT group
returned to a normal range, and there was no significant difference between the CT group
and naïve group (CT vs. naïve, 132.8444 ± 9.1838 ms and 146.3713 ± 4.944 ms). For RMSSD
and pNN5, the CS group exhibited a significant decrease compared to the naïve group
(RMSSD: CS vs. naïve, 4.2941 ± 0.8068 ms and 13.5546 ± 1.2257 ms/pNN5: CS vs. naïve,
11.0152 ± 3.6618% and 58.8082 ± 3.8077%), but the CT group did not show a significant
difference compared to the naïve group (RMSSD: CT vs. naïve, 9.6906 ± 2.5668 ms and
13.5546 ± 1.2257 ms/pNN5: CT vs. naïve, 38.2499 ± 10.1560% and 58.8082 ± 3.8077%)
(Figure 4b,c).

In frequency-domain HRV parameters, HF and LF in the CS group were significantly decreased
compared to the naïve group(HF: CS vs. naïve, 0.411 ± 0.138 ms2 and 2.851 ± 0.451 ms2/LF: CS
vs. naïve, 1.025 ± 0.2957 ms2 and 6.610 ± 0.8546 ms2). The HF and LF in the CT group were
decreased compared to those in the naïve group, but there was no significant difference (HF: CT vs.
naïve, 1.837 ± 0.7267 ms2 and 2.851 ± 0.451 ms2/LF: 3.066 ± 1.095 ms2 and 6.610 ± 0.8546 ms2)
(Figure 4d,e). For LF/HF, the CS group and CT group showed no difference compared to the
naïve group (CS vs. naïve, 2.770 ± 0.4171 and 2.4116 ± 0.1767/CT vs. naïve, 1.710 ± 0.1548 and
2.4116 ± 0.1767).
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4. Discussion

Pain acts as a serious psychological and physical stress and is one of the main factors
that reduces quality of life [2,22]. Pain increases the body’s stress response and leads to
ANS dysfunction. HRV is regulated by the ANS and could be a noninvasive indicator
of ANS activity. Therefore, HRV analysis is widely used as a tool to assess ANS activity,
and various studies have been conducted to monitor pain through evaluation of the
ANS [7,23]. For example, postoperative pain in newborn infants is associated with a
decrease in high-frequency HRV [14]. Children with chronic pain have significantly lower
resting HRV and a sustained stress response with minimal variability in response to new
acute pain stressors [24]. In stress-related chronic neck pain, HRV biofeedback increases
resting HRV and enhances beneficial effects on ANS regulation, thereby reducing self-rated
pain [15]. In this study, changes in HRV according to cancer progression were analyzed in a
peritoneal metastasis mouse model for pain assessment. The pain scores of mice in cancer,
including physiological characteristics, posture, activity, and appearance, were evaluated
as physiological responses to pain, and they significantly increased on day 12 compared to
the naïve group. In addition, time- and frequency-domain HRV parameters were analyzed
at the same time and showed a significant decrease on day 12. Low HRV could reflect
reduced parasympathetic activity, which is associated with poor health outcomes such as
cardiovascular disease, mood disorders, behavioral disorders, and mortality [21,25]. These
results demonstrated that cancer pain resulted in a significant decrease in parasympathetic
activity.

To investigate whether low HRV is an effect of cancer-induced pain, we observed
changes in HRV caused by analgesics. Tramadol enhances the inhibition of pain transmis-
sion through the modulation of neurotransmitters that act as µ-opioid agonists, and these
properties can induce analgesic effects [20,26]. When the changes in HRV were compared
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with and without tramadol administration, the low HRV induced by cancer progression
was increased to a similar level in the naïve group. Overall ANS activity was decreased by
cancer pain, while all HRV parameters except LF/HF returned to normal after tramadol
administration. These observations suggest that HRV analysis can be used to assess cancer
pain associated with peritoneal metastasis.

A limitation of this study is that it is difficult to generalize cancer pain assessment
because the number of experimental animals is small. In addition, the symptoms of pain in
the cancer animal model used in the study were unclear compared to other pain models,
such as neuropathic pain. We assessed the pain score by observing the changes based on
the four categories considering changes in body and behavior caused by cancer. These signs
of pain are expressed as long-term consequences of cancer progression (e.g., body weight
change, diarrhea, distended abdomen/swollen, etc.). We used tramadol as an analgesic,
and the effects of analgesic administration are temporary. Therefore, it was difficult to
confirm the symptoms of pain reduction by analgesics in the case of cancer pain. In addition,
ECG was transmitted to the data acquisition system by wire through the head connector.
HRV is affected by environmental changes and is sensitive to stress. Therefore, the number
of ECG recordings should be minimized because such a measurement environment can
give stress to mice. Unfortunately, pain score and HRV analysis were not assessed after
analgesic injection. In the future, we will consider ECG recording in the free-moving
state using an implantable transmitter and will study changes in HRV and pain score by
analgesics in various pain-related diseases.

Pain is difficult to generalize because it is a very subjective experience that is emotional
and sensitive [5,27]. Individual differences in HRV are also common. In addition, the
relationship between the parasympathetic and sympathetic branches is complex, and
HRV indexes interact with ANS processes in both linear and non-linear ways. Many
studies have proposed an adjusted approach for interpreting and using HRV to achieve a
better indicator of vagal activity and to account for the interrelationships between HRV
and heart rate [28,29]. Furthermore, non-linear measurement indexes such as S, SD1,
SD2, approximate entropy, sample entropy, detrended fluctuation analysis, and principal
dynamic mode have been suggested to represent the complexity of HRV and have yielded
useful results [8,9,30,31]. Although our experiment confirmed that the time- and frequency-
domain HRV parameters were decreased by cancer pain, we believe that a more accurate
interpretation may be possible through analysis of modified HRV or non-linear HRV
parameters. Further studies will perform more experiments and analyses.
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