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Abstract: The performance of natural language processing with a transfer learning methodology has
improved by applying pre-training language models to downstream tasks with a large number of
general data. However, because the data used in pre-training are irrelevant to the downstream tasks, a
problem occurs in that it learns general features rather than those features specific to the downstream
tasks. In this paper, a novel learning method is proposed for embedding pre-trained models to
learn specific features of such tasks. The proposed method learns the label features of downstream
tasks through contrast learning using label embedding and sampled data pairs. To demonstrate the
performance of the proposed method, we conducted experiments on sentence classification datasets
and evaluated whether the features of the downstream tasks have been learned through a PCA and a
clustering of the embeddings.

Keywords: natural language processing; transfer learning; pre-training; word embedding

1. Introduction

Artificial intelligence has shown good performance through deep learning from large
numbers of data. According to [1], transfer learning conducted through pre-learning with
large numbers of data can improve the performance of downstream tasks. Transfer learning
refers to pre-learning with unsupervised data that is easy to collect. We proceed with the
learning of downstream tasks using a pre-learning model. These processes demonstrate
the advantage of an easy collection of unsupervised datasets, which can improve the
performance of a downstream task. Therefore, many current artificial intelligence methods
use transfer-learning models to achieve a high performance.

In natural language processing (NLP), transfer learning has shown significant perfor-
mance improvements when applied to language models. In NLP, transfer-learning-based
language models such as BERT [2] and ELECTRA [3] are pre-learned using large numbers
of natural language data that have been crawled, such as Wiki datasets. Because the data
built through crawling make up an unsupervised dataset, learning progresses through
semi-supervised learning, such as a masked token preparation. This pre-learned language
model is used as a model for generating word embeddings during fine tuning. During the
fine-tuning process, downstream task learning is conducted through the construction of a
model, including a pre-learning model.

However, the pre-learning model applied in transfer learning uses a dataset that is
independent of the downstream task. Thus, during the pre-training process, the model
learns general features rather than features specific to downstream tasks. Word embeddings
derived through the pre-trained model may have a higher percentage of common features
than the information required for downstream tasks. As a result, word embeddings derived
from pre-trained models can have unnecessary features in downstream tasks. Furthermore,
fine-tuning using the word embeddings through a pre-trained model can be compromised
by the unnecessary features presented in the word embeddings.

In this study, further learning is applied to induce pre-trained models to derive
word embeddings optimized for downstream tasks. Using the proposed method, word
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embeddings derived from the pre-learning model allow the features of the downstream
tasks to be learned and aim to improve the performance in such tasks. The experimental
code of this study can be found at https://github.com/KimGyunYeop/Effective-transfer-
learning-with-label-based-discriminative-feature-learning (accessed on 7 February 2022).

2. Background

In this paper, we propose a novel method for improving the problem of word em-
bedding that is derived from natural language processing (NLP) using transfer learning.
Therefore, this section describes embeddings using transfer learning.

The NLP dataset consists of characters and embedding is used to transform the data into
a vector form, thereby enabling them to be used as learning data. Advances in embedding
methodologies have resulted in the production of vectors, which include the contextual
information of words in sentences. Since the probabilistic n-gram model, i.e., bag-of-words [4]
was first developed, methods using deep learning have been proposed and further advances
have been made, including ELMo [5] and BERT, whereby contextual information is included
in the word information to derive contextual embeddings and transformers.

Previous embedding methodologies have applied the same method to vector words as
the bag-of-words [4] approach. Subsequently, studies have been conducted to incorporate
the meaning of a word into the vector, and as a result, the method of adding semantic
representations over a natural network was proposed [6]. Following this, word2vec [7],
which is a method for efficiently learning word embeddings through negative sampling,
was proposed, and it exhibited good performance. Word2vec is learned based on the
probability of the simultaneous appearance of two words, such that each word is mapped
to a vector with a real meaning, and the distance between the vectors is represented as
the similarity between the two words. Word2vec can be divided into Skip-gram [7] and
CBOW [8], based on the differences in the learning methods. Glove [9] and FastText [5],
which use co-occurrence throughout a sentence, have subsequently been proposed.

