
����������
�������

Citation: Shimada, T.; Nishikawa, H.;

Kong, X.; Tomiyama, H.

Pix2Pix-Based Monocular Depth

Estimation for Drones with Optical

Flow on AirSim. Sensors 2022, 22,

2097. https://doi.org/10.3390/

s22062097

Academic Editor: Loris Nanni

Received: 13 January 2022

Accepted: 4 March 2022

Published: 8 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Pix2Pix-Based Monocular Depth Estimation for Drones with
Optical Flow on AirSim
Tomoyasu Shimada 1, Hiroki Nishikawa 1,2, Xiangbo Kong 1,* and Hiroyuki Tomiyama 1

1 Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan ;
ri0080xs@ed.ritsumei.ac.jp (T.S.); hiroki.nishikawa@tomiyama-lab.org (H.N.); ht@fc.ritsumei.ac.jp (H.T.)

2 Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
* Correspondence: kong@fc.ritsumei.ac.jp; Tel.: +81-77-561-5013

Abstract: In this work, we propose a method for estimating depth for an image of a monocular camera
in order to avoid a collision for the autonomous flight of a drone. The highest flight speed of a drone
is generally approximate 22.2 m/s, and long-distant depth information is crucial for autonomous
flights since if the long-distance information is not available, the drone flying at high speeds is prone
to collisions. However, long-range, measurable depth cameras are too heavy to be equipped on
a drone. This work applies Pix2Pix, which is a kind of Conditional Generative Adversarial Nets
(CGAN). Pix2Pix generates depth images from a monocular camera. Additionally, this work applies
optical flow to enhance the accuracy of depth estimation. In this work, we propose a highly accurate
depth estimation method that effectively embeds an optical flow map into a monocular image. The
models are trained with taking advantage of AirSim, which is one of the flight simulators. AirSim can
take both monocular and depth images over a hundred meter in the virtual environment, and our
model generates a depth image that provides the long-distance information than images captured
by a common depth camera. We evaluate accuracy and error of our proposed method using test
images in AirSim. In addition, the proposed method is utilized for flight simulation to evaluate the
effectiveness to collision avoidance. As a result, our proposed method is higher accuracy and lower
error than a state of work. Moreover, our proposed method is lower collision than a state of work.

Keywords: depth estimation; optical flow; AirSim

1. Introduction

In recent years, small drones have been more popular than ever from the perspective
of flexibility, low power consumption, and reasonable prices. In addition, the drones are
expected to play a variety of roles to take advantage of their convenience. The roles include
infrastructure inspection, package delivery, and mobile surveillance cameras. Unlike
manned vehicles such as cars and airliners, unmanned drones do not need to be controlled
by a person and autonomous flights are becoming practical. In terms of autonomous flights
of drones, collision avoidance has been indispensable and regarded as one of the crucial
issues. Typically, conventional solutions have employed distance sensors. For instance,
Light Detection and Ranging (LiDAR) which can detect long distances are employed [1,2].
Depth cameras or stereo cameras are also employed to perceive distance [3–6]. However,
such sensors with high performance are usually heavy, costly, and power-consuming to
equip on a small drone. In contrast, low performance depth sensors can hardly have long-
distance vision with high accuracy and would rather increase risk of collisions with objects.

Many kinds of research for autonomous flight of drones have assumed that monocular
cameras are often used to detect and recognize objects around the drones [7,8]. Single
monocular camera-based depth estimation is also actively researched [9–12]. However,
monocular cameras are not useful at night in terms of their visibility. Instead, infrared
cameras are employed to improve the visibility at night, but they do not include depth

Sensors 2022, 22, 2097. https://doi.org/10.3390/s22062097 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22062097
https://doi.org/10.3390/s22062097
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22062097
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22062097?type=check_update&version=2

Sensors 2022, 22, 2097 2 of 17

information, which means the distances between a drone and objects, as well as monocular
images. In the literature, depth images have been more important than ever to measure
how far the objects are placed from the drone. A lightweight depth camera, which is small
enough to be mounted on a drone, can measure a distance up to only 10 m. In addition,
unfortunately, high-performance depth cameras are often expensive and too heavy to be
equip on a drone. Therefore, depth estimation technology from an image by monocular
cameras has been extensively investigated.

The contributions of this paper are threefold as follows:

• This is the first paper to generate a depth image from a monocular image with optical
flow for collision avoidance of drone flight.

• We verify that our proposed method can estimate high-quality depth images in real-
time, and demonstrates that a drone can successfully fly avoiding objects in a flight
simulator.

• In addition, our method is superior to previous method of depth estimation on
accuracy and collision avoidance.

The rest of this paper is organized as follows. Related work of drone autonomous
flight method and depth estimation method is introduced in Section 2. Section 3 describes
the overview of AirSim. Section 4 shows a proposed method to estimate depth with optical
flow. Section 5 shows the experimental results and Section 6 concludes this paper.

2. Related Work

There has been a great deal of work related to autonomous drone flying for several
decades. Much of work has been focused on safe flight, which is particularly necessary to
prevent collision with objects. These studies include obstacle avoidance based on ultrasonic,
radar, and image processing [13]. Ultrasonic-based methods perform in real-time but the
maximum range is short [14,15]. Radar-based methods perform well in obstacle detection.
However, radar is not a good choice for small Unmanned Aerial Vehicles (UAVs) due to its
weight [16]. Vision-based methods include obstacle avoidance methods based on LiDAR
images, Time of Flight (ToF) images, binocular images, or monocular images. In [1,2,17],
the authors used LiDAR for collision avoidance of a drone. However, the installation of
many powerful sensors or high performance sensors results in an increase in the weight of
a drone, which leads to an increase in energy consumption. Given that the drone’s flight is
limited by the battery capacity, it is difficult for the drone to fly long distances with a large
number of sensors.

