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Abstract: Cross channel scripting (XCS) is a common web application vulnerability, which is a variant
of a cross-site scripting (XSS) attack. An XCS attack vector can be injected through network protocol
and smart devices that have web interfaces such as routers, photo frames, and cameras. In this attack
scenario, the network devices allow the web administrator to carry out various functions related to
accessing the web content from the server. After the injection of malicious code into web interfaces,
XCS attack vectors can be exploited in the client browser. In addition, scripted content can be injected
into the networked devices through various protocols, such as network file system, file transfer
protocol (FTP), and simple mail transfer protocol. In this paper, various computational techniques
deployed at the client and server sides for XCS detection and mitigation are analyzed. Various web
application scanners have been discussed along with specific features. Various computational tools
and approaches with their respective characteristics are also discussed. Finally, shortcomings and
future directions related to the existing computational techniques for XCS are presented.

Keywords: cross channel scripting; attack vector; scanners; web application security; XSS

1. Introduction

Web applications (apps) are now widely accepted as one of the best platforms for
delivering information over the Internet. These apps provide access to a variety of online
services, such as social networking sites, e-mails, Internet banking, and e-commerce appli-
cations, that employ several technologies and web components [1,2]. The ease with which
attackers may gain a foothold and the widespread availability of online attack development
tools are fueling a surge in web application vulnerabilities.

Commercial and technology-related websites were commonly targeted, according to
Symantec’s Security Report for 2020. Cross-site scripting (XSS) is a type of cyber threat
in which a browser application’s loopholes are exploited in order to inject a malicious
script. This means that stealing cookies, phishing, or hacking an organization’s entire
network might compromise users’ data [3]. Websites connected to tech were nearly twice
as likely to be hacked as those devoted for commerce. An attacker could impersonate
a person by using a forged credential. The opponent gains access to constrained zones,
increasing the number of attack opportunities. As a result, attackers are attempting to
target high-traffic technological websites, which is where virus purveyors are currently
focusing their efforts [4].

The huge number of communication technologies can make it difficult to defend
against web-based apps on consumers’ electrical devices [5]. For instance, a website might
utilize the Server Message Block protocols to upload a program to a network storage media,
monitor its rights via the web interface, and then distribute it through the File Transfer
Protocol. In a previous study, many of the consumer electronic devices inspected were
vulnerable to some sort of scripting attacks [6]. A malicious person uses a basic network
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mail transfer protocol as an exploit vector in XCS. Several devices in a shared environment
permit users to store information via the SMB protocol. As a result, the adversary can
implant harmful information including malware scripts [7]. The scenario of XCS payload
execution and various attack types are depicted in Figure 1.
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Figure 1. XCS payload execution and attack types.

1.1. Vulnerability Classes

Many vulnerabilities are present in web-based management interfaces. Some of them
are classified as follows.

1. XCS: These attacks are common in embedded devices since they reveal numerous
services beyond HTTP. Cross channel scripting bugs are much more difficult to
discover than CSRF (cross-site request forgery) and XSS because they include several
communication channels [8].

2. RXCS (reverse cross channel scripting): When a web interface/program is used as a
benchmark to attack a further service on the network device it is known as reverse
cross channel scripting. RXCS attacks are mainly used for unauthorized copying,
transfer, or retrieval of data that is protected by access control.

3. CSRF (cross-site request forgeries): These vulnerabilities enable an adversary to reveal
information to the device by using a remote site as a stepping stone.

4. Cross-site scripting: These vulnerabilities are commonly found in web-based applica-
tions, where most of the interfaces and devices are vulnerable to XSS, including those
that perform some input checking.

5. File security: Devices such as Samsung photo frame allow an adversary to interpret
protected information without any authentication [8]. On this device, the web interface
will be compromised by abusing the log file, even if it is protected by the password.

6. Authentication: Most of the devices authenticate users in clear-text and without
HTTPS [8]. This causes security devices such as cameras to be compromised.

1.2. XCS Threat Model

XCS flaws leverage communication protocols and web applications to implant security
vulnerabilities into web pages that are executed in their security environment. This scripting
will be used by the adversary to transmit a dangerous payload to an authorized user [9,10].
Cross channel scripting refers to web-based assaults launched through a non-web medium
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(XCS), which allows hackers to insert client-side scripting into websites, after which an
adversary can transmit a harmful code through XCS.

The scenario of an XCS attack is shown in Figure 2. An XCS attack is described through
the following steps:

1. To insert malicious code on the web server, an adversary uses network protocols,
which are classified as non-web channels.

2. Web apps are used to send the malicious code from the server to the user’s browser.
When the victim’s computer grants them access to the fraudulent online content,
malware instruction is executed with his authorization [11].

Attacker Device

Users Browser

Injection Storage Reflection

Figure 2. XCS threat model.

XCS could be used to launch a variety of threats. The following is a list of them:

1. Confidential information is being filtered. Data extrusion is another term for this.
When an organization’s data are stolen, transmitted, or acquired from the systems
without sufficient authorization, this is a security breach [12].

2. Redirecting Victims: By introducing bogus login credentials into the site, an adversary
deceives the client into giving up accessibility to his or her private information.

3. IP spoofing: If an adversary and a victim share a LAN, an adversary may utilize phish-
ing to attack victims and initiate an MITM exploit for all network interactions [13].