A problem with the previous methods is the non-contextual results of the embedding.
Therefore, to solve this problem, a method for including contextual information in word
embedding, namely ELMo, was proposed. ELMo attempts to solve words with different
meanings depending on the context, even if they are the same words. The composition
of a language model using bidirectional LSTM enables different embedding results to
be derived using co-occurrence words. A transformer was later proposed, and a BERT
approach using masked token preparation for the transformer and transfer learning was
developed, exhibiting good performance in many NLP tasks. Advanced methodologies
such as RoBERTa [10], ALBERT [11], and ELECTRA [3] have also been developed. Until
recently, the methodology of using language models for word embedding has achieved the
highest performance in many NLP tasks.

3. Related Work

With the development of transformer and transfer learning, a language model was
proposed and good performance was derived. Transformer-based language models (such as
BERT [2] and RoBERTa [10]) have been developed by the proposal of several new methods
in the pre-training process. Most of the proposed pre-training methodologies perform
pre-training through general and large datasets, and learn with a “loss function” that is
unrelated to the downstream tasks such as masked token prediction and next sentence
prediction. Therefore, the pre-training and fine-tuning processes in the downstream tasks
often differ in many language models. Several studies have presented methodologies to
narrow the gap between the pre-training and fine-tuning that occurs at this stage. DialoGPT
dialoGPT [12] and dialogBERT [13] are methods that can pre-train through an interactive
dataset rather than a general dataset, such as a conventional wiki dataset. In Splinter [14],
pre-training is performed by adding a recurring span selection for learning in a form that is
similar to QA. As such, methodologies for reducing the gap between the pre-training and
fine-tuning have been steadily developed. In [15], a method was proposed to narrow the
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difference in the domain between the data of the pre-training and downstream tasks, and
the required information. Pre-training using wiki datasets may lead to a lack of information
on the target area for learning through general data that are unrelated to the downstream
tasks, which may adversely affect the fine-tuning. To solve this problem, a loss function that
induces the narrowing of the sentence embedding distance between data of the same label
during the fine-tuning process was proposed in [15]. Through the loss function, sentence
embedding that is specialized for downstream tasks is induced to be learned. This paper
presents a method to solve the problem of prior learning that was proposed in [15]. Existing
methods may face problems whereby the sentence embedding may be adjusted in different
directions for each sample. This problem is described in detail in Section 4.3. In this study,
to overcome this challenge, we propose a method for intensively learning features that are
related to downstream tasks, rather than general features that are learned in pre-training
during fine-tuning.

4. Proposed Method

The method proposed in this paper aims to induce word embeddings of pre-learned
models to obtain more suitable results for downstream tasks. The proposed method dis-
criminates the data using label information shown in the downstream dataset. Thus, each
word embedding is changed to encourage distinct embedding.

Figure 1 illustrates the entire process used by the proposed method. As shown in
Figure 1, the proposed methodology is learned through three methods: the main process,
label-to-data discrimination, and data-to-data discrimination. Section 4.1 describes the main
process used when employing the existing learning methods. In Section 4.2, we compare
the two data against the data-to-data crime process, which compares two data based on
the agreement of the labels proposed in [15]. Section 4.3 describes problems that can arise
from the methodologies consisting only of Sections 4.1 and 4.2. Section 4.4 describes the
label-to-data discriminate process for constructing label embeddings to solve the problem
described in Section 4.3.

Figure 1. Overall architecture of proposed framework with classification.

The loss function of proposed method is given by Equation (1):

L = Lm + d1Ldd + d2Lld (1)

which combines the loss function of the main process Lm, the loss function Ldd of Equation (6),
and the loss function Lld of Equation (8), as described in Section 4.3. d1 and d2 are the
hyperparameters for adjusting the ratio of each loss.

4.1. Main Process

The main process is the process of learning downstream tasks. In this study, we
constructed and used a simple model for document classification in the experiments.
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Therefore, in the main process of this paper, we proceed with document classification. The
constructed model derives word embeddings through data encoders, as shown in Figure 1.
Subsequently, we classify the sentence embedding (i.e., the result of the [CLS] token of
BERT) v ∈ Rd the encoder results and predict the output p ∈ R|C| of the probability for each
label. C is the set of possible labels, |C| represents the number of elements in the possible
labels set, and d is the number of sentence embedding dimensions of the data.

p = so f tmax(Wv + b) (2)

Lm = crossentropyloss(p) (3)

Equation (2) represents the feedforward network for deriving the final classification
result p. W ∈ R|C|×d and b ∈ R|C| are the learnable parameters of the feedforward natural
network. Equation (3) is a loss function for learning the main process.