In order to tackle this issue, the approaches of [3,4,6] proposed collision avoidance
techniques using a light and small depth camera and a stereo camera. The presented
methods enable a drone to avoid obstacles on-the-fly by determining an optimum flight
direction using depth images. The work in [4], which is inspired by [3,6], proposed an
algorithm for collision avoidance by dividing an image from a depth camera into five
sections and selects a section so that the section is the most distant object among them.
However, depth cameras with reasonable price and relatively low weight such as Kinect
released by Microsoft can hardly be mounted on a drone since they can measure only
within 10 m [18]. In the context, depth estimation from a monocular camera, which can
overlook farther than a depth camera, has been attractive.

In the studies [9,10], the authors presented the methods of depth estimation using
Support Vector Machine (SVM). The systems divide an image from a drone into patches,
represent each patch using a set of manually created features, and estimate the depth of
each patch using a pre-trained SVM classifier. However, the accuracy of their systems
is not high as a result of handheld training data. In [19–22], these methods are based
on Convolutional Neural Networks (CNN). The CNN-based methods are more accurate
than the SVM method in [9,10], but the accuracy is still not sufficient enough to realize
secure flight without collisions. In [11,23], the authors proposed methods to preprocess
segmenting images before depth estimation using a monocular camera. This method
improves the accuracy of depth estimation. On the other hand, the computational workload

Sensors 2022, 22, 2097 3 of 17

largely increases, and the method is not suitable for real-time processing in terms of the
performance since the methods [11,23] need segmentation as pre-process. In addition,
the methods [11,19–23] use public datasets [24,25] to estimate depth. As the latest work,
AdaBins based on a transformer has been proposed [26]. However, the data that the
works have used for training and testing in [24,25] are unsuitable for drones view since
the data in [24] is suitable for ground vehicles and the data in [25] is oriented to indoor
environments. In [12], the authors collected data from drone views in a drone flight
simulator and presented a method to generate depth images using Pix2Pix [27] from a
monocular image.

Drones are further smaller than general vehicles, and the processing capability of
drones is comparatively lower than that of cars since the large computer cannot be equipped
on the drone. Most of recent technologies based on image processing have exhausted
computational resources due to the development of deep neural networks (DNNs), and the
technologies are seemingly not suitable to the system in a small device. However, many
embedded systems are oriented to the Internet of things (IoT), and the computation with
data transmission to an on-land computer has been enabling to distribute the computational
workloads. Although this fashion has spurred the development of depth estimation
technologies using a monocular camera, there is little work that focuses on depth estimation
for a small drone. Drones are required to fly without colliding objects but the weight of a
camera that can be carried by a drone is severely limited, and high performance but heavy
cameras cannot be carried.

In this paper, we propose a new depth estimation method for autonomous flight of a
drone. Our proposed method can estimate long distance using a monocular image with
optical flow. In addition, our model for the estimation is based on conditional generative
adversarial networks (CGAN) [28], and the training dataset is collected from AirSim [29],
which is known as the virtual flight environment of a drone.

3. AirSim

This section describes AriSim [29], which we employ in this work. AirSim is a kind
of flight simulator that uses a virtual environment called Unreal Engine 4. This simulator
faithfully reproduces the reality in visual information and physics.

In addition, AirSim can acquire mesh information from Unreal Engine 4. The available
information includes location, temperature, and images. The obtained images include RGB,
segmentation, infrared, and depth images. The depth image in AirSim can exactly measure
up to 200 m. Therefore, the AirSim environment enables to obtain and label both RGB and
accurate depth images at the same time to create training dataset. Figure 1a shows a depth
image up to 10 m taken by a real depth camera that can be installed on real small drones
in the AirSim environment. Figure 1b shows a depth image up to 200 m obtained from a
depth camera in AirSim. Figure 1c shows monocular image taken by monocular camera
in AirSim. As shown in Figure 1, in monocular image and depth image up to 200 m, can
detect objects, however depth image up to 10 m cannot detect that. Therefore, the more
distance can be measured, the larger the benefit of using depth images for autonomous
flight. However, to obtain a 200 m deep image with a real drone, it is necessary to install a
camera of great depth, which is unrealistic. Therefore we propose a method for estimating
the depth image obtained by AirSim based on a monocular image.

(a) (b) (c)

Figure 1. AirSim views: (a) Depth map (up to 10 m), (b) Depth map (up to 200 m), (c) Monocular
(RGB) image of (b).

Sensors 2022, 22, 2097 4 of 17

4. A Pix2Pix-Based Monocular Depth Estimation with Optical Flow

This section describes a proposed depth estimation method, which is based on
Pix2Pix [27]. Figure 2 shows the system overview of our proposed method. Here, we
briefly address our proposed method. The proposed method consists of three parts: The
first part generates an optical flow map from two adjacent frames. Second, we combine the
generated optical flow map with a monocular image. Finally, the combined image is input
into a Pix2Pix-based depth estimator to create a depth image. In the following, we detail
each part of the proposed method.

Figure 2. System overview of the proposed method.

4.1. Optical Flow Map Generation

We employ classical methods to generate a optical flow map based on Lucas-Kanade [30]
and Farnebäck method [31]. First, we describe the image feature representation and its
spatio-temporal analysis in Lucas-Kanade method. Lucas-Kanade method assumes that
the deformation of an object between two adjacent frames is slight and that a point x on
image ft at time t has moved by vt on image ft + 1 at time t + 1.

