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Abstract: Various types of motion blur are frequently observed in the images captured by sensors
based on thermal and photon detectors. The difference in mechanisms between thermal and photon
detectors directly results in different patterns of motion blur. Motivated by this observation, we
propose a novel method to synthesize blurry images from sharp images by analyzing the mechanisms
of the thermal detector. Further, we propose a novel blur kernel rendering method, which combines
our proposed motion blur model with the inertial sensor in the thermal image domain. The accuracy
of the blur kernel rendering method is evaluated by the task of thermal image deblurring. We
construct a synthetic blurry image dataset based on acquired thermal images using an infrared
camera for evaluation. This dataset is the first blurry thermal image dataset with ground-truth images
in the thermal image domain. Qualitative and quantitative experiments are extensively carried out
on our dataset, which show that our proposed method outperforms state-of-the-art methods.

Keywords: motion blur model; synthetic blurry thermal image; thermal detector; thermal image
deblurring; blur kernel rendering; inertial sensor; gyroscope sensor

1. Introduction

Infrared images are increasingly being used in various fields, e.g., commercial, med-
ical, and military applications. Infrared cameras have been mainly used in industrial
applications, such as thermal insulation performance measurement and electrical leakage
testing [1]. Recently, new applications of infrared imaging are emerging. For instance,
drones equipped with infrared cameras have been used to search for missing survivors at
nighttime [2,3], and the infrared camera is becoming an essential sensor for autonomous
vehicle driving at night to prevent accidents [4]. Furthermore, due to the outbreak of
COVID-19, many applications measuring the body temperature of visitors at a building
entrance have been widely used.

The infrared image sensor is a device that displays the thermal information of subjects
as an image. The wavelength of the infrared band is longer than the visible band, being
invisible to human eyes. The infrared band can be categorized into three types according
to its wavelength: Short Wavelength Infrared (SWIR) with the wavelength ranging from
1.4 µm to 3 µm, Mid Wavelength Infrared (MWIR) with the wavelength ranging from
3 µm to 8 µm, and Long Wavelength Infrared (LWIR) with the wavelength ranging from
8 µm to 15 µm [5]. Due to the cost issue, most commercial applications use LWIR image
sensors. More specifically, since SWIR and MWIR image sensors are fabricated based on
compound semiconductors, they are more expensive than silicon-based visible and LWIR
image sensors. Further, MWIR image sensors require a cryogenic system to maintain the
sensor temperature at precisely 77K, which significantly increases the price, volume, and
weight. Therefore, the MWIR image sensors have limitations in being used for commercial
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purposes. The cost of LWIR image sensors, on the other hand, is relatively low because they
are fabricated based on the MEMS (Micro Electro Mechanical Systems) technology. Further,
the LWIR image sensors can be manufactured in a very small since they do not need any
cryogenic cooling system. The principle of the LWIR image sensors are different from the
ones of CCD and CMOS image sensors which usually are for visible band images. The
CCD and CMOS image sensors, so-called photon detectors, have semiconductor materials
and structures that directly convert photons into electrons. In contrast, the LWIR sensors
have the structure of a microbolometer [6]. This structure absorbs photons and changes
them into heat. The LWIR sensors generate an image signal by detecting the temperature
change induced by photons. The sensors having the mechanism of a microbolometer are
called thermal detectors.

Traditional image processing tasks such as denoising [7–10], contrast enhancement [11],
deblocking [12,13], inpainting [14,15], deblurring [16–19], and compressive sensing
recovery [20,21] have been intensively studied in the visible image area since it is easy
to acquire sufficient test data. However, due to domain dependency, image processing
algorithms that properly work on a visible image are not guaranteed to work well on a ther-
mal image. In general, the algorithms developed for the visible images tend to suffer from
performance degradation in the thermal image domain. Therefore, it is essential to develop
algorithms that directly consider the characteristics of the image domain. For example,
in the studies on image quality metric, many efforts have been made to find appropriate
metrics for thermal images [22–24]. Further, in the studies on image enhancement, many
research proposals have been made to develop methods specialized for thermal images
to solve problems such as low signal-to-noise ratio (SNR), halo effect, blurring, and low
dynamic range compared to visible images [25–27].