4.2. Data-to-Data Discriminate Process

The data-to-data discovery process uses the same learning process as that proposed
in [15]. This section is the process of learning by comparing the labels of two randomly
sampled pairs. In this process, the goal is to optimize a pre-learning model to extract features
suitable for downstream datasets. The proposed method learns comparisons between the
labels of downstream tasks. This process induces the learning of the sentence embedding,
which is optimized for downstream tasks. In the experiment presented in this paper, it is
assumed that the randomly extracted batch is a sampling set. Subsequently, all data pairs
inside the batch are used as sampling data pairs. That is, training dataset D samples using
the sampled dataset S, D ⊂ {S1, S2, . . . Sn}, where n is the number of sampled sets. The
sampled dataset S includes the sentence embedding of all data, Sn ⊂

{
vn

1 , vn
2 , . . . , vn

Nn

}
.

Nn, where Nn is the number of data in sampled set Sn. We compare all possible sentence
embedding pairs of set Sn. We compare all possible sentence embedding pairs of the set Sn.
To compare the two datasets, the computation was conducted using the cosine similarity. If
the two data have the same label, the loss function induces the cosine similarity to increase
and make the same feature. If the labels of the two data are different, the loss function
induces the cosine similarity to decrease, leading to different features. By using the cosine
similarity value of the two-sentence embedding as a loss, we optimize the pre-learning
model in the downstream task.

CS(a, b) =
ab

‖a‖‖b‖ (4)

D(a, b) =
{

1− CS(a, b) if Ya = Yb
max(0, CS(a, b)−m) if Ya 6= Yb

(5)

Ldd =
n

∑
s=0

Ns

∑
i=0

Ns

∑
j=0

D(vs
i , vs

j ) (6)

The proposed method of the discriminator is shown in Equations (4)–(6). Equation (4)
compares data a and b by calculating the cosine similarity of the two datasets. Equation (5)
compares the two data according to the label consistency. Equation (6) learns the direction
in which the cosine similarity is increased when the labels of both data are the same for all
sampling data and toward the direction in which the cosine similarity is decreased when
the labels of the two data are different. The proposed method configures the corresponding
loss to compare the two data and progresses the learning such that the sentence embedding
of each data is distant or close. This also leads to information regarding each label being
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contained in the sentence embeddings.In Equations (5) and (6), Ya and Yb represent the
label of each a and b, respectively. Therefore, Equations (5) and (6) induce learning to
increase the cosine simplicity if the label of the data pair is the same and to decrease it if the
label is different. m is a hyperparameter for specifying the range of the cosine similarity, n
represents the number of sampling sets, Ns represents the number of data in the s-th sample.
vs

i and vs
j are the sentence embedding of the i-th and j-th data in s-th sample, respectively.

4.3. Problems in Sections Data-to-Data Discriminate Process

The pre-trained model is not optimized for downstream tasks. The pre-trained model
learns the general features such as grammar and context. Therefore, the embedding results
of the pre-learning model do not have sufficient features distinguishing the labels of
downstream task. Thus, in a pre-trained model, the data of the same label can have different
features. In other words, the pre-trained language model mainly learns the general features
of the sentences and fewer features for each label. As a problem with the above case,
data with the same label do not have consistent features. If we only use Section 4.2 in the
pre-trained model, the model optimizes different directions each time. Section 4.2 method
makes the distance between the two embeddings close or distant depending on the label,
because in the embedding result of the pre-learning model there is less difference, according
to the label. However, this method has a problem, as the direction of learning is different in
each sample.

For example, in the first sample for sentiment classification learning, it is assumed that
positive data exist primarily in the positive x-dimensional direction, and negative data exist
primarily in the negative direction. However, in the next sample, positive data may exist in
the negative direction and negative data may exist in the positive direction, which occurs
because the pre-learning process learns the general features of the text and not the label
information. Therefore, in the case of a data-to-data discriminate process that is learned
through a data comparison, all sampling data may have a different direction for learning.
In addition, as a worst case, all vectors can converge at one point.