ε(vt) = ∑
d∈B

(ft+1(x + vt + d)− ft(x + d))2
(1)

Here, B represents a certain rectangular window region centered at point x, and d is a
parameter that represents an arbitrary position in the window region. It is the sum of the
squares of the luminance differences between the corresponding points in the frame area
before and after the movement of point x, where vt is the movement from time t to t + 1.
For example, if all the points in the frame region have the same luminance and have moved
in the same direction by the same amount, then Equation (1) becomes 0. Approximating
the right-hand side of Equation (1) with a first-order Taylor expansion yields the following
Equation (2).

ε(vt) = ∑
d∈B

(∇ f T
t (vt)− ḟt)

2 (∇ f =
∂ f
∂x

, ḟt = ∂ ft = ∂t) (2)

Here, ∇ ft represents the horizontal and vertical difference values of the image ft at
point x. ft represents the time difference value between adjacent frames at point x. Lucas-
Kanade method [30] is used to find the displacement v at each position x that minimizes
the sum of the squared luminance differences. By differentiating Equation (2) by vt and
setting it to 0, the optimal travel distance vt is obtained as follows:

vt = −G−1b (3)

G = ∑
d∈B
∇ f T

t (∇ ft)
T

(4)

b = ∑
d∈B

ḟt∇ ft (5)

Sensors 2022, 22, 2097 5 of 17

Since the amount of movement at each point is not independent, the following iterative
process is performed until vk+1

t does not change at all points x, and the amount of movement
is determined.

vk+1
t (x) = vk

t (x)− Gb (6)

On the other hand, Farnebäck method [31] approximates the luminance value of
each pixel with a second-order polynomial, and estimates the amount of movement with
high accuracy by comparing the coefficients between frames. Let ft(x) ∈ [0, 1] denote the
luminance value of coordinate x at time t. The luminance values in the neighborhood of
x are expressed as second-order polynomials, and the coefficients are optimized by the
weighted least-squares method in Equation (7).

f̂t(x) = xT Atx + bT
t x + Ct (7)

At, bt, ct are a (2,2) symmetric matrix, a (2,1) column vector, and a scalar, respectively. Let
vt denote the movement of point x at time t until time t + 1. From f̂t(x) = ˆft+1 = (x + vt),
the movement vt can be estimated as Equation (8).

vt = −
1
2

A−1
t (bt+1 − bt) (8)

In order to obtain a stable solution, Farnebäck method approximates the coefficient At
as follows Equation (9).

Ât =
At + At+1

2
(9)

Then, using Ât instead of At in Equation (8), we obtain Equation (10).

Âtvt = ∆bt (10)

Equation (10) holds for all points x. Farnebäck method also considers the neighbor-
hood around a point x, and introduces the following energy function.

ε(vt) = ∑
d∈B

w(d)||Ât(x + d)vt(x)− ∆bt(x + d)||2 (11)

To minimize this energy, determine the ideal displacement vt(x) at point x is deter-
mined to minimize this energy. Farnebäck method is the same as Lucas-Kanade method.
Farnebäck method is similar to Lucas-Kanade method, and is obtained by differentiating
Equation (11) by vt(x) in the following:

vt(x) = G−1h (12)

G = ∑
d∈B

w(d)ÂT
t (x + d)Ât(x + d) (13)

h = ∑
d∈B

w(d)||ÂT
t (x + d)∆bt(x + d)||2 (14)

The actual displacement is estimated by iterative operation based on the above equa-
tion as in Lucas-Kanade method. Farnebäck method can obtain the concentration gradient
stably by approximating the local image surface with a quadratic surface. In general,
Farnebäck method provides more accurate tracking than Lucas-Kanade method, although
the computational cost increases. Figure 3 shows inputs and an optical flow map using
Farnebäck method [31]. As shown in Figure 3, the luminance value of near objects in the
optical flow map is high. This figure indicates that relative motion of the objects near

Sensors 2022, 22, 2097 6 of 17

a drone becomes large, while that of the objects far away from a drone becomes small.
Hereby, we obtain the optical flow map in this way.

(a) (b) (c)

Figure 3. Optical flow map generated from inputs and outputs: (a) Previous frame, (b) Next frame,
(c) Optical flow map.

4.2. Pix2Pix

In this work, our proposed method is based on Pix2Pix to generate a depth image from
an monocular image [27]. Pix2Pix is well known method simlilar to CGAN [28]. Figure 4
is the overview of Pix2Pix, which represents the broad structure of the CGAN model.
CGAN is typically split into two networks such as a generator and a discriminator. The
generator learns to prevent the generated image from being detected by the discriminator
as the generated one. The discriminator learns not to misidentify the training data and
the generated data, and finally the generator is improved by the discriminator and can
generates an image similar to the training data. The generator uses U-Net [32], which can
extract local features and recover location information, and we show the concept of U-Net
in Figure 5. The convolutional layer can extract local features as the layers get deeper.
However, at the same time, the location information becomes ambiguous. Therefore, as
shown in Figure 5, by sending the location information to the decoder side of the same
layer, it is possible to extract local features and recover the location information.

Figure 4. CGAN Network of Pix2Pix Architecture.

Sensors 2022, 22, 2097 7 of 17

Figure 5. U-Net Architecture [32].

The objective of the CGAN that we have employed is as shown in the following
equation, which is referred to [27].

LCGAN(G, D) = Ei,gt[log D(i, gt)]+

Ei,n[log(1− D(i, G(i, n))]
(15)

Here, i is an input image and gt is ground truth. D(i, gt) is the probability of judging
the training data as training data, and D(i, G(i, n)) is the probability of judging the gen-
erated image as training data. Let G(i, n) denote the generated image and n be a noise
vector. The noise vector n is not necessary, but if training without n input, it results in
poor flourishing performance. Therefore, this paper assumes to require the input of the
noise vector. The discriminator tries to maximize this objective, while the generator tries to
minimize it, and the generator needs to generate images that not only fool the discriminator
but also come closer to the ground truth. For this purpose, it is effective to add the following
L1 norm to the objective of CGAN.