1.3. Motivation and Contributions

Cross channel scripting attacks occur almost daily. Recently, famous social networks
such as Twitter, Facebook, and Google, have become part of XCS vulnerabilities. In addition,
XCS attack vectors were found in Yahoo, PayPal, Justin.tv, Orkut, Hotmail, a universal
search engine of the UK parliament website, and many more [1]. The contributions of this
article include:

• This article presents a comprehensive survey aimed to monitor, recognize, and mitigate
XCS attacks in web-based and cloud-based applications.

• Various XCS attacks are explored that inject real malicious attack vectors on insecure
web applications.

• Several vulnerabilities on embedded devices are discussed.
• Web application vulnerability scanner tools are also listed and discussed.
• Finally, research gaps and future research directions are presented for the research community.

The rest of the paper is organized as follows: Section 2 presents the related work.
Section 3 discusses vulnerabilities in embedded devices. Section 4 demonstrates reverse
cross channel scripting (RXCS). Section 5 lists the tools used to find XCS attacks. The XCS
detection techniques are illustrated in Section 6. Mitigation techniques, the concept of
contextual fingerprints, and the use of site firewalls are presented in Section 7. Section 8
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presents the analysis of XCS attacks. Section 9 discusses the research gaps and future
directions. Section 10 concludes the paper.

2. Related Work

The security of consumer electronic web interfaces is the most vulnerable to XCS
attacks. The cross channel scripting attacks often produce striking results, such as control
of the whole device or a substantial subsystem of the device [7].

In 2008, Lai et al. [14] proposed a new taxonomy of web attacks that is focused on
HTTP methods. In addition, they focused on SQL injection and modification attacks.
However, they failed to cover other web vulnerabilities such as XSS, XCS, CSRF, and RXCS
attacks. In 2009, Bojinov et al. [7] proposed an approach titled “XCS: cross channel scripting
and its impact on web applications” to exploit XCS attacks on consumer electronic devices.
Furthermore, the researchers ignored the smaller exploits as they believed that the most
significant threats will come from easily accessible web interfaces that are bridged to the
user’s browser. In addition, they proposed a client-side defense mechanism to mitigate
XCS attacks. However, the authors only focused on XCS, RXCS, and CSRF attacks, and the
proposed mechanism is vulnerable to injection attacks. Bojinov et al. [11] demonstrated
that commercially available consumer electronic devices with networking functionalities
such as network-attached storage devices, modern cameras, printers, digital photo frames,
and wireless routers are vulnerable to cross channel scripting attacks.

Gupta et al. [15] presented a cloud-based framework that removes XSS vulnerabilities
caused due to the injection of HTML5 attack vectors in web applications. In addition, this
approach mitigates the insertion of malicious vectors in the script nodes of a DOM tree. In
2017, Marashdih et al. [16] also presented methods and tools that are used to remove the
attack vectors of XCS from PHP source code.

In 2018, Ayeni et al. [17,18] implemented a novel solution to identify cross channel
scripting attacks in web applications using a fuzzy inference system. This method was
implemented based on a fuzzy logic to find web application security flaws and to achieve
some experimental results, and this approach recorded a 0.01% reduction in the false
positive rate as well as a 15% improvement in accuracy. This is noticeably less than that
identified in previous works.

In 2019, Chaudhary et al. [19] developed an approach for the preservation of users’
privacy against cross-site scripting worms on social networks. This security framework
generates all of the requests and forms an access control list. Furthermore, this access
insertion checks for removing malevolent vulnerabilities. After authentication in the
recognition phase, vulnerabilities will be received from the extracted points. Furthermore,
this approach sanitizes compressed clustered templates in the context-aware system.

In addition, Madhusudhan et al. [20] presented a secure XCS approach to deal with
malign scripts, which reaches the browser from possible paths. Furthermore, they have
designed the attack discovery and mitigation approach known as the secure XSS layer.
Furthermore, In 2018, Madhusudhan et al. [21] proposed an approach for cross channel
scripting (XCS) attacks in web applications. They listed and presented XCS detection and
mitigation mechanisms.

Alam et al. [22] introduced a machine learning framework for predicting web vulnera-
bilities in web applications. The framework deploys the classification on various classifiers
of ML algorithms to determine XCS and XSS vulnerabilities from the web applications.
Several inspections have been carried out in their study to know the system’s performance.
Furthermore, they built six classifiers with a meta classifier on the training set of files
presented by text features and metrics. The proposed NMPREDICTOR was examined on
the datasets of three web-based applications, and gave superior quality vulnerabilities
identified in Moodle, PHP MyAdmin, and Drupal. Later, Babiker et al. [23] proposed a
study to investigate various methods used to detect attacks on web applications via intru-
sion detection systems, firewalls, honeypots, and forensic techniques based on machine
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learning. However, they failed to target particular attack vectors related to XCS, XSS, SQL
injection, etc.

Kumar et al. [24] provided security against XSS attacks by encrypting the API key
authentication level. It helped to avoid the direct access of API. Additionally, the request for
script code execution was converted into plain text so that it could not be executed over the
browser. Kalim et al. [25] identified the variants of jacking vulnerabilities using machine
learning techniques. The abnormal behaviors were classified using J48, Naïve Bayes, and
LogiBoost. Falana et al. [26] used fuzzy inference and dynamic analysis to detect the XSS
attacks. The points of injection were observed through the scanning of the website. After
that, via an HTTP request, an attack vector was launched to a web application. Finally, the
existence of an attack was predicted by the HTTP response. Gui et al. [27] utilized deep
learning to identify the abnormal behavior of web users. This method achieved 96% of
recall and precision.

