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Abstract: The scattering and absorption of light results in the degradation of image in sandstorm
scenes, it is vulnerable to issues such as color casting, low contrast and lost details, resulting in
poor visual quality. In such circumstances, traditional image restoration methods cannot fully
restore images owing to the persistence of color casting problems and the poor estimation of scene
transmission maps and atmospheric light. To effectively correct color casting and enhance visibility
for such sand dust images, we proposed a sand dust image enhancement algorithm using the red and
blue channels, which consists of two modules: the red channel-based correction function (RCC) and
blue channel-based dust particle removal (BDPR), the RCC module is used to correct color casting
errors, and the BDPR module removes sand dust particles. After the dust image is processed by these
two modules, a clear and visible image can be produced. The experimental results were analyzed
qualitatively and quantitatively, and the results show that this method can significantly improve the
image quality under sandstorm weather and outperform the state-of-the-art restoration algorithms.

Keywords: image enhancement; RCC; sand dust images; red channel; BDPR

1. Introduction

Images or videos captured in sandstorm scenes usually have low contrast, poor visi-
bility and yellowish tones. This is because sand dust particles scatter and absorb specific
spectra of light between the imaging devices and the observed objects. Therefore, these
degraded sand dust images will greatly lose their quality and degrade the performance
of computer vision application systems that typically work outdoors during inclement
weather conditions. Such systems include video surveillance systems for public security
monitoring [1,2], intelligent transportation systems for license plate recognition [3,4], visual
recognition systems for automatic driving [5], and so on. Hence, developing an effective
sand dust image restoration method to restore color and contrast for computer vision
application systems is desirable. To improve the performance of computer vision systems
and restore the visibility of degraded images, some restoration algorithms for degraded
sand dust images have been proposed. Huang [6] presented a transformation method
that enhances the contrast of degraded images via the gamma correction technique and
probability distribution of bright pixels. AlRuwaili [7] proposed an enhancement scheme,
the degraded input image is first converted into an HIS color space, and then color cast
corrections and contrast stretching are performed. Zhi [8] restored vivid sand dust images
by using color correction, SVD and the contrast-limited adaptive histogram equalization al-
gorithm. Tri-threshold fuzzy operators are introduced to enhance contrast by Al-Ameen [9].
Yan [10] enhanced dust images by improving the sub-block partial overlapping histogram
equalization algorithm. Shi [11] enhanced images by combining contrast limited adaptive
histogram equalization (CLAHE) and gray world theory. Tensor least square method is
proposed to enhance sand dust image by Xu [12]. Cheng [13] using white balance and
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guided filtering technologies. Park [14] proposed a Coincidence histogram. Although the
above traditional algorithms have some effects on the restoration of sand dust images, the
restored images appear over-enhanced or under-enhanced, and the color is distorted.

In order to provide better visual quality of degraded sand dust images, several visibil-
ity restoration methods using the atmospheric transmission model have been presented.
Yu [15] introduced a method for restoring single sand dust image that depends on using
atmospheric transmission model and constraining information loss. The atmospheric light
is first estimated using the grey-world assumption and the scattering model, then, a fast
guide filter is used to suppress the halos in the post process. Wang [16] first considered
multiple scattering factors, then, particle swarm optimization method was used for opti-
mizing the exposure parameters and the atmospheric light in order to obtain better restored
images. Peng [17] assumed that the ambient light was known; then, images were restored
by calculating the difference between the light intensity observed in the degraded image
scene and the ambient light intensity. Huang [18] presented a novel Laplacian-based image
restoration method. The minimum filter and Gauss adaptive transform are introduced
by Yang [19]. Kim [20] proposed a method based on saturation transmission estimation.
However, the above-mentioned methods caused the processed image to appear blocky,
haloed or over-enhanced, and the methods cannot handle sand dust images that contain
heavy yellow tones.

Image dehazing algorithms have attracted great attention in recent years. One attrac-
tive solution for image dehazing is the neural network approach, for instance, Cai [21]
designed a novel Ranking-CNN for single image dehazing. Yang [22] proposed a Region
Detection Network model, which reflects the regional detection of a single hazy image.
Li [23] proposed a PDR-Net for single image dehazing. Their findings show that a neural
network can better estimate ambient light and the transmission than other approaches.
However, training a neural network needs a lot of datasets, and there is no dataset for
sand dust images, so the neural network is not suitable for sand dust images processing
at present. Another effective solution for image dehazing is the dark channel prior (DCP)
method raised by He [24]; this is a natural image-based observation that one of the RGB
channels has very low intensity for most pixels. The DCP method is very useful for haze
removal, and its calculation is simple. Many improved DCP methods have been applied
in various fields, such as image dehazing [25,26], underwater image enhancement [27,28],
and sand dust image restoration [29–33].