The domain dependency can also be observed in the image deblurring area, where the
two types of sensors produce apparently different motion blur patterns. The shape of a
motion blur is very strongly related to the principle of image sensors, as shown in Figure 1.
Photon detectors such as CCD and CMOS require time to physically collect photons, which
is called exposure time (or integration time). If the camera or subject moves during the
exposure time, motion blur occurs in the resulting image. In addition, the motion blur is
easily observed at nighttime when the camera needs a longer exposure time. In contrast,
the main cause of the motion blur in thermal detectors is the heat flow in a microbolometer
structure. The microbolometer structure is designed and manufactured to provide good
thermal isolation. Due to the thermal isolation of the microbolometer, time is needed for
the heat to be transferred from one structure to another. The thermal detector generates
images by measuring the temperature change of a microbolometer structure. Therefore, the
remaining heat in the previous frame can appear as the motion blur in the next frame. As
such, the photon detector and the thermal detector have different mechanisms for motion
blur and produce different blur patterns in an image. As shown in Figure 2, the motion blur
of the photon detector exhibits a linear blur pattern, whereas the thermal detector shows a
blur pattern similar to a comet-tail shape.

Several algorithms have been proposed to address this issue for thermal image de-
blurring. Oswald-Tranta [28] and Nihei et al. [29] observed that the motion blur in the
LWIR image is different from that of the visible image and then proposed methods for
image restoration. However, their image restoration experiments were conducted in limited
conditions. The target’s velocity was maintained with a constant at a fixed distance from
the sensor, or the camera moved at a constant speed with its fixed direction. Consequently,
their deblurring methods suffer from performance degradation when the size or orientation
of the motion blur changes. Ramanagopal et al. [30] assumed the temporal sparsity of
pixel-wise signals and performed motion deblurring on a thermal video using the LASSO
(Least Absolute Shrinkage and Selection Operator) algorithm. However, it does not operate
in real-time, and the deblurring fails when the temporal sparsity assumption is broken (e.g.,
fast camera motion). Zhao et al. [31] used the deep learning-based approach, a new GAN
(Generative Adversarial Networks) structure for thermal image deblurring. However, the
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training dataset was synthesized simply by averaging video frames without considering
the characteristics of a motion blur in thermal images. Therefore, their method cannot be
applied to thermal images with large motion blur. Batchuluun et al. [32] improved the
deblurring performance by converting the one-channel thermal image into a three-channel
thermal image. However, their method also did not consider how the motion blur occurs
in thermal images when constructing the training dataset.

(a) (b)

Figure 1. The mechanism of two different sensors and cause of motion blur. (a) the cause of motion
blur in the photon detector is integration time, (b) the cause of motion blur in the thermal detector is
the response time of temperature change.
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Figure 2. Two kinds of cameras simultaneously take an image of the aircraft’s twin-jet engine flames.
Both images have motion blur, but they have different motion blur patterns. (a) LWIR camera using
thermal detector, (b) MWIR camera using photon detector.

In fact, a number of deblurring methods have been studied based on visible images.
Deep-learning-based methods have recently shown state-of-the-art performance in the
image deblurring task, outperforming classic handcrafted methods. LSTM and CNNs are
combined in SRN-DeblurNet [33] to deblur an image in a multi-scale manner. Pan et al. [34]
proposed a method, in which neighboring video frames are warped into the center frame
to use latent image information from adjacent frames for deblurring. Kupyn et al. [35] pro-
posed a GAN-based structure, in which the feature pyramid networks balance performance
and efficiency. Ye et al. [36] proposed a scale-iterative upscaling network with sharing
weights to recover sharp images, and they used the super-resolution architecture for better
performance. Zha et al. [18] proposed an effective algorithm for image deblurring by
combining an optimization-based model with a deep neural network model. Although the
deep learning-based method shows remarkable performance, the deblurring performance
can still be significantly improved by incorporating the thermal image characteristics as
well as by addressing the issue of the lack of datasets. Except for deep learning-based ap-
proaches, the most common and widely used approach for image deblurring is to estimate
the blur kernel and sharp image simply using the observed blurry image [16,17,19]. In these
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conventional methods, the latent image and blur kernels are obtained by minimizing the
energy function with its constraints of statistics information. However, as a typical ill-posed
problem, the conventional methods need large computational resources and often fail to
deblur when the blur kernel size is large. So as to avoid these problems, the approach using
an inertial sensor has been proposed especially for the blurry images caused by camera
motions [37–47]. This approach has been evaluated as a method with great advantages over
the existing blind deblurring method, in that the computational resources can be reduced
by directly rendering the blur kernel with the inertial sensor information. However, all
previous studies have proposed blur kernel rendering methods based on a photon detector
model, which is generally used for visible images.

This paper proposes a novel motion blur kernel rendering method inspired by the
sensing mechanism of a thermal image sensor and the supplementary information from
a gyroscope sensor. Rendering the blur kernel by using gyroscope information is both
efficient and accurate. It also enables the deblurring task through an efficient deconvolution.
In our study, we interpret the microbolometer structure model in the aspect of motion blur,
construct the motion blur model of the thermal image, and propose the method to efficiently
and accurately render a blur kernel connoting the properties of the physical mechanism.