LL1(G) = Ei,gt,n[||y− G(i, n)||1] (16)

L1 norm-based image generation captures the whole image but the blurred details
remain a problem. On the other hand, although CGAN-based image generation cannot
capture the whole image, it is able to capture the details. By combining these two methods,
an image with high accuracy can be generated. Therefore, the objective of Pix2Pix is as
follows. w is the weight of L1 norm. This parameter can be set during training.

G∗ = arg min
G

max
D
LCGAN(G, D) + wLL1(G) (17)

4.3. Depth Estimation Method

In order to effectively use the optical flow map and RGB image for depth estimation,
we need to combine them. The concept of our proposed method is based on the atrous
convolution in [33], and we exploit a heat map from the luminance values of the optical
flow map and embed it into the RGB image. The heat-map is embedded at a certain number
of intervals such that the features in the original RGB image is not lost. Figure 6 shows
an example that a optical flow map is embedded into an RGB image. The figure utilizes
a sparse optical flow map with a single pixel interval. Each pixel is embedded into the
original RGB image.

Sensors 2022, 22, 2097 8 of 17

Figure 6. A concept of embedding optical flow map into an RGB image.

The luminance of red, green, and blue towards gray scale luminance is corresponded
as shown in Figure 7.

Figure 7. Heat map luminance towards gray scale luminance.

In this work, we embed part of the pixel information of the heat map image into an
RGB image to generate a depth image with a single-channel input, shown in Figure 8. This
embedding method is expressed in Equation (18).

(a) (b)

Figure 8. An example of embedding optical flow map into an RGB image: (a) Heat-map of optical
flow map, (b) RGB image embedded with a sparse optical flow map.

Sensors 2022, 22, 2097 9 of 17

E(n,m) =

{
M(n,m) (n mod i 6= 0 ∪ m mod i 6= 0 ∪ O(n,m) = 0)
O(n,m) (n mod i = 0 ∩ m mod i = 0 ∩ O(n,m) 6= 0)

(18)

E(n,m) represents the pixel value of the optical flow map at the pixel position of (n, m)
embedded in the monocular image. M(n,m) is the pixel value of the monocular image at the
(n, m) pixel position and O(n,m) is the displacement of frames in the optical flow map at
the (n, m) pixel position. When the O(n,m) is 0, the color of optical flow heat map is deep
blue as shown in Figure 8a. We do not use all optical flow pixels to estimate depth since
these pixels can be also noises to prevent accurate depth estimation. Therefore we need to
select optical flow pixels to use optical flow information efficiently. i is interval between
the monocular image the pixel value and optical flow map value. In this way, the optical
flow map can be used effectively.

5. Experiments

In this section, we evaluate our method in terms of accuracy, latency and the perfor-
mance to avoid collisions.

We use Intel Core i7-9700K (32 GB of main memory) and NVIDIA GeForce RTX 2070
SUPER, which is represented in Table 1. Dataset, which are used for training, validation,
and testing, have been collected from four maps provided in the AirSim environment;
Blocks, City, Coastline, and Neighborhood, where the overviews of the maps are shown in
Figure 9.

Table 1. Experimental Environment.

OS Windows 10 pro
RAM 32 GB 2666 MHz
CPU Intel Core i7-9700K 3.60 GHz
GPU NVIDIA GeForce RTX 2070 SUPER 8 GB

(a) (b) (c) (d)

Figure 9. Appearance of the maps for training: (a) City environment, (b) Coastline, (c) Neighborhood,
(d) Soccer field.

We train our model in the following conditions: the number of epochs is set to 100. The
batch size is set to 1, and the lambda of L1 norm is set to 100. In the experiments, we have
prepared 16,000 pairs of monocular and depth images for each of the maps. 8000 pairs out
of 16,000 are used to training our Pix2Pix-based model. The rest of the pairs in monocular
and depth images is employed to test out model. In the labelling process, the depth and
monocular images are taken through multiple flights with a variety of routes in AirSim
beforehand. Figure 10 shows the examples of the inputs and outputs of the model trained
with the parameters. Figure 10a shows the RGB images taken by a monocular camera
during flights in the four maps of AirSim. At the same time, we obtain the optical flow
maps as shown in Figure 10b. From the images, we derive RGB images with embedding an
optical flow map in Figure 10c. Compared to the ground truth images in Figure 10d, our
proposed method generates depth images as shown in Figure 10e.

Sensors 2022, 22, 2097 10 of 17

Figure 10. Inputs and outputs: (a) RGB images, (b) Optical flow maps, (c) RGB images embedded
with optical flow map, (d) Ground truth, (e) Depth estimation maps.

5.1. Preliminary Evaluation with Different Pixels Interval of Optical Flow Maps

In this experiment, we use six models to investigate the effect of the optical flow maps,
and the accuracy and error are compared. One out of six models employs only optical
flow maps as input for depth estimation. The others embed the optical flow map into the
monocular image at different intervals. The embedding intervals are one, three, five, seven,
and nine pixels intervals. We intuitively suppose that the dense pixels of the optical flow
map provide much information and achieve higher accuracy than the sparse pixels.

In order to quantify estimation error of models, we use rooted mean squared error
(RMSE) and absolute relative error (Rel.) metrics. Hereby, RMSE is obtained by the
following equation.