In 2021, Shashidhara et al. [28] presented a novel approach to identify cross-site script-
ing attacks using a safe XSS detection layer at the client side. Recently, Kantharaj et al. [29]
demonstrated various approaches to detect and mitigate cross channel scripting attacks
from modern web applications.

The researchers also proposed some well-known methodologies and tools to detect
cross channel scripting attacks from vulnerable embedded devices used in web-based
management interfaces [1,21,30,31]. A detailed comprehensive survey on XCS detection
and mitigation techniques proposed by different researchers is presented in Table 1. We
also identified the strengths and weaknesses of these XCS mitigation techniques.
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Table 1. Comparison of XCS detection and prevention techniques.

Detection and Prevention Strengths Weaknesses
Techniques

Black Box Scanners [32] Imitates external attacks from attackers and furnishes cost-effective
mechanisms that configure web application firewalls Cannot be forwarded to specific modules, leads to complex systems

SiteFirewall [7] Can effectively mitigates XCS attacks Unable to prevent content loading from external resources

Server-Side Detection [19] Can detect XCS attacks by estimating the variation between an HTTP
request and its response message

Needs an additional training phase for gathering a larger number
of scripts

Contextual Fingerprints [33] Efficient script detection and unaffected web user experience If a generated fingerprint is altered maliciously, then new fingerprint
generation is necessary

Server approach to detect XCS attacks [34] Boundary insertion to enclose data generated and policy generation to
verify attacker inserted content

Requires additional time for policy check and consequently degrades
XCS detection probability

SWAP [35] Has the ability to detect variations between benign and injected
malicious codes Unable to detect many web attacks

Vulnerability and Attack Injector Tool (VAIT) [36] IDS for SQL attacks Unable to detect XCS attacks

Attack Vector Injection [37] Prevents XSS and SQL attacks Unable to prevent RXCS and XCS attacks

Ontological Prototype [38] Capable of detecting sophisticated attacks More false positives

Machine Learning Model [39] Acts as a filter and has the ability to efficiently mitigate web attacks Signature-based model

Web Classifiers [3] Uses AI techniques to mitigate web attacks Unable to protect against RXCS attacks

Ontology-Based Model [40] Detects SQLIA web vulnerability efficiently Unable to mitigate DOM-based XSS attacks

XSS Attack Vectors Approach [28] XSS attack vectors with a secure XSS layer to mitigate XSS and
XCS attacks Unable to prevent server-side attacks

Convolution Neural Network (CNN) [41] Efficiently detects web attacks using anomaly-based detection type Unable to protect reflected XSS attacks

Listwise Approach [42] Efficiently detects phishing websites Unable to protect against injection attacks

Convolution Neural Network (CNN) Method [43] Prevents privacy breaches of users Unable to protect against SQL injection attacks

Black Box Testing [44] Capable of analyzing attacked page responses Unable to protect against CSRF attacks

Identifying Cloud-Based Web Applications [45] Detects several cloud-based vulnerabilities Personal and private data commitments increase the risk to data
confidentiality

MCTS-T Algorithm [46] A generative adversarial network (GAN) was used to optimize a
detector with improved detection rate Unable to predict adversarial attacks on the server side

Static and dynamic analysis [47] Efficiently detects stored, reflected, DOM-based, and phishing attacks The authors fail to investigate the approaches to mitigate XCS, SQL
injection, RXCS, and CSRF attacks.

DDoS Mitigation Approach [48] Detects and prevents DDoS and flooding attacks on web applications
Injection and modification attacks are still possible on
web applications. Fails to provide defensive mechanism for
XSS attacks.
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3. Vulnerabilities in Embedded Devices

This section describes vulnerabilities found in various embedded devices. In [8], the
authors conducted a secure embedded web-based management interface project at the
Stanford security lab. They investigated the security of embedded management interfaces,
and their investigation revealed that most of the embedded devices are used for web-based
management interfaces containing significant vulnerabilities. Bojinov et al. [8] found
vulnerabilities in some devices; they also suggested some well-known approaches and
tools for detecting cross channel scripting attacks from vulnerable embedded devices in
web-based management interfaces, which are illustrated in Figure 3.

IP Camera          IP Phone              LOM                        NAS

Photo frame           Router                  Switch                  Printer

Figure 3. Embedded devices used in web-based management interfaces.

3.1. Vulnerabilities on IP Camera and Phone

A sort of CCTV (closed circuit television), also known as video surveillance, is the
desired and cost-effective way of attaining secrecy in residential and workplaces. The IP
cameras provide a web-based management interface through which the possessor can
configure IP cameras and sight the videos that have been captured.

In IP cameras, vulnerability can be exploited by constraining an administrator (admin) to
sight dangerous content in the form. Then, conforming to those particular forms sponta-
neously, the adversary is acting with the interest of the admin [42].

IP phones are used for voice communications on the Internet or local area networks.
First of all, we do not have to use a public switched telephone network for making calls,
which reduces the cost of phone calls. IP phones have a web interface and as likely to
happen, pervasiveness on the network will result in a considerable, exploitable realm of
targets. Using a registered username, the adversary can make a session initiation protocol
call to an IP phone and insert a malicious script to the call log. Once the log is sighted by
an admin, the script will be executed in the admin’s browser with the device privileges. An
adversary must know the device phone number to exploit this vulnerability [49].