The main contributions of our study are summarized as follows:

• We propose a novel synthesis method for the blurring effect in the thermal image by
interpreting the operating properties of a microbolometer.

• We propose the blur kernel rendering method for a thermal image by combining the
gyroscope sensor information with the motion blur model.

• We acquire and publically release both actual thermal images and synthetic blurry
thermal images for the construction of a dataset for thermal image deblurring.

• Our method quantitatively and qualitatively outperforms the latest state-of-the-art
deblurring methods.

2. Image Generation and Motion Blur Model

There is a fundamental difference between a photon detector and a thermal detector
in the principle of image generation. This section describes the mechanism of how the two
detectors generate an image. Based on the analysis of detector mechanism, we propose an
approach to synthesize the motion blur in a thermal image.

2.1. Photon Detector Model

A photon detector is based on a photodiode structure. When photons are incident on
the p–n junction in the photodiode, electron-hole pairs are generated, and the electrical
current flows along with the direction of the photodiode bias. The generated electrons are
accumulated in a capacitor during the integration time. The integration time means the
exposure time of a camera. The read-out integrated circuit (ROIC) outputs an image signal
by measuring the charge stored in the capacitor.

I(i, j) =
∫ Tint

0
Φi,j(t)dt. (1)

As can be seen in Equation (1), an image is corresponds to the sum of the incident
photon energy during the integration time. The incident photon power is Φi,j(t), the image
signal is I(i, j), and the integration time is Tint, where (i, j) is the index of pixels in an image.
Previous studies have used Equation (2) to generate a motion blur image from sharp images
in the visible image domain [48–51].

B[n] =
1
n

n

∑
k=1

S[k]. (2)

S[k] denote the kth sharp image, which is equal to the incident photon power. n is the
number of sampled sharp images during the exposure time.
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2.2. Thermal Detector Model

The microbolometer sensor is the most frequently used device structure in a thermal
detector. Since the fabrication cost of the microbolometer is relatively cheap than other
structures, this structure is predominantly used for the mass-production of the uncooled
infrared detector [6]. The operating mechanism of a microbolometer consists of four steps:
(i) the incident photon energy is converted into thermal energy, (ii) the heat changes the
device resistance, (iii) ROIC measures the amount of change in resistance, (iv) ROIC outputs
an image signal proportional to the measuring value. The thermal isolation structure is
essential for this four-stage operation to be conducted normally. The microbolometer
supports a large sheet area with extremely thin legs for thermal isolation. The large sheet
absorbs incident photons, and the generated heat is isolated by thin legs. The conceptual
diagram of a microbolometer structure and substantive implementation are shown in
Figure 3. The following Equation (3) expresses the heat flow of a microbolometer [52].

(a) (b)
Figure 3. (a) Microbolometer structure and Schematic model, (b) Microbolometer scanning electron
microscope (SEM) image [53].

Cth ·
d∆T

dt
+

d∆T
Rth

= ηΦ(t). (3)

Cth, Rth, Φ(t), ∆T and η denote thermal capacitance (W ·K), thermal resistance(K·W−1),
photon power (W), device temperature (K) and photon absorption rate, respectively. CthRth
is the thermal time constant value and is expressed as τ. Therefore, Equation (3) becomes
Equation (4), and the solution of first-order differential equation is given as Equation (5).

τ · d∆T
dt

+ ∆T = RthηΦ(t), (4)

∆T(t) =
Rthη

τ
Φ(t) ∗ e

−t
τ . (5)

Let B(t) be a final output image. The temperature difference is converted into an
image signal through the element resistance change. As a more specific expression, the
temperature difference of the microbolometer and the signal level of an output image
are proportional to each other [6]. Therefore, considering the scale factor, Equation (5) is
expressed as Equation (6).

B(t) = KΦ(t) ∗ e
−t
τ , where K =

Rthη

τ .
(6)

It is important to note that the image generation models of a thermal detector and a
photon detector are different as shown in Equations (6) and (1). In the case of the photon
detector, the output signal is formed by accumulating incident photon energy. On the other
hand, the output of the thermal detector is the convolutional result of incident photon
energy and an exponential decay function. Therefore, the output images of the thermal
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detector lose the signal value over time. The theoretical mechanism difference between
the two detectors is observed by our experiments. Even though the photon detector and
thermal detector acquire a moving subject simultaneously, the blur effects appear differently,
as shown in Figure 2. The response time of the thermal detector is related to τ. A high τ
value means that the device has a high response time, showing a large amount of motion
blur in an image. In contrast, a low τ value indicates less amount of blur effect in an image
due to the faster response of the device.