To effectively remove atmosphere particles from the sand dust images, Fu [29] pro-
posed a restoration method for sand dust images by using fusion strategy. The input
sand dust image was color-corrected by using the statistical scheme first. Then, gamma
correction technology with two different coefficients and DCP were applied. Finally, the
input images and the weight maps are fused to obtain enhanced image. Peng [30] proposed
a general dark channel prior method to restore sand dust, haze and underwater images. He
estimated the ambient light by adopting a depth-related color change. Then, he calculated
the difference between ambient light and scene intensity. Shi [31] proposed a DCP method
for enhancing sand dust images and reducing halos. The method included three modules:
The color casting was first corrected by using gray world theory in LAB space; then, sand
particles were removed by an improved DCP-based dehazing method; finally, a gamma
function was used to stretch contrast. Gao [32] proposed the method of reversing blue
channel. Cheng [33] combined white balance and reversing blue channel technology to
enhance sand dust images. However, the improved DCP algorithms mentioned above
create block artifacts, color distortion and yellow tones when restoring degraded images
taken under sandstorm weather.

In this paper, we proposed a method for restoring sand dust images by using red-blue
channels, which takes the advantages of the proposed red channel correction function (RCC)
module and the blue channel dust particles removal (BDPR) module. By combining them,
the color deviation problems and the underestimation of scene depth can be effectively
overcome. Compared with the other improved DCP algorithms, our algorithm is founded
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upon the imaging characteristics of the sand dust images. By adopting this scheme, the
proposed algorithm can effectively generate clear images. In a word, the contributions of
the paper are reflected in the following three aspects:

• The red channel correction function (RCC) can effectively avoid the problem of insuffi-
cient or excessive color cast adjustments in real sand dust images. It restores the lost
color channel from the other channels. Because the dust particles absorb less of the red
ray under the dusty weather conditions, causing the red ray decay to be the slowest.

• After the input image is processed by the correction function, the blue channel dust
particles removal (BDPR) module is applied to remove atmospheric particles in de-
graded images. We assume that the dust particles absorb blue rays quickly; hence, the
intensity of the blue channel is lower. The proposed method can remove sand dust
particles more effectively, eliminating the blueish tone of the restored image.

• To obtain more accurate transmission and atmospheric light, the sand dust image and
the corrected image are applied to the BDPR module simultaneously, where the sand
dust image is used in atmospheric light estimation, and the corrected image is used
for calculating transmission.

The rest of the paper is organized as follows. Section 2 reviews the dark channel
prior method. Section 3 introduces the proposed in this paper methods and algorithms
in detail. Section 4 introduces experimental results of this method and state-of-the-art
sand dust image restoration algorithms and analyzes them in detail. Finally, Section 5
summarizes the advantages and limitations of the proposed method and suggests directions
for further research.

2. Background

In this section, we will briefly review the dehazing method based on the dark chan-
nel prior [24], which has been widely improved and applied in the restoration of hazy,
underwater and sandstorm images.

In the fields of computer graphics and computer vision, imaging models are widely
used, which describes the light scattering and absorption between the camera and the
observation scene, shown in Figure 1.

Particles

Airlight

Transmission

Scattering

Image

Camera
Object

ParticlesParticles

Illumination

source

Figure 1. Formation model for degraded images.

Assuming that the light decay is homogeneous, the formation model for a hazy image
is given by [34]:

Dc(x) = Rc(x) ∗ t(x) + Ac ∗ (1− t(x)), c ∈ {r, g, b} (1)

where Dc(x) is the intensity of the c channel where the color image is observed at x pixel,
Rc(x) is the intensity of the haze-free scene, t(x) represents the medium transmission, Ac is
the ambient light, c indicates one of the RGB color channels, and the value ranges of Dc(x),
Rc(x) and Ac are set to [0, 1].
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The DCP is based on the observations of outdoor haze-free images, which show that
approximately 75% of the pixels of the non-sky area have an intensity such that one of the
RGB color channels is zero. The DCP is as follows:

Rrgb
Dark(x) = min( min

y∈Ω(x)
(RR(y)), min

y∈Ω(x)
(RG(y)), min

y∈Ω(x)
(RB(y))) ≈ 0 (2)

Implementing the minimum operators on the local patch of the RGB channels in
Equation (1) and dividing both sides of Equation (1) by Ac, the transmission t(x) can be
roughly calculated as:

t(x)=1−ω min
y∈Ω(x)

{ min
c∈{r,g,b}

Dc(y)
Ac } (3)

where ω = 0.95 to leave some haze in the restored scene brightness to make it looks natural.
Because a block artifact is generated by using local minimum filtering, it can be improved
by using the soft matting method [35] or by a guided filter method [36]. Atmospheric light
Ac is chosen from the brightest 0.1% of the pixels based on the DCP for the hazy image.

Finally, according to the formation model for hazy images expressed in Equation (1),
by solving the image formation process inversely, the restored image Rc(x) is calculated as:

Rc(x)=
Dc(x)−Ac

max(t(x), t0)
+ Ac, c ∈ {r,g,b} (4)

where t0 is an empirical parameter, which is set to 0.1 to improve the exposure of scene radiance.

3. Proposed Algorithm

The image formation model in Section 2 suggests that the estimations of the medium
transmission and atmospheric light are very important to restore degraded images. How-
ever, the inherent features of the degraded sand dust image make the traditional dehazing
algorithms, based upon the atmospheric propagation model for hazy images, unable to
process the images with color cast. To this end, we propose a sand dust removal method
and algorithms based on red and blue channels to recover the visual and color effects. The
proposed method consists of both an RCC module and a BDPR module for which novel
algorithms are proposed here. The flowchart of our method is shown in Figure 2.

Red channel correction 

function module

Blue channel sandstorm removal module

Input image

Atmospheric position 

estimation
Raw transmission

Detail recovery 

results

Color correction 

result

Enhanced 

results

Guided 

filter

Output image

Fusion

Contrast-limited adaptive 

histogram equalization

Refine 

transmission

Figure 2. Flowchart of sand-dust image restoration method based on red and blue channel.

First, the original sand dust image is corrected by the red channel correction function
module to overcome the problem of yellow or red color deviation in sand dust images.
Second, the blue channel sand dust removal module is applied to restore image details
and remove atmospheric particles, which is based on the characteristic that the blue ray is
quickly absorbed during sandstorm weather conditions. However, the image processed by
module BDPR is darker and has some blue tones. Thus, we use the contrast enhancement
method in [37,38] to increase the contrast of the color-corrected image. Finally, the clear
restored image is generated by fusing the enhanced image with the sand-dust-removed
image using wavelet fusion technology.
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3.1. RCC Module

For image color correction, gamma correction technology [6] and grayscale world
theory [7] are widely used. However, sand dust images have serious color casting because
the green and blue rays in the atmosphere are absorbed and scattered by sand dust particles.
The gamma correction and gray world hypothesis approaches cannot be applied to correct
color casting directly, which may result in color distortion and image over-enhancement.

The color casting of sand dust images is caused by the light attenuation. The red ray
decay is slowest, and the blue light is absorbed fastest under sandstorm weather, and the
RGB channel histogram of the degraded image is sequential. Two histograms of the original
sand dust images are shown in Figure 3, where images on the left are sand dust images,
and right side images are the histograms of the RGB channels.

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Figure 3. Sand dust images and histograms.

Based on the above observation, we propose a color correction function module, which
depends on the red channel to effectively adjust the image. First, the histogram of the red
channel is used as a reference in the RCC module, and the histograms of the blue and green
channels are translated as follows:

Ir(x) = Ir(x)

Ig(x) = Ig(x) + (µr−µg)

Ib(x) = Ib(x) + (µr−µb)

(5)

Then, color is stretched in RGB color space, which is described as follows:
Imax
c = µc + k ∗ σc

Imin
c = µc − k ∗ σc

Ic = 255 ∗ (Ic − Imin
c )/(Imax

c − Imin
c )

(6)

where µc, c ∈ {r, g, b} is the mean value of each channel in RGB color space, σc, c ∈ {r, g, b}
represents the mean variance of RGB channel, and k is the adjustment factor. k is set to
2 in our experiment. Images are processed by RCC module as shown in Figure 4. It is
easy to see that the method is simple and effective for correcting sand dust images, but the
corrected image is still blurry.
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(a) (b)

Figure 4. Sand dust image correction based on the red channel correction function: (a) Sand-dust
images; (b) Corrected image.