Sensors 2022, 22, 2097 11 of 17

RMSE =

√√√√ 1
N

N

∑
i=1

(ygt
i − yi)2 (19)

ygt
i is ground truth value. yi is estimation value. N is number of data. Rel. is obtained by

the following equation.

Rel. =
1
N

N

∑
i=1

||ygt
i − yi||
ygt

i

(20)

Specifically, the accuracy metrics are defined as:

δn =

Card
({

yi : max
(

yi

ygt
i

, ygt
i

yi

)
< 1.25n

})
Card({yi})

(n = 1, 2, 3) (21)

Table 2 shows the error and accuracy of each model.

Table 2. Preliminary evaluation of our proposed method regarding the error and accuracy.

Pixel Interval
Error (Lower Is Better) Accuracy (Higher Is Better)

RMSE Rel. δ1 δ2 δ3

Optical flow only 7.6786 0.3886 0.7416 0.8604 0.9129

1 pixel 6.6258 0.1675 0.8634 0.9376 0.9621
3 pixels 6.0947 0.1397 0.8878 0.9554 0.9758
5 pixels 6.0050 0.1230 0.8923 0.9608 0.9797
7 pixels 6.5064 0.1240 0.8910 0.9605 0.9795
9 pixels 6.7068 0.1335 0.8947 0.9573 0.9762

The results show that the model with the five pixel interval remarks the lowest error
and the highest accuracy. In addition, the model trained with only optical flow maps shows
the highest error and lowest accuracy. In terms of RMSE and Rel., the model trained with
only optical flow maps increases 1.6736 points compared to the model with five pixels
intervals. As well as the accuracy, the model with five pixels intervals achieves the highest
value for each delta metric. The results imply that many pixels intervals might be about to
cause over-fitting and lose information of the original RGB images, resulting in the high
RMSE and Rel., especially over seven pixels intervals. In contrast to the error metrics, the
more pixels intervals achieve the improvement of the accuracy.

5.2. Comparison Accuracy between Proposed Method and Related Work

We evaluate our model in terms of the error and accuracy, compared to the model
presented in [12]. The compared model is trained without using the optical flow. In other
words, this model uses only RGB images to generate depth estimation maps. For our
proposed model, we utilize the optical flow embedded into RGB images. The model is
selected with five pixels intervals, which represents the lowest RMSE and Rel. in the
Table 2.

Table 3 shows the results of the error and accuracy comparison. Compared to the
model without optical flow, we have demonstrated that embedding the optical flow enables
to achieve the slightly lower error and higher accuracy.

Sensors 2022, 22, 2097 12 of 17

Table 3. Comparison to the state-of-the-art method using AirSim dataset.

Method
Error (Lower Is Better) Accuracy (Higher Is Better)

RMSE Rel. δ1 δ2 δ3

Shimada [12] 5.942 0.1338 0.8871 0.9562 0.9772
Proposed method 6.005 0.1230 0.8923 0.9608 0.9796

As shown in Table 3, in Shimada, T. et al. method, RMSE is 5.942, Rel. is 0.1338, δ1
is 0.8871, δ2 is 0.9562, δ3 is 0.9772. In proposed method, RMSE is 6.005, Rel. is 0.1230, δ1
is 0.8923, δ2 is 0.9608, δ3 is 0.9796. in Shimada, T. et al. method, RMSE is 5.942, Rel. is
0.1338, δ1 is 0.8871, δ2 is 0.9562, δ3 is 0.9772. In RMSE, Shimada, T. et al. method was
better than proposed method. On the other hand, proposed method is superior in other
evaluation indicators.

To confirm whether our method is effective in a real environment, we test our model
using the KITTI dataset [24], as shown in Table 4 . The KITTI dataset contains RGB images
and depth images taken in the real world. We compare our AirSim-based model with other
models trained on real images proposed by related works. Although the results of our
method are slightly lower than those of association studies based on real model training, it
is still a good result.

Table 4. Comparison to the other methods using KITTI dataset.

Method
Error (Lower Is Better) Accuracy (Higher Is Better)

RMSE Rel. δ1 δ2 δ3

Eigen et al. [34] 7.156 1.515 0.692 0.899 0.967
Liu et al. [35] 6.986 0.217 0.647 0.882 0.961

Kuznietsov et al. [36] 4.621 0.113 0.862 0.960 0.986
Proposed method 7.605 0.154 0.813 0.958 0.985

5.3. Run Time Evaluation

We also evaluate run time. We evaluate for the servers and the embedded devise,
which represent NVIDIA RTX 2070 SUPER, Intel Core i7 9700K, and Jetson Xavier NX.

Table 5 shows the results of the run time per image. The slowest run time is shown in
the Jetson and represents 0.193 s. In other words, approximately five frames per second can
be processed in the Jetson. On the other hand, the result in the NVIDIA RTX 2070 SUPER
shows 0.031 s per image. The validation of the results for collision avoidance depends on
how long our model can estimate the distance in generated depth images.

Table 5. Runtime to generate an image.

Device
Runtime (s)

Non Optical Flow Optical Flow

NVIDIA RTX 2070 SUPER 0.031 0.134
Intel Core i7 9700K 0.181 0.273
Jetson Xavier NX 0.193 0.297

We have concluded that the processing time is sufficient to avoid collisions in real
time. NVIDIA Jetson Xavier NX is a small board computer that can be mounted on a UAV.
The weight of Jetson Xavier NX is about 180 g. On the other hand, there is an accurate
depth sensor Velodyne HDL-64E used in KITTI dataset [24]. The weight of HDL-64E is
12,700 g [37]. The weight of the other depth sensors which can measure 200 m are also
near 1000 g. From the above, Jetson is light enough compared to long range depth sensors
like used in KITTI dataset [24]. Jetson is lighter than long range depth sensor. In addition,

Sensors 2022, 22, 2097 13 of 17

unlike attaching such a sensor, the replacement from a base-board into Jetson Xavier NX
does not increase the weight so much.