2.3. Generating the Synthetic Blurry Image in a Thermal Image

In order to actually use the thermal detector model, it is necessary to convert the
continuous model into a discrete model. Therefore, for the discrete model, we propose a
new assumption based on Equation (4). A sampling process is used to replace continuous-
time with discrete-time. Through the sampling process, t is converted to tk. By applying
Backward Euler method [54], Equations (7)–(9) can be obtained based on Equation (4) using
d∆T(tk)

dtk
≈ ∆T(tk)−∆T(tk−1)

h .

τ · ∆T(tk)− ∆T(tk−1)

h
+ ∆T(tk) = RthηΦ(tk), (7)

∆T(tk) =
τ

τ + h
∆T(tk−1) +

h
τ + h

Φ
′
(tk),

where Φ
′
(tk) = RthηΦ(tk),

(8)

∆T(tk) = (1− α)∆T(tk−1) + αΦ
′
(tk),

where α =
h

τ + h .

(9)

∆T(tk) is proportional to B(tk), and Φ
′
(tk) is a sharp image, which can be rewritten

by using S(tk). Furthermore, the formula for a single device can be expanded to an image
array, and the formula should be as the following Equation (10).

Bi,j(tk) = (1− α)Bi,j(tk−1) + αSi,j(tk). (10)

The kth blurry image is expressed as the weighted sum of the blurry image at tk−1 and
the sharp image at tk. Equation (10) has the form of the Infinite Impulse Response (IIR)
filter, and when the recursive term is eliminated, it becomes Equation (11).

Bi,j(tk) = α
k

∑
n=1

(1− α)k−nSi,j(tn). (11)

The blurry thermal image Bi,j(tk) is expressed as the exponential average of sharp
images Si,j(tn). In a photon detector, sharp images are averaged over a certain exposure
time to synthesize a blurry image, as shown in Equation (2). On the other hand, it can be
observed that an exponential average is used for a thermal image.

One thing that remains is how many sharp images are needed to synthesize the exact
motion blur effect in the thermal detector. To address this problem, we need to look at
the assumption taken in Equation (7). In the Backward Euler method, it is assumed that
h = tk − tk−1 ≈ 0, while h is the interval time between tk and tk−1. If the assumption
tk ≈ tk−1 is satisfied, then Φ(tk) ≈ Φ(tk−1) also must be satisfied. Therefore, to satisfy
Φ(tk) ≈ Φ(tk−1), the translation using a sharp image must be less than one pixel during h.
In other words, if the subject image focused on the sensor plane moves within one pixel
during h, the subject does not change in the image. The assumption can be satisfied if
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the shift between adjacent images is within one pixel. For example, if the camera rotation
directly causes an image motion blur, the following Equation (12) must be satisfied.

h = tk − tk−1 ≤
IFOV

ω .
(12)

Instantaneous Field of View (IFOV) [55] is the field of view corresponding to a single
pixel. ω is the angular velocity, which can be obtained when the camera rotates in the pitch
or yaw direction. IFOV/ω is the time for an image to be shifted by one pixel. For example,
if IFOV is 0.1◦ and the angular velocity of a camera is 100◦/s, time interval h required for
synthesis is 1 ms (where h is 1 ms, having the sharp image frame rate as 1000 Hz).

2.4. Verification of Thermal Detector Blur Model

This section describes the verification of our thermal detector blur model through
experiments. Two test patterns are acquired using FLIR A655sc thermal camera and a
collimator. Firstly, A655sc thermal camera was installed on the pan/tilt mount and rotated
to collect real blurry images. Sharp images are obtained when the camera is stopped.
The blurry images are synthesized by applying our thermal detector blur model to the
sequential frames of sharp images. The model verification is achieved by quantitatively
comparing real blurry images with synthetic blurry images.

2.4.1. Acquiring a Real Blurry Image

Real blurry images are acquired by rotating the camera at a certain angular velocity.
The infrared camera is installed on a pan/tilt framework to precisely control the rotation
speed. The image sensor plane is aligned with the rotation center. The camera rotation
speed is 40◦/s. Point source and 4-bar patterns are used as simple targets. The test patterns
in a sharp image and a real blurry image are shown in Figure 4c,d, respectively.

(a) (b)

(c) (d)

Figure 4. Examples of motionless and moving pattern images. (a) 4-bar pattern, (b) Point source,
(c) 4-bar pattern at 40◦/s, (d) Point source at 40◦/s.
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2.4.2. Obtaining a Synthetic Blurry Image from Sharp Images

The set of sharp images with a high frame rate is required to generate synthetic blurry
images via Equation (10). According to the previous section, a set of sharp images must be
shifted by less than one pixel from adjacent frames. As shown in Figure 4a,b, we acquire
a sharp image while the camera is stopped, and the set of sharp images is generated by
shifting the image. The set of sharp images is used as Si,j(tk) in Equation (10). If the sharp
images are shifted by more than one pixel, the synthetic blurry image suffers from the
stepping effect, as shown in Figure 5. The stepping effect makes synthetic blurry images
have low similarity with real blurry images and makes them difficult to use either for
training or for evaluation. In this experiment, the maximum rotation speed of a camera
is 40◦/s, and IFOV of FLIR A655sc is 0.0391◦. Hence, the time interval h is 0.978 ms for
synthesizing a blurry image without any stepping effect.