3.2. Vulnerabilities on Lights-Out Management and Digital Photo Frames

Lights-out management (LOM) consists of programs and a hardware component that
allow for remote operations such as rebooting, troubleshooting, shutdown, alarm setting,
and operating system re-installation options through a web interface.

Bojinov et al. [8] identified login XCS with DRAC-4 LOM (Dell’s remote access
controller). To exploit the vulnerability in DRAC-4, an adversary has to access the login
page of the device. When a login is unsuccessful, the failed user name is stored in the
DRAC-4 log, which allows an adversary to use user credentials to insert malicious content
into the system log. Once the system log is viewed by an admin, the script automatically
executes in the admin’s browser with the device privileges.
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The digital photo frames permit a user to display a sequence of photos in a single
frame, which are substantially connected using a wireless network to web interfaces for
configuration and setup.

A digital photo frame allows an adversary to save the malicious script in a device,
which is exploited by the client who eventually visits the interface and clicks a button in
the photo frame, due to the absence of input validation [43]. This type of vulnerability is
exploited by saving malicious content in an unchecked input field.

3.3. Vulnerabilities on Router, Switch, and Printer

The router is a connecting device that routes data packets along with the network.
Routers are located at gateways, places where two or more networks connect. Generally,
each has a web-based interface that permits the network administrator to configure several
options including wireless encryption, network address translation (NAT), port forwarding,
and MAC filtering. To grant end users to configure these options, they substantially run an
internal server.

To exploit vulnerability in the router, the adversary attempts to log in to the device.
An adversary can restore malicious settings to the router device by using the Linksys
router configuration restore option, which is known as Backup File XCS attack [50]. This
is extremely easy since the backup file does not contain a MAC address to safeguard
legitimacy. The malicious script injection can occur when a cautiously constructed restore
file is used; this causes an arbitrary script to be executed in the admin’s browser of the next
page view.

A switch serves as a controller, enabling networked devices to talk to each other
efficiently. Most of the network switches facilitate a web interface for switch configuration,
which includes options such as IP-based security filtering, SNMP communities, and AAA
(authentication, authorization, and accounting) protocols. Using the console configuration
interface of this device, an adversary can inject malicious JavaScript into the switch name,
which is known as the console XCS attack. Later, the web interface is viewed by an admin,
and the malicious script can be executed in the admin’s browser.

Most printers have a web interface in which a client user could remotely sight the
printer status, configure it, or reboot it. Modern web-based printers have several advanced
features, which include support for administration and multiple network protocols.

Bojinov et al. [8] identified an RXCS attack risk on a printer device. Without knowing
the IP address assigned to the printer, an adversary can launch an RXCS attack. A compro-
mised printer device allows an adversary to modify mail control settings, due to lack of
request validation. Upon changing the email control settings, the adversary can command
the device by sending mails to it. This attack can occur by forcing an authorized admin to
view the malevolent content, and later, an adversary can act on behalf of the admin.

3.4. Log-Based XCS

When the system software is corrupted, the admin of the system requires local ingress
to the console to reboot the operating system. These circumstances arise in data centers,
where the admin can diagnose it. The need for real involvement is problematic in the
case of service level agreement (SLA), since it increases the downtime drastically. To
direct this problem, most of the vendors have designed firmware components known
as lights-out management (LOM) modules, which can be externally acquired by an ad-
min. Most of the lights-out management systems allow a web interface for the admin to
achieve remote access.

Bojinov et al. [11] inspected the web interfaces of three commonly used light-out
management modules:

1. Active management technology (AMT) by Intel;
2. Dell remote access controller (DRAC) by Dell;
3. Remote supervisor adapter (RSA) by IBM.
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The researchers found some cross channel scripting vulnerabilities on these light-
out management modules. After that, the vendors of this module took several security
measures to prevent unauthorized log-in into light-out management modules. These
security measures involve several forms of user authentication, the use of the secure-socket
layer of defense against a range of network attacks, and substantial logging of the user’s
activities. The researchers also found that this vulnerability implies using RSA and DRAC
by accessing the interface of a web on the affected machine [51]. This XCS attack makes use
of the log files to insert malicious scripts into the storage devices. This vulnerability has
been described by the following steps:

Step 1: An adversary aims to log into the LOM device of a supervised system. As an
alternative to attempting to guess login credentials, an adversary enters a payload,
which contains the malicious code as the username.

Step 2: The logging system will capture and save these user credentials in the log file of the
LOM device. The login form present in the system does not escape the malicious
information and communicates with the log file to mitigate web-based attacks.

Step 3: A malevolent code is accomplished by an admin browser of a LOM system when
he/she views or interprets the log file. The malevolent code could be explored to
append the rogue into the LOM. Accordingly, access is granted to an adversary.

3.5. Attack on Peer-to-Peer Channel

The network-attached storage (NAS) server allows the web clients to download Bit-
Torrent information via the embedded device. This device is configured by the web-based
interface. A BitTorrent file contains file information with a hash to track URLs. This helps
an attacker to find peer entities. Many cross channel scripting attack vectors were found
in BitTorrent clients [7], but an interesting fact is that an XCS attack vector results from a
peer-to-to-peer (P2P) channel. Here, an attacker crafts torrent data that behave as malev-
olent content. When the web client tries to obtain torrent information from the browser,
the web-based interface notifies the record indices and allows the client browser to exploit
malevolent payloads present in the file. More details of the attack on the P2P channel are
illustrated in Figure 4, which shows the complete overview of a P2P attack.