5.4. Collision Rate Evaluation in AirSim Environment

Previously, we have evaluated the accuracy and run time of the proposed method. In
this section, we conduct the simulation of a drone flight in AirSim to demonstrate that the
proposed method can fly avoiding collision with objects. In order to realize the safe flight
of an autonomous drone, it is necessary to plan the path by itself, that is, the drone needs
to select the direction so that the drone can avoid colliding with objects. In the experiments,
we use a state-of-the-art path planning method for flight control, which is developed in [6].
The work in [6] introduced the method that divides a depth map into multiple sections.
The presented method in [6] divides a depth image into 289 overlapped sections (17 rows
and 17 columns) as shown in Figure 11.

(a) (b)

Figure 11. Direction decision from divided sections in [6]. (a) Overlapped section, (b) Section selection.

By dividing into overlapped sections, the drone selects the best section to avoid
obstacles and pass safely so that the drone determines the section with the maximum total
pixel value. The flight is simulated 400 times in the four maps. The flight scenarios are
randomly generated in terms of route, direction, and distance.

We compare the collision rates that the number of collisions account for towards the
total number of flights. Hereby, we define the collision rate for a map in the following formula:

Collision Rate =
No. o f Collisions

No. o f Flights (i.e., 400 f lights in total)
(22)

Note that we assume that the flight has a collision if the drone collides with an obstacle
even once during its flight.

In the experiments, we use the following four methods: The first can measure up to
10 m, which assumes a real depth camera for reasonable price and low weight enough to
equipped on a drone. The second can measure up to 200 m. This method assumes an ideal
depth camera, where it can measure by up to 200 m but is too heavy to be mounted on a
drone in the real world. This method is used as ground truth depth images for comparison.
The third is presented by Shimada, T. et al. [12]. This method inputs a monocular image to
generate a depth image through Pix2Pix. The fourth is our proposed method. Our method
combines an image with optical flow map into Pix2Pix, and it generates the estimated
depth map.

Table 6 shows the results of the collision rate in each map of AirSim. The results
show that our proposed method achieves the lower collision rate compared to the method
presented in [12]. The depth map for 10 m yields the highest collision rate, and the result
explicitly indicates that inaccurate depth images are useless to collision avoidance. The
method [12] represents that it achieves the higher collision rate than the proposed method.
The results are attributed to depth maps with the low error and high accuracy.

Sensors 2022, 22, 2097 14 of 17

Table 6. Comparison of collision rate.

Map
Collision Rate (%)

10 m 200 m Shimada [12] Our Method

Blocks 58.75 7.000 17.50 14.50
City environment 73.50 26.00 34.75 34.00

Coastline 70.50 0.250 1.500 1.250
Neighborhood 82.00 7.000 2.500 1.000

6. Discussion
6.1. Evaluation for Effects of Pixels Interval

We discuss that the reason why five pixels interval model achieves the highest accuracy
and the lowest error. Figure 12 shows inputs and outputs each model. As shown in
Figure 12, the input of the one pixel interval model is filled with optical flow of monocular
image features, and the output is distorted. The input of the three pixel interval model
is also filled with optical flow pixels. On the other hand, The input of the input of seven
pixel interval model and the input of nine pixel model are not enough optical flow pixels.
Therefore, five pixels interval model is superior to the others.

Figure 13 shows the input and output of the model which is trained using only optical
flow maps. Figure 13a is generated from two adjacent frames of Figure 12a and the previous
frame of it. As shown in Figure 13, the output of optical flow model deviates from the
ground truth. The reason is that an optical flow map alone cannot accurately capture objects
such as buildings if the Pix2Pix-based model is utilized.

Figure 12. Inputs and outputs of each model: (a) RGB image, (b) Ground truth, (c) One pixels interval
model input, (d) One pixels interval model output, (e) Three Pixels interval model input, (f) Three
pixels interval model output, (g) Five pixels interval model input, (h) Five pixels interval model
output, (i) Seven pixels interval model input, (j) Seven pixels interval model output, (k) Nine pixels
interval model input, (l) Nine pixels interval model output.

Sensors 2022, 22, 2097 15 of 17

(a) (b)

Figure 13. Input and Output of Optical Flow Model: (a) Input, (b) Output.

6.2. Comparison of the Error of Depth Information

Figure 14 shows error distribution.

Figure 14. Error Distribution.

In this Figure 14, the horizontal axis shows the value of the error and the vertical
axis shows the number of errors. The error value is in meters. The blue bars show the
error distribution of Shimada, T. et al. method [12], and the orange bars show the error
distribution of the proposed method. As can be seen from this Figure 14, the error of the
proposed method is within a smaller range than that of Shimada, T. et al. method [12].
Therefore, it is believed that the proposed method was superior in terms of accuracy and
error. In addition, the proposed method has fewer outliers, so the collision rate is considered
to be lower than that of Shimada, T. et al. method.

In addition, according to Table 4, although proposed method is higher RMSE than
other methods, the proposed method is higher accuracy. The reason for this is that the
proposed method embeds optical flow pixels in the monocular image, which increases the
outliers in those pixels, but improves the accuracy of the surrounding pixels. Therefore,
while RMSE is degraded due to outliers at that one point, the overall accuracy is high and
the value of δn is better than other methods. It can be seen from the Table 6 that the outlier
at this single point is not a problem for drone collision avoidance.