In this study, the proposed method aims at transforming a sentence embedding into
an encourage distinct embedding, which clearly distinguishes each data. However, if the
learning direction is different for each sampling data, it does not have a consistent learning
direction during the construction process, thereby encouraging distinct embedding, and
thus, does not learn label-separated encouraging of distinct embedding based on the label,
which may adversely affect the final performance assessment. In this study, a clustering-
based experiment was conducted to determine whether the proposed problem affects the
performance, as outlined in Section 5.4.

4.4. Label-to-Data Discriminate Process

To address the problems presented in Section 4.3, we add a new learning process in
this study.

The proposed method adds a label-to-data discrimination process to solve the above
problems. The label-to-data discrimination process uses label embeddings that can be used
for all sampling data. Label embeddings are learnable parameters and generate an identical
label embedding for each label. Using label embeddings, data from the same label are
always guided to be learned in the same direction. In the label-to-data discrimination
process, the label embeddings are learned by comparing the label embeddings with the
sentence embeddings that have the label. The loss function measures the cosine similarity
between the two vectors and learns the direction in which the cosine similarity increases.
This induces sentence embedding to learn the features of the label embedding. The equation
of Dld for the training loss of the label-to-data discrimination process is as follows:

Dld(a, b) =
{

1− CS(a, b) if Ya = Yb
0 if Ya 6= Yb

(7)
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Lld =
n

∑
s=0

Ns

∑
i=0

|C|

∑
j=0

Dld(vs
i , cle

j ) (8)

Through Equations (7) and (8), label embeddings and the corresponding statements of
the data measure the cosine similarity of the embeddings and use the values as loss func-
tions. In this formula, CS is the cosine similarity, as shown in (4). In Equations (7) and (8),
n represents the number of sampling sets and vs

i represents the sentence embedding of
the i-th data in s-th sample. Finally, |C| represents the number of elements in the set
of possible labels, whereas cle

j is the label embedding of the j-th label and consists of a
learnable parameter.

5. Experiment

In this section, a performance evaluation conducted to demonstrate the performance
of the proposed model is described. We compared the performance with that of the existing
model in the text classification task. For the experiment, a simple text-classification model
was constructed for easy comparison. For classification, the model obtains the sentence em-
bedding of each data and uses a single-layer feed-forward network to obtain the probability
of each classification label.

5.1. Dataset

We experimented using several sentence classification datasets to confirm the sentence
classification performance of the proposed model. For the experiment, MR, SST-2, and SST-5
provided by the Senteval [16] dataset were used for an emotional analysis. In addition,
learning was conducted using the news classification datasets R8 [17] and 20news [18].
Both datasets classify the following information into sentences:

MR—Sentiment is classified into positive or negative sentiment polarities of movie re-
views [16].
R8—Text of Reuters newswire documents is classified into eight categories [17].
20news—The 20 newsgroups dataset comprises approximately 18,000 newsgroups posts
on 20 topics [18].
SST-2—Binary sentiment classification of movie reviews is applied [16].
SST-5—Multi-class sentiment classification of movie reviews is used. The labels are positive,
somewhat positive, neutral, somewhat negative, and negative [16].

Table 1 shows the statistics of each dataset and information on the dataset.

Table 1. Description of data.

Dataset |C|

Number
of

Training
Data

Number
of

Validation
Data

Number
of Test
Data

Avg.
Vocab

Max.
Vocab

MR 2 6398 2132 2132 22 6
R8 8 5485 - 2189 103 965

20news 2 6532 - 2568 110 1040
SST-2 2 67,349 872 1821 11 57
SST-5 5 8544 1101 2210 19 56

5.2. Experiment Setup

We compared the performance of the existing pre-trained model with that of the
proposed method. The BERT-base [2] and ELECTRA-base [3] models were used as baselines
to prove their application in several pre-trained language models. The proposed method
was also learned using the same encoder as the baseline. The hyperparameters for each
experiment are listed in Table 2. The average of the three experiments was used for all
accuracy scores to improve the reliability of the experiment. The experiment was divided
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into AM and ANN, which was the same as the method classified in [15]. In the process of
constructing ddd, AM applied the loss function only when the two labels were the same
(Equation (5)), and ANN applied the loss function only when the two labels were different
(Equation (5)).