Tracker

NAS

NAS

Attacker

1.Upload malicious

content

2.User download 

the content

3. Attacker controls the admin browser

Figure 4. Overview of a P2P XCS attack.

In the peer-to-peer (P2P) attack context, the web clients are not aware of the fact that
BitTorrent has a malevolent content before BitTorrent is fetched. The P2P attack starts as
soon as BitTorrent is fetched.
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3.6. XCS Attacks on Smartphones and Online Social Networks

Mobile devices enable the download of different application services through third-
party vendors such as commercial websites and Google Play store. The source applications
that are downloaded from third parties are problematic. Therefore, mobile devices are
continuously at risk of installing malevolent applications, which gain authorization of the
devices or steal sensitive data such as browser cookies, passwords, and credit/debit card
numbers. Location-based attacks, Bluetooth attacks, SMS-based attacks, Spyware, and
Grayware are possible attacks in mobile devices [44].

Mobile operating systems such as Android and WebOS uses JavaScript code to develop
the application services. This script code is more prone to cross-site scripting vulnerabilities.
Recently, Gupta et al. [52] verified a few Smartphones that were developed using JavaScript
and demonstrated that cross-site scripting attacks are still possible in smartphones. Further-
more, a recent report described Palm Pre, which leads to a cross channel scripting vector
that inserts it as malicious code via content [1].

Online social networks (OSN) are continuously suffering from the impact of XCS
attacks [52]. Recently, famous social networks such as Twitter, Facebook, and Google have
become victims to cross channel scripting attacks. Furthermore, cross channel scripting
attack vectors were seized in the UK parliament site, Yahoo website, PayPal, Hotmail,
Justin.tv, Orkut website, and many more [53].

4. Reverse Cross Channel Scripting (RXCS)

In this section, RXCS attacks on various social networks such as Facebook and Twitter
are discussed, which use the web interface to launch a series of problems on a web channel.
The main goal of this attack is the unauthorized transfer of users’ confidential information
that should not be shared, since it has been guarded with an access control technique [7].
Indeed, popular websites such as Facebook, Google, Twitter, and e-bay provide a web-based
API to third-party applications, which leads to cross channel scripting attack opportunities.
The application developer assumes that the cloud service provides safe and secure data for
third-party applications. However, every cloud provider has its sanitization mechanism,
which is generally not explicitly documented. The unpredictability between supplied
information and expected information can result in reverse XCS [7].

4.1. RXCS Attacks on Facebook

In Facebook, the information furnished to third-party applications is not sanitized,
that is, Facebook sanitizes the information at display time. The terms of service and
conditions of Facebook say that third-party vendor applications are not meant to output the
information fetched from the application programming interface directly. Correspondingly,
web applications are not meant to keep the user information. Although some applications
will store or display the information, Facebook can monitor interface usage details to
intercept the terms of service violation [54].

Suppose we have the application to display the statistics of Facebook users, such as
favorite page, games, videos, or movies; then it is enough to inject a malicious code in
the favorite page and it will eventually be spammed to all users of Facebook that view
the application.

In detail, a crafted attack vector would be injected into a viral page of Facebook. The
Facebook users who click on this malicious link reflect the same code and then the user’s
browser is under attack [55]. This compromised web page can be used for phishing attacks
and malware spreading.

4.2. RXCS Attacks on Twitter

In Twitter, data sanitation is completed at the input, so all information given to third-
party vendor applications is sanitized by an HTML escaping mechanism. The filtering
policy used in Twitter is the opposite of the Facebook sanitation policy. Bojinov et al. [7]
described that if an application needs to manage raw content, then it should use sanitized
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information. Suppose an application wants to output information; it should be re-escape
information. This re-escape, un-escape process, is error-prone and tedious, which leads to
RXCS attacks. In the XCS attack vector, mousing over the malicious link results in a pop-up,
which displays the logged-in user’s cookies. The adversary later incorporates a reverse
cross channel scripting component that forces Twitter users to retweet a piece of code [8].

5. Tools Used

This section lists various tools that are used in embedded devices to detect vulnerabili-
ties. The audit of each embedded device was carried out in three phases by researchers
at Stanford. First, they performed a general analysis using the open-source tool known as
NMap (network mapper), which has a free utility for auditing and network discovery [56].
Furthermore, the Nessus scanner provides the Nessus attack scripting language (NASL).
This is a simple language used to demonstrate individual threats and potential attacks.
Next, they checked the capabilities of the web-based management interfaces using Mozilla
Firefox and its extensions, such as edit cookies, Firebug, and tamper data. Furthermore,
the researchers came up with a custom tool for cross-site request forgery inspection. In the
final step, the Stanford researchers Bojinov et al. tested for cross channel scripting attacks
using command-line tools and handwritten scripts such as smbclient [45,57]. Table 2 lists
the type of vulnerability found for each embedded device. Furthermore, the possible XCS
attack vectors that can be injected into the vulnerable web applications and their patterns
are listed in Table 3.

Table 2. Device vulnerability list.