(a) (b) (c) (d)

Figure 5. Examples of stepping effects. (a) Shifting one pixel between adjacent frames, (b) Shifting
two pixels between adjacent frames, (c) Shifting four pixels between adjacent frames, (d) Shifting
eight pixels between adjacent frames.

2.4.3. Comparing Real and Synthetic Blurry Images

Figure 6 shows the real and synthetic blurry images when the camera rotation speed is
40◦/s. In both test patterns, the comet tail shape appears in the opposite direction of a target
movement. Even though the camera is rotating at a constant speed, the asymmetric blur
phenomenon occurs. There is no difference in the position and value of the peak point of a
signal value between real and synthetic blurry images. Therefore, the two signal profiles
show high similarity, which means that our model has the sufficient ability to synthesize a
blur effect.

Real Synthetic
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Figure 6. The comparison of real blurry images and synthetic blur images. (a) 4-bar pattern,
(b) Point source.
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3. Blur Kernel Rendering Using a Gyroscope Sensor for a Thermal Detector

The gyroscope sensor provides reliable information for rendering the blur kernel in
the blurry images caused by camera motions. The blur kernel rendering methods with the
assistance of an external sensor have been studied in many papers [37–47]. However, all
approaches have been conducted in the visible image domain based on a photon detector.
We propose the first blur kernel rendering method using an inertial sensor in the thermal
image domain, leveraging the physical model of a thermal detector.

3.1. Blur Kernel Rendering and Gyroscope Data Selection

When a camera has motion, the relationship between the real-world scene and the
image on a camera sensor plane is expressed as a homography transform [56]. In this case,
the camera motion is expressed by translation and rotation. The intrinsic matrix of a camera
is expressed in Equation (13), where f is the focal length, (px0 ,py0) is the principal point,
and s is the skew parameter.  f s px0

0 f py0

0 0 1

 (13)

We assumed the principle point and skew parameter to be 0. If the distance between
a camera and a target is d, the rotation matrix is R(θ), the translation vector is t, and
the normal vector of a scene is n. Then, the warping matrix and the rotation matrix are
expressed by Equations (14) and (15), respectively.

H(t, θ) = K
(

R(θ)− tnᵀ

d

)
K−1, (14)

R(θ) =

cos θx −sin θx 0
sin θx cos θx 0

0 0 1

 ·
 cos θy 0 sin θy

0 1 0
−sin θy 0 cos θy

 ·
1 0 0

0 cos θz −sin θz
0 sin θz cos θz


.

(15)

If the distance between a subject and a camera is longer than the focal length, the camera
rotation is the dominant factor in the warping matrix rather than camera translation [57–59].
Therefore, according to the above assumption, Equation (14) can be approximated as
Equation (16).

H(θ) = KR(θ)K−1. (16)

It is reported in several studies that the path of a light point source, which is called
a light streak in blurry images, corresponds to the shape of a blur kernel [60]. Generally,
the blur kernel is expressed as the cumulative sum of unit impulse functions during the
exposure time T in a camera using the photon detector. Therefore, the relationship between
a camera motion and a blur kernel is as the following Equation (17). δ[x, y] is the unit
impulse function, fg is the gyroscope frame rate, and Np is the total number of gyroscope
data during the exposure time.

kp[x, y] =
1

Np

Np

∑
i=1

δ[x− xi, y− yi],

where (xi, yi, 1) = KR(θ(ti))K−1(x0, y0, 1), Np = T fg.

(17)

The warping matrix of a thermal detector is identical to that of a photon detector case,
but their image generation models are different. The blur kernel rendering method in the
thermal image domain is expressed in Equation (18) by combining Equations (11) and (16).
Since the exponential decay term causes the signal attenuation effect in Equation (18), the
result of blur kernel rendering resembles a comet tail shape. Figure 7 shows the camera
axis and the blur kernel rendering results. Since the position of a point source transformed
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through the warping matrix is not expressed as an integer, the bi-linear interpolation is
conducted. (1− (1− α)Nt ) is the normalization term to make the summation of the blur
kernel be one. fg and Nt are the gyroscope frame rate and the total number of gyroscope
data during mτ in Equation (17), respectively.

kt[x, y] =
α

(1− (1− α)Nt)

Nt

∑
i=1

(1− α)Nt−iδ[x− xi, y− yi],

where Nt = mτ fg.