Table 2. Hyperparameter setting in experiment.

Hyperparameter Value

Sample size (batch size) 256
Max vocab length 50

Max vocab length (R8, 20news) 100
Epoch 30

Learning rate 2 × 10−5

Optimizer Adam
m −0.75
d1 0.5
d2 0.5

5.3. Experiment Result

Table 3 shows the experiment results, demonstrating the performance of the proposed
method using BERT as an encoder. TThe proposed model showed a good performance
for most sentence classifications. In the MR dataset, the validation and test data have
values of 84.7 and 85.6. respectively, showing performance improvements of 0.5 and 0.6 in
comparison to [11], which is the basis of the baseline and proposed methods. The 20news
dataset also showed a performance of 68.9 for the proposed (ANN) method, which is
an improvement of 0.3 compared to previous studies. For SST-5, the evaluation and test
data were 50.7/52.4, showing performance improvements of 0.7 and 0.5 compared to the
previous approaches. However, in the case of the SST-2 dataset, the performance was rather
lowered in the AM case, but the performance was improved in the ANN. In addition, the
R8 dataset exhibited the highest performance when using the proposed method.

Table 3. Model performance on text classification with BERT.

MR R8 20news SST-2 SST-5Model Validation Test Validation Test Validation Test

Baseline 83.9 85.4 97.6 68.7 91.6 92.9 50.0 52.2
[15] (AM) 84.1 85.1 97.7 67.7 91.6 93.2 48.5 49.8

[15] (ANN) 84.2 85.0 97.6 68.6 91.8 92.7 50.0 51.9
Proposed (AM) 84.6 85.9 97.8 68.4 91.6 92.7 50.8 51.4

Proposed (ANN) 84.7 85.6 97.8 68.9 91.9 93.2 50.7 52.4

Tables 4 and 5 shows the experiment results of the proposed method using ELECTRA
and RoBERTa as an encoder. Overall, it showed the same tendency as the experiment results
of the proposed model using BERT. All test cases showed a performance improvement
for the proposed model, and some validation data showed a higher performance for the
method by [15]. The possible reason for this phenomenon is described in Section 4.4.

We measured the p-value for each dataset and case to verify whether the proposed
method actually improved the performance. The results are presented in Table 6. First,
compared to the baseline and proposed model, ANN exhibited a high performance im-
provement in the p-value of 0.05, and in the case of AM, both AM and ANN exhibited a
statistical significance of 0.1 or less when the proposed method was applied to the existing
method. Thus, it was verified that ANN produces better performance than AM in gen-
eral, and when the proposed method was applied, higher significance of the performance
improvement was demonstrated.
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Table 4. Model performance on text classification with ELECTRA.

MR R8 20news SST-2 SST-5Model Validation Test Validation Test Validation Test

Baseline 90.0 89.8 97.6 66.9 94.9 95.2 54.1 57.2
[15] (AM) 90.0 89.4 97.6 67.5 93.9 94.5 53.7 57.5

[15] (ANN) 90.3 89.0 97.7 67.7 94.9 95.4 52.4 54.9
Proposed (AM) 89.7 89.6 97.7 67.3 94.8 95.2 53.1 57.6

Proposed (ANN) 90.2 90.1 97.8 67.6 95.1 95.5 54.1 57.7

Table 5. Model performance on text classification with RoBERTa.

MR R8 20news SST-2 SST-5Model Validation Test Validation Test Validation Test

Baseline 86.4 88.4 97.7 68.2 93.3 95.2 52.8 55.2
[15] (AM) 86.3 88.5 97.6 67.8 93.3 95.5 52.4 55.2

[15] (ANN) 86.8 87.6 97.5 68.1 93.3 95.4 52.9 56.0
Proposed (AM) 88.0 88.6 97.9 68.2 94.3 95.1 53.7 56.1

Proposed (ANN) 88.0 88.4 97.8 68.4 94.0 95.6 54.5 56.3

Table 6. p-value between the proposed model and the baseline, or [15].