Manufacturer Device Type XCS RXCS

Linksys SPA-942 IP Phone X ×
Dell DRAC Lights-Out

Management X ×

IBM RSA2 Lights-Out
Management X ×

Buffalo Linkstation Network Attached
Storage X ×

Lacie Ethernet Disk Network Attached
Storage X ×

Linksys NMH-305 Network Attached
Storage X ×

QNAP TS-109 Network Attached
Storage X ×

Samsung SPF-85v Photo Frame × X
HP HP 4250 Printer × X
HP HP 9000 Printer × X
Linksys WRT54G2 Router X ×
Allied Telesync AT-FS750 Switch X ×

Table 3. XCS attack vectors.

Attack Vector XCS Pattern

< BODY = ”javascript : alert(′XCS′)” >
< IMG SRC = ”javascript : alert(′XCS′); ” >

HTML malicious attributes < IMG SRC = js : alert(String.CharCode(87, 67, 57)) >
< IMGSRC = / onerror = ”alert(String. f romCharCode (87, 67, 57))” >< /img >

Mutated XCS ”/>,< /ScRiPt > alert(111) < title >< script > alert(111)
< /script >< /SCRIPT > alert(111)

onError < imgsrc = xcs.pngonerror = alert(′Attack!′) >
< SCRIPT SRC = http : //hackers/xcs.js < /SCRIPT >

External source script vectors < SCRIPT/XCS SRC = ”http : //ha.ckers.org/xcs.js” >< /SCRIPT >
< SCRIPT = f tp : //hacker/xcs.js? < B >
< a onmouseover = ”alert(document.cookie)” > xcs < /a >

Event triggered scripts < IMG SRC = # = ”alert(′xcs′)” >
Explicate Attack vectors < BR SIZE = ”&alert(′XCS′)” >

< BASE HREF = ”javascript : alert(′XCS′); //” >
onClick < ahre f = onclick = ”window.location AttackerSite/Welcome.jsp?input; ” >

Clickhere f ortheiPhone < /a >
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6. Detection of Cross Channel Scripting Attacks

Several methods for detecting and mitigating vulnerabilities are presented in this
section. These methods are content sanitization, black-box scanner tools, and various
detection and mitigation approaches.

6.1. Content Sanitization

This is a method of securing secret information in a non-production database. The
purpose of a XCS defense system is to assure that all data supplied to the client browser are
appropriately sanitized. Static analyzers will perform flow analysis to uncover probable
XCS issues. All website interfaces, particularly permanent storage systems, should be
tracked using this method. When infected material is displayed on the website without
being sanitized, this triggers the alarm [3].

6.2. Black Box Scanner Tools

Black box scanners imitate adversary attacks, giving efficient means for detecting a
variety of XCS flaws. The Web Application Vulnerability Scanner and AppScan are two
examples of scanners. In order to obtain a code, the scanner attempts to traverse all different
possibilities in web apps. To begin a scanning activity with this scanner, the client must first
input the online site URL and login credentials. The client must then select the detection
technique for analyzing the profile before starting the scan.

The scanning cycle, which includes the three major components crawling, attack, and
analysis, is a tool that scans the output of web apps to see if a threat has been recognized or
not. The majority of scanners employ an automation technique that aims to create a graph
that reflects the entire web-page navigation system. The construction of a graph is highly
dynamic, and it is used to detect various weaknesses. This automated approach proposed
by Akrout et al. [32] for vulnerabilities’ identification using black-box scanners is shown
in Figure 5.

Table 3 lists the eight scanners, along with their manufacture version, scanning profiles
utilized, and the type of bug discovered. Header injection, XPath injection, cross-frame
scripting, path traversal, malicious file upload, open redirects, and SMTP injection were all
discovered as XCS flaws in the scanning testbed.

Initial URL

Combinatorial site crawling

List of Navigations

Navigation graph construction

Vulnerabilities identification 

and exploitation

List of newly 

accessible URL’S

List of accessible 

URL’S vulnerabilities 

exploitation

New 

URL’S

Final Navigation 

graph

List of attack 

scenarios

YES

NO

Figure 5. Vulnerabilities’ identification using black-box scanners.

6.3. Detection Approaches for XCS on the Client Side

Kirada et al. [47,58] presented Noxes, a web firewall, as an innovative method for mit-
igating XCS online applications. Noxes is unique in that it is the first consumer solution to
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enable cross-site scripting prevention. This approach enables the detection module, which
reduces the number of alert notifications and successfully alleviates security weaknesses in
which an attacker targets sensitive information, such as session identifiers and passwords.

6.4. S2XS2: Server Side Approach to Mitigate Web-Based Threats

With boundary injection, Shahriar et al. [59] established an automated system to
uncover XCS flaws in servers. They also developed trustworthy aspects for data that
correlated with response generation to detect attacks, as well as a platform utility to
implant the barrier and produce a guideline for JSP applications dynamically.

6.5. XCS-SAFE: Mitigation of XCS Attacks

Sarmah et al. [60] presented the XCS-SAFE framework, which is a server-side tech-
nique for mitigating cross channel scripting threats from malevolent known vulnerabilities.
This approach is based on the concept of incorporating scripts and sanitization capabilities
into the program to prevent malicious attack vectors.