3.2. BDPR Module

The first term, Rc(x) ∗ t(x), c ∈ {r,g,b}, in Equation (1) is the direct decay component,
and Ac ∗ (1− t(x)), c ∈ (r, g, b) is atmospheric light attenuation. The direct decay compo-
nent describes the radiation and attenuation of the scene in the medium, while atmospheric
light attenuation describes the scene changes caused by light scattering. Moreover, the
Equation (1) shows that the radiant light of the scene first goes through the multiplier
attenuation, and then through the additive attenuation.

According to the Beer Lambert law, the propagation of light decreases exponentially
with increasing distance. Assuming the atmosphere is uniform, the medium transmission
map t(x) can be indicated as:

t(x) = e−βd(x) (7)

where d(x) is the scene depth, and β is the atmospheric scattering coefficient. As d(x)
approaches 0, t(x) approaches 1, so the atmospheric light attenuation cannot be affected.
In contrast, when d(x) is not 0, t(x) decreases as d(x) increases, and atmospheric light
attenuation takes a dominant role. However, Equation (1) cannot be used directly for
sand dust images; hence, we transform Equation (1) into Equation (8) to take advantage
of the inherent characteristic that the intensity of blue channel in color sand dust image is
very low: {

Dc(x) = Rc(x) ∗ t(x) + Ac ∗ (1− t(x)), c ∈ {r, g}
1−Db(x) = 1−Rb(x) ∗ t(x) + 1−Ab ∗ (1− t(x))

(8)

where Dc and Rc represent the degraded sand dust image and the original image, respec-
tively. Please note that Equation (8) is equivalent to Equation (1). Therefore, Equation (8)
reflects the fact that the light decays with distance, which actually happens in sandstorm
weather. The only difference we have to account for is that blue intensity attenuates faster as
distance increases. Hence, we modified the DCP method according to [27,32]. It states that:

RBlue(x) = min( min
y∈Ω(x)

(RR(y)), min
y∈Ω(x)

(RG(y)), min
y∈Ω(x)

(1− RB(y))) ≈ 0 (9)

for a non-degraded sand dust image, where ω(x) represents the neighborhood pixels
around the pixel x. Note that in the degraded image near the observer, the blue channel
intensity is high, so its reciprocal 1− RB(y) is low, and the prior is true. However, blue
intensity rapidly attenuates as the distance increases, so the prior starts to become false.
This fact will help to estimate the depth map of the scene and the atmospheric light.

Restoration for a single degraded sand dust image using Equation (9) is a very chal-
lenging task, because there is little image information available, and the estimation accuracy
of the medium transmission and atmospheric light is related to the recovery quality of
the image.

In previous studies, atmospheric light was chosen to be the most opaque area of haze
in the image. In this paper, the atmospheric light is estimated by Equations (8) and (9) using
the input degraded sand dust image. In addition, the brightest pixel of 0.1% is selected
as the atmospheric light estimation, as suggested in [24]. Figure 5 shows the atmospheric
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light position selected by the proposed algorithm, and the dark channel prior algorithms in
two images.

The red area in Figure 5 is the estimated position of atmospheric light. It is thus
clear that the brightest area in the sky is selected by the dark channel algorithm, while the
proposed algorithm chose the most opaque sand dust area, not the brightest sky area or
other white objects (such as the white cars in the picture) as the atmospheric light. This
shows that the proposed method is better at choosing atmospheric light.

(a)

(b)

Figure 5. Atmospheric light position selected by two algorithms: (a) Proposed algorithm; (b) Dark
channel prior algorithm

After the atmospheric light is estimated, another key step is to calculate medium
transmission. Since the degraded sand dust image has low contrast and color distortion,
it cannot be applied to estimate transmission. We use the bright and dark channels of
the corrected image, which are processed by the RCC module, and their difference to
estimate the transmission [17]. This method assumes that the density of the sand dust
image is related to the maximum and minimum of the channels and their difference, which
is defined as: 

d ∝ Ibright ∝ (Ibright − Idark)