Sensors 2022, 22, 2097 16 of 17

7. Conclusions

This paper presents the use of Pix2Pix with optical flow to obtain highly accurate
depth maps to avoid drone collisions. We have developed an effective way to embed optical
flow diagrams in depth estimation. The collision rate of the proposed method is lower
than a state of work, over-performing the related works. Even though we used an old
image generation method called Pix2Pix, we were able to improve the accuracy of depth
estimation by devising a new input image. In addition, we were able to adapt the model
trained in the virtual environment to the real world and obtain results comparable to other
methods. Even when Pix2Pix with optical flow is used, the results showed that there were
few collisions. In order to implement the system on a real drone, it is necessary to install
a high-performance computer. Our future work is to study and experiment on how to
increase the speed of the system so that it can be used in actual drones. The investigation of
generalization performance is also a future task. In addition, we will improve the method
more effectively embeds an optical flow map into a monocular image. Finally, we will
experiment with real drones and quantitatively evaluate the effectiveness of the proposed
method in a real environment.

Author Contributions: Conceptualization, T.S.; Funding acquisition, H.N., X.K. and H.T.; Investi-
gation, T.S.; Methodology, T.S.; Software, T.S.; Supervision, H.N., X.K. and H.T.; Validation, T.S.;
Writing—original draft, T.S.; Writing—review and editing, H.N., X.K. and H.T. All authors have read
and agreed to the published version of the manuscript.

Funding: This work is partly supported by JSPS KAKENHI Grant Numbers 20K23333 and 20J21208.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors appreciate all the institutions and individuals that have provided
support for this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Moffatt, A.; Platt, E.; Mondragon, B.; Kwok, A.; Uryeu, D.; Bhandari, S. Obstacle Detection and Avoidance System for Small

UAVs Using A LiDAR. In Proceedings of the IEEE International Conference on Unmanned Aircraft Systems, Athens, Greece, 1–4
September 2020.

2. Hou, Y.; Zhang, Z.; Wang, C.; Cheng, S.; Ye, D. Research on Vehicle Identification Method and Vehicle Speed Measurement
Method Based on Multi-rotor UAV Equipped with LiDAR. In Proceedings of the IEEE International Conference on Advanced
Electronic Materials, Computers and Software Engineering, Shenzhen, China, 24–26 April 2020.

3. Borenstein, J.; Koren, Y. The Vector Field Histogram-Fast Obstacle Avoidance for Mobile Robots. IEEE Trans. Robot. Autom. 1991,
7, 278–288. [CrossRef]

4. Ma, C.; Zhou, Y.; Li, Z. A New Simulation Environment Based on AirSim, ROS, and PX4 for Quadcopter Aircrafts. In Proceedings
of the International Conference on Control, Automation and Robotics, Singapore, 20–23 April 2020.

5. Ma, D.; Tran, A.; Keti, N.; Yanagi, R.; Knight, P.; Joglekar, K.; Tudor, N.; Cresta, B.; Bhandari, S. Flight Test Validation of Collision
Avoidance System for a Multicopter using Stereoscopic Vision. In Proceedings of the International Conference on Unmanned
Aircraft Systems, Atlanta, GA, USA, 11–14 June 2019.

6. Perez, E.; Winger, A.; Tran, A.; Garcia-Paredes, C.; Run, N.; Keti, N.; Bhandari, S.; Raheja, A. Autonomous Collision Avoidance
System for a Multicopter using Stereoscopic Vision. In Proceedings of the IEEE International Conference on Unmanned Aircraft
Systems, Dallas, TX, USA, 12–15 June 2018.

7. Tsuichihara, S.; Akita, S.; Ike, R.; Shigeta, M.; Takemura, H.; Natori, T.; Aikawa, N.; Shindo, K.; Ide, Y.; Tejima, S. Drone and
GPS Sensors-Based Grassland Management Using Deep-Learning Image Segmentation. In Proceedings of the International
Conference on Robotic Computing, Naples, Italy, 25–27 February 2019.

8. Huang, Z.Y.; Lai, Y.C. Image-Based Sense and Avoid of Small Scale UAV Using Deep Learning Approach. In Proceedings of the
International Conference on Unmanned Aircraft Systems, Athens, Greece, 1–4 September 2020.

9. Bipin, K.; Duggal, V.; Madhava Krishna, K. Autonomous Navigation of Generic Monocular Quadcopter in Natural Environment.
In Proceedings of the IEEE International Conference on Robotics and Automation, Seattle, WA, USA, 26–30 May 2015.

http://doi.org/10.1109/70.88137

Sensors 2022, 22, 2097 17 of 17

10. Lin, Y.H.; Cheng, W.H.; Miao, H.; Ku, T.H.; Hsieh, Y.H. Single Image Depth Estimation from Image Descriptors. In Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 25–30 March 2012.

11. Atapour-Abarghouei, A.; Breckon, T.P. Monocular Segment-Wise Depth: Monocular Depth Estimation Based on a Semantic Seg-
mentation Prior. In Proceedings of the IEEE International Conference on Image Processing, Taipei, Taiwan, 22–25 September 2019.

12. Shimada, T.; Nishikawa, H.; Kong, X.; Tomiyama, H. Pix2Pix-Based Depth Estimation from Monocular Images for Dynamic Path
Planning of Multirotor on AirSim. In Proceedings of the International Symposium on Advanced Technologies and Applications
in the Internet of Things, Kusatsu, Japan, 23–24 August 2021.