6.6. Web-Application Proxy

Wurzinger et al. [35] described the secure web application proxy, a method for miti-
gating cross channel scripting vulnerabilities. In this approach, The proxy acts as a firewall
among apps and the Internet. If no scripting components are identified, this decodes all
scripting variables, recovers all legitimate patterns, and sends an HTML response to the
client. If the script element detects harmful vectors, instead of sending a response, this
strategy can raise an alarm of a cross channel scripting assault. As a result, utilizing a
reverse proxy, these techniques efficiently prevent XCS threats [49].

7. Detection and Mitigation of Cross Channel Scripting Attacks

In this section, first, mitigation of cross channel scripting attacks is presented. There-
after, the use of fingerprints to prevent XCS attacks is discussed. Lastly, the use of a site
firewall is discussed to protect the web applications from attacks.

7.1. Mitigation of Cross Channel Scripting Attacks

Various stages such as web infection, injection, and payload execution were suggested
in [7] to mitigate the XCS attacks.

• Website infection: Embedded smart devices or XCS exploits are used to implant
harmful content into a web application. A general populace website, an administrative
site, or an embedded gadget can all be attacked with malware.

• Browsing malware content: The following step is to wait for a client to browse a
hostile or compromised website. The client could then be restricted from visiting the
infested site or viewing an inappropriate payload via a number of methods, including
prohibiting particular types of content from being executed and keeping a collection
of potentially dangerous websites, similar to the no-script browser plugin.

• Ghost injection: A ghost script injection in an XCS attack can take the following forms:
a submission form with an element that would accommodate HTML, an invalid login,
and a file renaming. All input/output data that that server will manage can be stolen
by the embedded device for the server vendor. As a result, securing this may be tough.

• Payload execution: In the last stage of the XCS exploit, the adversary payload is exe-
cuted in the context of admin access. When an administrator reads the compromised
site, a dangerous code contained in it is mistakenly executed. As a result, settings are
reconfigured for the creation adviser’s accounts, data are ex-filtrated from the interface
to an opponent server, and some other hosts on the web are attacked.

7.2. Fingerprints for XCS Detection

Fingerprints are identities that show the components in the scripts as well as the
context in which they are being executed by the client. An admin creates fingerprints on



Sensors 2022, 22, 1959 14 of 20

the host nSign [33]. Following that, the client’s browser securely obtains all of the server’s
produced fingerprints. Finally, the scripting detection layer matches fingerprints sent with
fingerprints acquired during surfing. The fingerprint generation using nSign is shown
in Figure 6.

7.3. Site Firewall

In this subsection, we will look into Site Firewall, which is used to protect web apps
from cross channel scripting attacks. Site Firewall is an XCS prevention method that
focuses on the implementation stage of payloads. This method makes it harder to use
the user browser to steal data from a server. A Site Firewall obtains webpage rules from
online content, enabling the site to filter harmful content sent by both its web server and
unauthorized Internet connections [7].

An embedded system might expressly indicate the data offered by an interface origi-
nating from the device organically and probably from the manufacturer’s site by employing
a Site Firewall component in the victim’s browser. As depicted in Figure 7, the client’s
browser could prevent connections to certain other sites, making it even harder to steal
private data.

Block Mode 

On

Blocked

Session Start

XCS

Browser Device

Execute Pages Regular Pages

First request

Set cookie

Local Exchanges

Leak data attempt

Device Interaction

Figure 6. XCS attack prevention using contextual fingerprints.
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Figure 7. Browser and device interaction with Site Firewall.
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8. Analysis of XCS Attacks

In this section, a detailed analysis of XCS attacks is presented. Cross channel scripting
is a multifaceted malicious attack vector that leads to huge client-side and social engineering
attacks. This scripting mechanism can be used to steal confidential data such as session IDs,
valuable data, and login credentials such as user names and passwords. For organizations,
XCS has serious implications from the financial and legal points of view.

To reduce the possibility of XCS threats, the security system should encrypt all field
names and block all symbols effectively at the human input. XCS attacks are caused by self-
contained devices with advanced capabilities and obsolete libraries included in computer
code. A defensive architecture includes security headers and session attributes that are set
correctly as part of an XCS.

Well-known methodologies that were used to detect cross channel scripting and some
web-based attacks are analyzed in this section. Table 2 lists XCS and RXCS vulnerabilities
found in embedded devices such as IP phones, routers, and switches, which are commonly
used for web-based management interfaces. Table 3 describes the capability of well-known
black-box scanners with scanning web profiles to detect XCS and other dangerous web
vulnerabilities. A detailed comparison of existing techniques to detect different web
application vulnerability classes such as cross-site scripting (XSS), cross channel scripting
(XCS), reverse cross channel scripting, cross-site request forgery (CSRF), SQL injection, and
information leakage attacks is presented in Table 4.

Table 4. Report of scanners with merits and demerits.