(18)

(a)
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Figure 7. Illustration of camera rotation. (a) 3-axis rotation model, (b) Rotation motion measured by
gyroscope sensor, (c) Blur kernel rendering result using the thermal detector model, (d) Blur kernel
rendering result using the photon detector model.

The rotation matrix is required to implement the formula of blur kernel rendering.
The angular information of each axis in the rotation matrix can be obtained through the
gyroscope sensor. Since the gyroscope is a sensor that measures the angular velocity, the
angle can be calculated by integrating the measured values over time. Next, we should
decide the number of gyroscope data. In the case of a photon detector, the number of
gyroscope data is easily determined by the exposure time, which induces the blur effect. In
contrast, the blur effect of a thermal detector is caused by the thermal time constant in the
microbolometer structure. Therefore, it is necessary to define the number of gyroscope data
based on the thermal time constant τ. According to the modeling result in Equation (18),
All gyroscope data stored during the entire duration are required for blur kernel rendering.
However, the practical length of gyroscope data for rendering is limited due to the signal
attenuation characteristics of the thermal detector. We confirmed that it is sufficient if
the length of gyroscope data is at least five times the thermal time constant, or m = 5.
For instance, if τ is 8 ms, obtaining gyroscope data for 40 ms is enough to synthesize the
blur kernel.

3.2. Calibration and Blur Kernel Refinement

We calibrate a camera and a gyroscope using the open-source code for calibration [61].
Generally, the calibration process can be conducted by a standard checkerboard pattern
in a visible image. On the other hand, the thermal camera cannot display a standard
checkerboard pattern without temperature variations. To solve this problem, we use
aluminum tapes whose emissivity is different from that of paper, as shown in Figure 8.

We conduct the refinement process for synthesizing the blur kernel as realistic as
possible. The uniform blur effect appears even if there is no camera movement due to
the optical Point Spread Function (PSF). The optical PSF is known to occur due to the
diffraction and aberration of a camera lens system. Even for an ideal point source, a
blur spot appears on the sensor plane by optical PSF [62]. Since diffraction increases as
wavelength increases, the optical PSF is larger in an infrared band than in a visible band.
Then, a refinement process considering the optical system is necessary to utilize the blur
kernel rendering method in the infrared band. Precise optical measurement systems are
required to synthesize an accurate optical PSF. However, these systems consume enormous
time and cost. Instead, an efficient approximation formula is used in our method. As the
primary cause of optical PSF, the diffraction blur spot size is expressed as an airy disk
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function. The airy disk equation is approximated as Gaussian function, and its standard
deviation is expressed by Equation (19) [63].

σ = 0.45 · λ · f /]
β .

(19)

where (19), λ is the infrared wavelength, f /] is the F-number, and β is the weighting factor
to reflect the optical aberration effect. When β is 1, it directly means a diffraction-limited
lens with no optical aberration effect. We determined the value of β with reference to the
Strehl ratio to apply the optical aberration effect. Here, the Strehl ratio is defined as the peak
intensity ratio of the center between a real PSF and an ideal PSF without aberrations [64].
Finally, the refined blur kernel can be calculated through the convolution between the blur
kernel rendering result and the Gaussian function with the deviation value as σ shown in
Equation (19). The blur kernel refinement results are presented in Figure 9.

(a) (b)
Figure 8. The calibration pattern for a thermal signal. (a) An ordinary checkerboard pattern (captured
in visible-band and infrared band), (b) The checkerboard pattern improved by attaching aluminum
material (captured in visible-band and infrared band).

(a) (b)

Figure 9. (a) Blur kernel before refinement, (b) blur kernel after refinement (given λ = 10 µm,
f /] = 1.0, β = 0.6).

4. Experimental Setup
4.1. Construction of Synthetic Blurry Thermal Image Dataset

Most of the datasets for evaluating deblurring performance consist of visible band
images, while thermal image datasets with ground truth images cannot be found. In this
paper, we introduce the first Synthetic Blurry Thermal Image (SBTI) dataset with ground
truth images in the thermal image domain. Firstly, we constructed the Sharp Thermal
Image (STI) dataset using FLIR A655sc LWIR camera. The gyroscope sensor was mounted
on the camera to measure the camera rotation speed. The LWIR camera was installed on a
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tripod to synthesize the uniform blurry image by suppressing the roll movement. Table 1
shows the camera and gyroscope sensor parameters.

Table 1. The Parameters of Camera-Gyroscope integrated system.