Idark(x)= min{IRCC
r (x), IRCC

g (x), 1− IRCC
b (x)}

Ibright(x)= max{IRCC
r (x), IRCC

g (x), 1− IRCC
b (x)}

(10)

where IRCC
r (x),IRCC

g (x) and IRCC
b (x) represent the RGB channels of the corrected image by

the RCC module. Then, sand dust density is expressed as:

d(x)=min
Ω(x)

(
Idark(x)∗

(
1−

Ibright(x)−Idark(x)
max(1, Ibright(x))

))
(11)

Assuming medium transmission is locally homogeneous and is inversely proportional
to d(x), medium transmission t(x) is estimated as:

t(x) = 1−ωG(d(x)) (12)

where G(y) is the function of image guided filtering [36], and ω is a parameter for retaining
the naturalness of the restored image, which is set to be 0.95 in the paper.

Finally, after the atmospheric light Ac and transmission t(x) are calculated, the sand
dust-free particle image is obtained by Equation (4).
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4. Experimental Results

In this section, we will make qualitative and quantitative assessments on the proposed
method in the paper. We compare the proposed method with 10 other state-of-the-art image
restoration algorithms, including Tri-threshold fuzzy Operators (TFO) [9], normalized
gamma transformation (NGT) [11], blue channel compensation and guided Image filtering
(BCGF) [13], airlight white correction (AWC) [17], visibility restoration of single image
(VRSI) [19], saturation-based transmission map estimation (SBT) [20], fusion-based enhanc-
ing approach (FBE) [29], generalization of the dark channel Prior (GDCP) [30], halo-reduced
dark channel Prior (HDCP) [31] and as reversing the blue channel prior (RBCP) [32], whose
source codes are provided by the authors. The experimental results include three parts.
The first part will qualitatively discuss the restoration results of the captured images in
sandstorm weather conditions. In the second part, the three evaluation methods in [39],
the natural image quality evaluator (NIQE) [40], the distortion identification-based image
verity and integrity evaluation (DIIVINE) index [41] and natural scene statistics and Per-
ceptual characteristics-based quality index (NPQI) [42] are used to quantitatively analyze
the restoration results of the presented algorithm and the 10 state-of-the-art algorithms.
The third part will analyze the execution time of algorithms. All algorithms use MATLAB
code except SBTME and are run on a computer with 2.7GHZ CPU, Intel Core i5 and with
32G RAM.

4.1. Qualitative Assessment

Figures 6 and 7 show the restoration results of the presented method and the known
benchmark methods on weak sand dust images and various sandstorm images. As shown
in Figure 6, TFO [9], BCGF [13], AWC [17] and GDCP [30] do not eliminate color shift.
NGT [11] and VRSI [19] cannot effectively remove sand dust. FBE [29] failed to process
sand-dust images. FBE [29] can eliminate the undesirable color cast effects, but the restored
image is dark, and the details are lost. HDCP [31] enhances the contrast of the image, but
the contrast is over-enhanced and the restoration results are severely distorted. The image
obtained by RBCP [32] is dark and blue.

(a) (b) (c) (d) (e) (f)

Figure 6. Cont.
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(g) (h) (i) (j) (k) (l)

Figure 6. Qualitative comparison results of sand dust images with weak color cast. (a) Sanddust
Images; (b) TFO [9]; (c) NGT [11]; (d) BCGF [13]; (e) AWC [17]; (f) VRSI [19]; (g) SBT [20]; (h) FBE [29];
(i) GDCP [30]; (j) HDCP [31]; (k) RBCP [32]; (l) Proposed.

(a) (b) (c) (d) (e) (f)

Figure 7. Cont.
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(g) (h) (i) (j) (k) (l)

Figure 7. Qualitative comparison results of various sand storm images: (a) Sanddust Images;
(b) TFO [9]; (c) NGT [11]; (d) BCGF [13]; (e) AWC [17]; (f) VRSI [19]; (g) SBT [20]; (h) FBE [29];
(i) GDCP [30]; (j) HDCP [31]; (k) RBCP [32]; (l) Proposed.

For the sandstorm images shown in Figure 7, TFO [9], SBT [20], GDCP [30] and
RBCP [32] obtain poor image enhancement effect. NGT [11] does not remove sand-dust
particles in the image. BCGF [13], AWC [17] and HDCP [31] can not remove the color veils
of sandstorm images. VRSI [19] overenhanced sand-dust images.The restored image by
FBE [29] is dark and sand dust do not effectively removal.