13. Fraga-Lamas, P.; Ramos, L.; Mondéjar-Guerra, V.; Fernández-Caramés, T.M. A Review on IoT Deep Learning UAV Systems for
Autonomous Obstacle Detection and Collision Avoidance. Remote Sens. 2019, 11, 2144. [CrossRef]

14. Valisetty, R.; Haynes, R.; Namburu, R.; Lee, M. Machine Learning for US Army UAVs Sustainment: Assessing Effect of Sensor
Frequency and Placement on Damage Information in The Ultrasound Signals. In Proceedings of the IEEE International Conference
on Machine Learning and Applications, Orlando, FL, USA, 17–20 December 2018; pp. 165–172.

15. Figetakis, E.; Refaey, A. UAV Path Planning Using on-Board Ultrasound Transducer Arrays and Edge Support. In Proceedings of
the IEEE International Conference on Communications Workshops, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6.

16. McGee, T.G.; Sengupta, R.; Hedrick, K. Obstacle Detection for Small Autonomous Aircraft using Sky Segmentation. In Proceedings
of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 4679–4684.

17. Redding, J.; Amin, J.; Boskovic, J.; Kang, Y.; Hedrick, K.; Howlett, J.; Poll, S. A Real-Time Obstacle Detection and Reactive Path
Planning System for Autonomous Small-Scale Helicopters. In Proceedings of the AIAA Guidance, Navigation and Control
Conference and Exhibit, Hilton Head, SC, USA, 20–23 August 2007.

18. Trinh, L.A.; Thang, N.D.; Vu, D.H.N.; Hung, T.C. Position Rectification with Depth Camera to Improve Odometry-based
Localization. In Proceedings of the International Conference on Communications, Management and Telecommunications
(ComManTel), DaNang, Vietnam, 28–30 December 2015; pp. 147–152.

19. Zhang, S.; Li, N.; Qiu, C.; Yu, Z.; Zheng, H.; Zheng, B. Depth Map Prediction from a Single Image with Generative Adversarial
Nets. Multimed. Tools Appl. 2020, 79, 14357–14374. [CrossRef]

20. Liu, F.; Shen, C.; Lin, G.; Reid, I. Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields. IEEE
Trans. Pattern Anal. Mach. Intell. 2016, 38, 2024–2039. [CrossRef] [PubMed]

21. Mancini, M.; Costante, G.; Valigi, P.; Ciarfuglia, T.A. J-MOD2: Joint Monocular Obstacle Detection and Depth Estimation. IEEE
Robot. Autom. Lett. 2018, 3, 1490–1497. [CrossRef]

22. Hatch, K.; Mern, J.; Kochenderfer, M. Obstacle Avoidance Using a Monocular Camera. arXiv 2020, arXiv:2012.01608.
23. Hou, Q.; Jung, C. Occlusion Robust Light Field Depth Estimation Using Segmentation Guided Bilateral Filtering. In Proceedings

of the IEEE International Symposium on Multimedia, Taichung, Taiwan, 11–13 December 2017.
24. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision Meets Robotics: The KITTI Dataset. Int. J. Robot. Res. 2013, 32, 1231–1237.

[CrossRef]
25. Silberman, N.; Hoiem, D.; Kohli, P.; Fergus, R. Indoor Segmentation and Support Inference from RGBD Images. In Proceedings

of the ECCV 2012, Florence, Italy, 7–13 October 2012.
26. Bhat, S.F.; Alhashim, I.; Wonka, P. Adabins: Depth Estimation Using Adaptive Bins. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 4009–4018.
27. Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.
28. Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784.
29. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. In Field

and Service Robotics; Springer: Cham, Switzerland, 2017.
30. Lucas, B.D.; Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision. In Proceedings of the

International Joint Conference on Artificial Intelligence, Vancouver, BC, Canada, 24–28 August 1981.
31. Farnebäck, G. Two-frame Motion Estimation Based on Polynomial Expansion. In Proceedings of the Scandinavian Conference on

Image Analysis, Halmstad, Sweden, 29 June–2 July 2003; pp. 363–370.
32. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the

International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015.
33. Chen, J.; Zhou, M.; Zhang, D.; Huang, H.; Zhang, F. Quantification of Water Inflow in Rock Tunnel Faces via Convolutional

Neural Network Approach. Autom. Constr. 2021, 123, 103526. [CrossRef]
34. Eigen, D.; Fergus, R. Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-scale convolutional

architecture. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015;
pp. 2650–2658.

35. Liu, F.; Shen, C.; Lin, G. Deep Convolutional Neural Fields for Depth Estimation from a Single Image. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5162–5170.

36. Kuznietsov, Y.; Stuckler, J.; Leibe, B. Semi-supervised Deep Learning for Monocular Depth Map Prediction. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6647–6655.

37. Lidar, V. Velodyne Lidar Products . Available online: https://velodynelidar.com/products/ (accessed on 1 March 2022).

http://dx.doi.org/10.3390/rs11182144
http://dx.doi.org/10.1007/s11042-018-6694-x
http://dx.doi.org/10.1109/TPAMI.2015.2505283
http://www.ncbi.nlm.nih.gov/pubmed/26660697
http://dx.doi.org/10.1109/LRA.2018.2800083
http://dx.doi.org/10.1177/0278364913491297
http://dx.doi.org/10.1016/j.autcon.2020.103526
https://velodynelidar.com/products/

	Introduction
	Related Work
	AirSim
	A Pix2Pix-Based Monocular Depth Estimation with Optical Flow
	Optical Flow Map Generation
	Pix2Pix
	Depth Estimation Method

	Experiments
	Preliminary Evaluation with Different Pixels Interval of Optical Flow Maps
	Comparison Accuracy between Proposed Method and Related Work
	Run Time Evaluation
	Collision Rate Evaluation in AirSim Environment

	Discussion
	Evaluation for Effects of Pixels Interval
	Comparison of the Error of Depth Information

	Conclusions
	References