Camera Parameters Gyroscope Parameters

Resolution (pixel) 640 × 480 Resolution (◦/s) 0.0076
Frame rate (Hz) 50 Frame rate (Hz) 1000
FOV/IFOV (◦) 25 × 19/0.0391 Range (◦/s) ±200
Thermal time constant (ms) 8 Bias drift (◦/s) 0.12
Focal length (mm)/ f /] 24.6/1.0 Total RMS noise (◦/s) 0.05

As depicted in Figure 5, in order to synthesize a blurry thermal image without the
stepping effect, adjacent images should be shifted by at most one pixel. Therefore, the
maximum rotation angle of a camera between two adjacent images should be limited to the
angle of IFOV. Since the IFOV of a FLIR camera is 0.0391◦, and the frame rate is 50 Hz, the
above condition can be satisfied if the camera rotation speed should be less than 1.955◦/s.
Since a gyroscope measures the angular velocity of a camera, the camera rotation speed is
able to keep less than 1.955◦/s during image acquisition. As shown in Table 2, the total
number of images in each subset of the SBI dataset is between 1400 and 2000. The gyroscope
data has been stored while synchronized with sharp images. Since the gyroscope frame
rate is 1000 Hz, the camera rotation motion between adjacent images has been paired with
20 consecutive gyroscope data.

Table 2. Configuration of STI Dataset.

STI Dataset Subject # of Images # of Gyro. Collection
Environment Bit Depth

[1] Test pattern 1400 28000 Indoor 16 bits
[2] Vehicle, Road 1600 32000 Outdoor 16 bits
[3] Person, Road 2000 40000 Outdoor 16 bits
[4] Person, Vehicle 2000 40000 Outdoor 16 bits

The SBTI dataset is generated through Equation (10) based on the STI dataset. In
Equation (10), the blur size is determined by α which consists of τ and h. Here, τ is thermal
time constant, and h is interval time between two consecutive images (where h is 20 ms,
having camera frame rate as 50 Hz). We adjust the blur size by changing the value of h. The
real interval time of two sharp images is 20 ms, but we can control the blur size by replacing
this interval time with a specific value. For example, assuming h is 1/1280, the frame rate
between two sharp images becomes 1280 Hz. In other words, the time consumed to collect
1280 images is no longer 25.6 s but 1 s. The camera rotation speed also is converted from
1.955◦/s to 50◦/s. This range is about 25.6 times higher than a real camera rotation speed.
Using this time compression method, we can generate blurry images corresponding to
any camera rotation speed. Finally, the blurry images are sampled every 20 frames and
converted to 8-bit images for comparison. Figure 10 and Table 3 show the configurations
of STI and SBTI datasets. In the SBTI dataset, there are seven different blur sizes, and the
maximum camera rotation speed intuitively expresses the blur size.
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Figure 10. Overview of STI and SBTI datasets.
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Table 3. Configuration of SBTI dataset.

STI
Dataset

SBTI Dataset

Maximum Camera Rotation Speed (◦/s)

6.25 9.375 12.5 25 50 75 100

[1] [1-1] [1-2] [1-3] [1-4] [1-5] [1-6] [1-7]
[2] [2-1] [2-2] [2-3] [2-4] [2-5] [2-6] [2-7]
[3] [3-1] [3-2] [3-3] [3-4] [3-5] [3-6] [3-7]
[4] [4-1] [4-2] [4-3] [4-4] [4-5] [4-6] [4-7]

4.2. Construction of Real Blurry Thermal Image Dataset

We collected an additional dataset containing real motion blur for evaluating our
method in a real-world environment. The process for acquiring real blurry images is as
same as the one for collecting sharp images as presented in Section 4, except that there
is no limitation in camera rotation speed for the real effect of a blur. Another difference
is that, since we use only one camera, we cannot acquire sharp images at the same time
when collecting real blurry images. Specifically, the camera rotation speed varies from
30◦/s to 100◦/s. In addition, since infrared images are greatly affected by environmental
temperature change, we collected daytime and nighttime images, respectively.

4.3. Our Deblurring Procedure

We evaluate the accuracy of our proposed blur kernel rendering result through the
deblurring procedure. Therefore, we selected the deconvolution algorithm [65] which can
be combined with blur kernel rendering result to construct a non-blind deblurring method.
Actually, we used the public code version of [66] implementing [65]. In our experiment, we
set parameters as follows: λ = 0.001∼0.003, α = 1.

4.4. Evaluation Environment

Blur kernel rendering and non-blind deblurring are implemented in MATLAB. NVIDIA
GeForce GTX 1080 Ti GPU with 11 GB memory and Intel core i7-1065 G7@1.3G HZ with
16 GB memory have been adopted.

5. Experimental Results

Our experimental results are compared to the state-of-the-art deblurring methods,
including the single image deblurring methods [33,35,36] and the deep learning-based
video deblurring method [34]. We conducted both qualitative and quantitative comparisons
on our SBTI dataset. Additionally, we used the real blurry thermal images to qualitatively
evaluate the deblurring performance in actual situations.