Compared with the above 10 state-of-the-art methods, our method removes the color
cast using the RCC module, and it removes sand dust particles using the BDPR module. our
restored results are more natural in color, clearer in detail and more similar to real images.

4.2. Quantitative Assessment

In general, the objective evaluation mechanism is used to quantify the accuracy of
restoration results. Because there is no clear sand dust-free reference image, it is very
difficult to analyze the restored sand dust image quantitatively. Therefore, to better quanti-
tatively evaluate the performance of this method in the processing of sand dust images,
the paper uses a non-reference method and introduces the following three well-known
metrics proposed in [39]: visible edges recovery percentage e, the saturation σ and the
contrast restoration percentage r̄. In addition, the natural image quality evaluator (NIQE) as
suggested in [40], the distortion identification-based image verity and integrity evaluation
(DIIVINE) index in [41] and natural scene statistics and Perceptual characteristics-based
quality index (NPQI) in [42] are adopted. In the above metrics, if e and σ are approximately
zero, that suggests a better performance, and a greater r̄ implies that the contrast of restored
image is stronger. The smaller the NIQE is, the better the quality of the restored image is.
The lower the DIIVINE is, the better the distorted image quality is. The smaller the NPQI
is, the better the quality of the restored image is.

The above well-known metrics are used to quantitatively evaluate the restoration
performance of 12 sand dust images from Figures 6 and 7 using the proposed algorithm
and the ten state-of-the-art algorithms compared in this paper. The result was shown in
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Table 1. Compared with the other 10 state-of-the-art algorithms, the sand dust images are
restored by the proposed method achieved a greater e and σ is closer to 0, and the obtained
r̄ is among the top ranked. Meanwhile, the proposed method can obtain better scores on
DIIVINE and NPQI metrics. The experimental results in Table 1 show that the proposed
in the paper method can achieve better performance in the restoration of the sand dust
images, and the restored sand dust images have better performance in contrast, tones and
saturation. Figures 6l and 7l also demonstrates that the image restored by the proposed
algorithm has obtained good effects.

Table 1. Average results of non-reference evaluation of 12 sand dust images.

Method e σ r̄ NIQE DIIVINE NPQI

TFO [9] 0.4268 0.0693 1.5123 3.5329 32.6236 10.3987
NGT [11] 0.4268 0.0693 1.5123 3.3223 26.7959 9.5502
BCGF [13] 0.8281 0.3943 2.8015 3.3952 29.9300 9.3376
AWC [17] 0.8281 0.3943 2.8015 3.3859 27.5216 9.8819
VRSI [19] 0.4074 0.0002 2.0769 3.445 31.4305 9.8026
SBT [20] 0.7134 0.0011 1.6713 3.4191 27.1865 11.7016
FBE [29] 0.9944 0.3065 2.1572 3.3427 28.7320 9.6831

GDCP [30] 0.7125 0.0132 1.5251 3.4118 30.1233 10.9681
HDCP [31] 0.7485 0.0054 4.4502 3.6401 27.6498 10.2809
RBCP [32] 0.9136 0.0023 1.4073 3.6153 31.9274 12.3408
Proposed 0.7808 0.0231 2.1968 3.311 27.6903 9.5006

In order to further verify the performance and robustness of the proposed method,
we used 375 sand dust images collected from the Internet. The average scores of the six
metrics on the images restored using the proposed method and compared methods are
listed in Table 2. It can be seen from the Table 2 that the e obtained by BCGF [13] and
FBE [29] is greater than that of the proposed algorithm in this paper, but other results are
lower than that of the algorithm in this paper. Although the resulting σ and r̄ of HDCP [31]
is better than that obtained by the method in this paper, the actual restoration effect of
HDCP [31] is obviously worse than that of the proposed algorithm. Moreover, compared
with other methods, the proposed algorithm can obtain better NIQE results. As can be
concluded from Table 2, it is not surprising that the method in this paper achieves the top
rank DIIVINE scores and the best NPQI scores for 375 sand dust images, which is mainly
due to the corrective ability inherited from RCC and BDPR modules. Through processing
the results of a large number of sand dust image data sets, it indicates that the proposed
method in this paper can obtain better performance in the restoration of sand dust images.

Table 2. Average results of non-reference evaluation of 375 sand dust images.