Criteria Propose MR R8 20news SST-2 SST-5
Model Model Val Test Val Test Val Test Avg

Baseline AM 0.08 0.19 9.5 × 10−6 0.43 0.23 0.24 0.16 0.35 0.21
Baseline ANN 0.18 0.10 0.01 0.01 0.14 0.29 0.03 0.01 0.05
[15] (AM) AM 0.02 0.15 0.004 0.16 0.03 0.01 0.01 0.08 0.10

[15] (ANN) ANN 0.07 0.004 0.02 0.09 0.09 0.08 0.001 0.08 0.04

5.4. Analysis of Results

The features of the downstream data are learned during fine-tuning. Therefore, if the
sentence embedding learning is performed effectively on the target field in binary classifi-
cation, data with the same labels should be better clustered. In this study, an additional
experiment was conducted to confirm the effect of the proposed method on the sentence
embedding. All sentence embeddings of the test data of binary classification dataset SST-2
were visualized through principal component analysis (PCA). In this manner, it could
be confirmed whether the data for each label were well clustered or whether there were
several outliers. The results are presented in Figure 2. When the proposed method was used,
as indicated in Figure 2, it was confirmed that better clustering was achieved than when
using previous approaches or the baseline, and with fewer outliers. Moreover, to confirm
this quantitatively, K-means clustering was performed on the sentence embedding and
classification was subsequently applied for each class. Thereafter, a performance evaluation
was conducted by applying the completeness score to the clustering results, the results of
which are displayed in Table 7. This experiment was conducted on SST-2 and MR, which
are binary classification datasets. The baseline achieved clustering scores of 23.4 and 27.4 in
both datasets. When the method of [15] was applied, the SST-2 data exhibited high accuracy
but the MR data exhibited very low accuracy. It can be observed that the problem described
in Section 4.3 occurred. In Section 4.3, we presented a problem, where in the worst case, all
sentiment embeddings regardless of the label are clustered in one point, making it difficult
to distinguish. In the MR dataset, it was confirmed that classification through clustering
became difficult when the method of [15] was applied. When using the proposed method,
most of the results showed a higher clustering performance than prior approaches. How-
ever, in some cases, the clustering performance improved by a small margin or showed a
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higher performance at the baseline. The method proposed in this paper uses a methodology
for preparing for the worst-case scenario in which the directionality is lost during the data
learning applied through the data sampling process. Thus, some cases in the original model
may be optimized in the right direction, and in this case, the performance may not be
improved. This can be assumed to be the reason for the small performance improvement
or the slight decline in performance shown in Tables 3–5. However, when the proposed
method is used, a low clustering performance is not derived, preventing the occurrence of
the worst-case scenario.

(a) (b) (c)

Figure 2. PCA projection of SST-2 test data’s sentence embedding.

Table 7. K-means clustering with PCA in binary classification.

DATASET MODEL BERT ELECTRA RoBERTa

MR
Baseline 23.4 10.0 28.7

[15] (ANN) 2.6 0.2 27.9
Proposed(ANN) 43.3 28.7 27.4

SST-2
Baseline 27.4 67.5 67.9

[15] (ANN) 59.2 10.0 67.0
Proposed(ANN) 60.1 59.5 69.1

6. Conclusions

In this study, a methodology has been proposed to compensate for the difference
between pre-training and downstream tasks in transfer learning. In this paper, we first
described existing research to solve the problem. Among these, a loss function that narrows
the distance of sentiment embedding as an existing methodology for solving text classifica-
tion has been described in detail. Thereafter, we explained that the learning direction cannot
be consistent for each sample, due to a problem that may occur when the methodology is
used. Finally, label embedding was proposed to solve the problem. The problem was solved
by configuring a vector that penetrates all samples through the proposed label embedding.
Subsequently, the performance was confirmed through experiments and clustering for text
classification. The proposed methodology has solved some of the problems, but exhibits a
limitation in that it may not be able to learn effectively, because it does not actually have
information on the label. If the initial labeling is incorrectly declared, it is possible that
the learning direction of the labeling will not be the same. Future studies can improve
the methodology by developing a label embedding initialization method to overcome the
limitations. Furthermore, in this study, although the difference in the features required
by pre-training and fine-tuning was compensated for, other methods can be proposed to
compensate for this gap.
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