Scanners Vendors Version Scanning Vulnerability
Detected

Merits Demerits

AppScan IBM 7.5 All Checks Stored XSS Scans open source software
with accuracy

Detects only XSS vectors

WVS Acunetix 8.0 Stored XSS File Inclusion Better integration Scanning become slow on
large websites

WebInspect HP 7.5 All checks SQL Injection Easy to use Installation is a bit tricky
HailStorm Pro Cenzic 9.0 PCI Infrastructure XCS, JavaScript Easily scans and shares reports No cloud-based platform
SECURE McAfee 4.0 Denial-of-Service XSS and XCS While the computer is booting,

it does not slow it down
Not efficient

QualysGuard PCI Qualys 5.0 PCI XCS Able to complete outer scans
with confidence

Fewer false positives

NeXpose Rapid7 8.0 All Checks SQL Injection Optimizes the testing cycles Risk
File Inclusion

QA Edition N-Stalker 5.8 PCI Infrastructure XCS and SQL attack Queries against inventory
are easy

The database can be fragile

The first column states the researchers of existing techniques and tools proposed to
detect web-based attacks. The techniques proposed by Bau et al. and Mitropoulos et al. [33]
are able to detect all web-based vulnerabilities except RXCS attacks. As we can see in
Table 5, the methods of Kirda et al. [58], Khoury et al. [61], and Akrout et al. [32] can
find only three classes of web-based attacks from vulnerable applications. Other detection
techniques proposed by Bojinov et al. [8], Shaihriar and Zulkernine [62], and Gupta and
Gupta [1] detect four types of web vulnerabilities.

Table 5. Comparison of existing techniques to detect web application vulnerabilities.

Ref. Year XSS XCS RXCS CSRF SQL Injection Info Leakage

[58] 2006 X × × X × ×
[8] 2009 X X X X × ×
[20] 2018 × X X X X ×
[28] 2021 X X × X X X
[62] 2011 X × × X X X
[61] 2011 X × × × X X
[63] 2013 X X X × × ×
[32] 2014 X × × X X ×
[1] 2015 X × × X X X
[33] 2016 X X × X X X
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Table 5. Cont.

Ref. Year XSS XCS RXCS CSRF SQL Injection Info Leakage

[15] 2017 X X × X × ×
[16] 2017 X × × X × X
[19] 2018 X X X X × X
[17] 2018 X X X X × ×
[21] 2019 X X X X X ×
[52] 2019 X X × X X ×
[28] 2020 X X × × X ×
[44] 2021 × X × × X ×

9. Research Gaps and Future Directions

In this section, various research gaps and future directions are discussed.

9.1. Research Gaps

The existing XCS defensive approaches have the following limitations:

1. Most of the existing XCS defensive approaches are unable to provide safe input handling
and encoding mechanisms at the client and server sides of the web-based application.

2. An automated process is essential to differentiate between JavaScript to the malicious
script [49].

3. There is no proper defensive solution capable of detecting and preventing all XCS
attacks, such as reflected, stored, and encoding attacks.

4. A secure XSS defensive algorithm needs to possess the list of malicious scripts and
domains to decrease the rate of false positives and negatives.

5. In existing approaches, effective policy checks are not implemented to increase XCS
detection speed and mitigation process [64].

9.2. Future Directions

Web applications have emerged rapidly with modern technologies and computa-
tional algorithms. There are numerous server-side cross channel scripting detection and
mitigation strategies, but their defense mechanisms have not been fully practical due to
their processing overhead. Additionally, several XCS defensive techniques at the client
side degrade the performance of the systems, resulting in a deficient web surfing expe-
rience. Therefore, it is still an open area of research. Following are some key future
research directions:

1. To detect and prevent the danger of future XCS attacks, a new security architecture
should be built that encrypts all input data fields with known vulnerabilities at the
client side. This method can also be used to detect malicious scripts on the server side.

2. Adaptive analyzers can be designed to evaluate the runtime flow analysis to classify
XCS attacks more efficiently.

3. Generalized XCS defensive techniques can be developed at the client side to maintain
the performance of systems. This can improve the web surfing experience without
introducing additional overheads.

4. Input validation on the client and server sides has a limited influence on more com-
plicated data flow sources. Some difficult-to-find vulnerabilities, on the other hand,
have several execution branches and file associations. As a result, the threat analysis
of various execution codes is an important research direction.

5. There should be an attempt to apply the XCS training and fingerprinting technique to
other types of threats, such as SQL injection and modification assaults. However, a
revolutionary approach that is closely related to deep learning can be used to detect
and prevent cross channel scripting assaults, as well as more in-depth code audit, to
increase performance and accuracy.
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10. Conclusions

In this review paper, cross channel scripting threats attacks were discussed, which
are among the most serious web application vulnerabilities. It has been determined that
this is a significant problem for today’s online applications. We looked at eight different
types of consumer networking devices from a variety of vendors and found that all of them
had serious XCS flaws. Embedded devices with smart capabilities, as well as outdated
libraries in software code, are the source of XCS. Furthermore, due to the many Internet
protocols, these devices are frequently susceptible to external assaults. In addition, this
article described various state-of-art mechanisms based on cross channel scripting attacks
and identified research gaps. This research article provided a list of all strategies, techniques,
and tools used in current online applications to identify and mitigate cross channel scripting
attacks and their variants. It is concluded that the audit of each embedded device is done in
three phases. Initially, a general analysis was achieved using the open-source tool known as
NMap that has a free utility for auditing and network discovery. Furthermore, the Nessus
scanner provided an NASL language to demonstrate individual threats and potential
attacks. Various capabilities of the web-based management interfaces were evaluated using
Mozilla Firefox and its extensions such as edit cookies, Firebug, and tamper data. A custom
tool for cross-site request forgery inspection was also studied. XCS attacks were also
evaluated using command-line tools and handwritten scripts such as smbclient. Various
possible XCS attack vectors that can be injected into the vulnerable web applications and
their patterns were also studied.
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