Method e σ r̄ NIQE DIIVINE NPQI

TFO [9] 1.7826 0.0611 1.7884 3.8503 35.0397 11.3340
NGT [11] 0.8204 0.00001 1.9330 3.7331 26.5634 11.1022
BCGF [13] 2.9887 0.6527 3.1582 3.7324 26.5031 10.8567
AWC [17] 1.9980 0.1666 1.5084 3.9112 27.5216 12.6198
VRSI [19] 1.3441 0.1070 1.7008 3.8898 33.4292 11.7494
SBT [20] 2.1681 0.0038 1.8638 3.7687 29.7283 11.9398
FBE [29] 2.6453 0.221 2.3218 3.7060 26.5445 10.7949

GDCP [30] 1.7376 0.1066 1.7405 3.8393 29.3818 12.1313
HDCP [31] 2.2070 0.0566 4.6496 4.0680 24.8841 11.6375
RBCP [32] 1.3951 0.1299 1.6007 3.9928 34.2842 12.3572
Proposed 2.4519 0.0780 2.3671 3.7154 25.3551 10.7368
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4.3. Running Time

Table 3 lists average run-time of different methods implementing 20 execution rounds
on the real-world sand dust image of different sizes. The experiment is implemented
under the Windows 10 environment of Intel i5 CPU and 32G RAM. Except for the code
of SBT [20], the other codes are written in MATLAB, and all codes are provided by the
author. To ensure the fairness of the comparison, SBT [20] is not included in the comparison
due to its code being written in Python. As shown in Table 3, the proposed method
has a higher time cost, so the application of this method to real-time systems needs to
be improved. The use of guided filtering and local filtering in this method leads to the
high time cost. Inspired by Kim [20], using a pixel-by-pixel compensation approach to
estimate the transmission can significantly reduce the time cost and satisfy the application
of real-time video image processing.

Table 3. The running times of various methods (unit: second).

Method 500 × 300 640 × 480 1200 × 800 2000 × 1500 3648 × 1824

TFO [9] 0.0416 0.0977 0.4166 2.6107 9.1139
NGT [11] 0.6134 0.7759 1.3610 3.4490 7.1490
BCGF [13] 0.3669 0.5213 1.3794 4.1963 9.5850
AWC [17] 0.3729 0.5819 2.5781 34.183 61.833
VRSI [19] 0.6609 1.4398 4.6200 13.978 31.675
FBE [29] 1.1384 1.6348 3.6335 10.166 21.727

GDCP [30] 2.4017 4.3347 13.602 36.702 89.085
HDCP [31] 4.5432 7.8935 24.229 72.765 165.34
RBCP [32] 0.7722 1.5918 6.8674 35.4307 151.25
Proposed 1.0625 1.6491 4.8029 13.307 32.021

5. Conclusions

In this paper, a single sand dust image restoration algorithm is proposed, and it can
effectively recover the sand dust images. First, according to the characteristics of the slowest
attenuation of red light in the degraded image, color correction is performed using a red
channel-based correction algorithm. Then, an improved DCP algorithm is improved based
on the blue channel to remove sand dust particles by using the characteristic that blue light
decays fastest. Through the quantitative and qualitative analysis of the restoration results
of a large number of degraded sand dust images with different scenes and color casting, the
proposed algorithm displays satisfactory performance in processing most of the sand dust
images and can obtain reasonable restoration results. However, the proposed algorithm
has the disadvantage of high time costs. In the future, we will further study more effective
sand dust restoration algorithms to meet the needs of real-time vision application systems.
Another further goal will be to develop methods for sand dust video restoration using
spatio-temporal data modeling [43].
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Abbreviations
The following abbreviations are used in this manuscript:

RCC The red-channel-based correction function
BDPR Blue-channel-based dust particle removal
SVD Singular Value Decomposition
CLAHE Combining contrast limited adaptive histogram equalization
DCP Dark channel prior
TFO Tri-threshold fuzzy Operators
NGT Normalized gamma transformation
BCGF Blue channel compensation and guided Image filtering
AWC Airlight white correction
VRSI Visibility restoration of single image
SBT Saturation-based transmission map estimation
FBE Fusion-based enhancing approach
GDCP Generalization of the dark channel Prior
HDCP Halo-reduced dark channel Prior
RBCP Reversing the blue channel prior
NIQE Natural image quality evaluator
DIIVINE The distortion identification-based image verity and integrity evaluation index
NPQI Natural scene statistics and Perceptual characteristics-based quality index
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