5.1. Performance Evaluation on SBTI Dataset

The peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [67] index
were leveraged as the metrics of quantitative evaluation. The experimental results are
summarized in Tables 4–7 as average values. Relatively higher PSNR and SSIM have been
observed from [1-1] to [1-7] compared to the others in the SBTI dataset. As can be observed
in the Tables 4–7, PSNR and SSIM tend to gradually decrease when the blur size increases.
In most cases, our proposed method produces relatively higher PSNR and SSIM values
compared to the state-of-the-art methods.
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Table 4. Comparison of quantitative deblurring performance on the SBTI dataset [1-1]–[1-7].

SBTI
Dataset

SRN [33] SIUN [36] DeblurGAN.v2 [35] CDVD [34] Ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

[1-1] 40.33 0.9881 41.03 0.9914 41.30 0.9910 39.62 0.9905 41.57 0.9926
[1-2] 37.96 0.9849 38.45 0.9889 38.37 0.9872 37.09 0.9874 38.79 0.9906
[1-3] 35.94 0.9815 36.35 0.9858 36.13 0.9835 35.05 0.9840 36.42 0.9880
[1-4] 30.97 0.9675 31.11 0.9714 30.91 0.9695 30.36 0.9699 31.06 0.9756
[1-5] 26.69 0.9419 26.74 0.9476 26.64 0.9456 26.32 0.9453 26.65 0.9526
[1-6] 24.59 0.9221 24.67 0.9298 24.57 0.9273 24.34 0.9271 24.52 0.9337
[1-7] 23.21 0.9049 23.33 0.9141 23.22 0.9118 23.07 0.9130 23.11 0.9165

Average 31.38 0.9558 31.67 0.9613 31.59 0.9594 30.84 0.9596 31.73 0.9642

Table 5. Comparison of quantitative deblurring performance on the SBTI dataset [2-1]–[2-7].

SBTI
Dataset

SRN [33] SIUN [36] DeblurGAN.v2 [35] CDVD [34] Ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

[2-1] 28.66 0.8573 29.74 0.9026 32.25 0.9458 28.12 0.8358 32.98 0.9600
[2-2] 27.06 0.8247 27.97 0.8719 30.06 0.9221 26.54 0.8076 30.93 0.9504
[2-3] 26.02 0.8048 26.72 0.8455 28.69 0.9014 25.57 0.7891 29.55 0.9396
[2-4] 23.82 0.7603 24.32 0.7805 25.81 0.8405 24.04 0.7679 26.38 0.9034
[2-5] 21.78 0.7128 22.54 0.7421 23.36 0.7738 22.74 0.7674 23.49 0.8492
[2-6] 20.29 0.6743 21.01 0.7063 21.74 0.7262 21.53 0.7450 21.86 0.8104
[2-7] 19.11 0.6487 19.66 0.6776 20.28 0.6902 20.47 0.7204 20.61 0.7757

Average 23.82 0.7547 24.56 0.7895 26.03 0.8286 24.14 0.7762 26.54 0.8841

Table 6. Comparison of quantitative deblurring performance on the SBTI dataset [3-1]–[3-7].

SBTI
Dataset

SRN [33] SIUN [36] DeblurGAN.v2 [35] CDVD [34] Ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

[3-1] 29.20 0.8606 29.64 0.8862 35.69 0.9603 34.034 0.9240 36.556 0.9600
[3-2] 27.93 0.8305 28.66 0.8597 33.79 0.9368 32.43 0.9081 35.02 0.9525
[3-3] 27.05 0.8053 27.92 0.8394 32.66 0.9201 31.45 0.8965 33.95 0.9452
[3-4] 25.34 0.7556 26.25 0.7961 30.10 0.8772 29.21 0.8657 31.10 0.9177
[3-5] 24.29 0.7348 24.90 0.7656 27.27 0.8237 26.72 0.8263 28.00 0.8786
[3-6] 23.38 0.7196 23.90 0.7435 25.52 0.7882 25.14 0.7982 25.93 0.8427
[3-7] 22.48 0.7034 22.94 0.7215 24.21 0.7605 23.82 0.7726 24.53 0.8128

Average 25.67 0.7728 26.32 0.8017 29.89 0.8667 28.97 0.8559 30.73 0.9013

Table 7. Comparison of quantitative deblurring performance on the SBTI dataset [4-1]–[4-7].

SBTI
Dataset

SRN [33] SIUN [36] DeblurGAN.v2 [35] CDVD [34] Ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

[4-1] 30.37 0.8925 31.42 0.9271 33.63 0.9552 32.19 0.9258 34.05 0.9640
[4-2] 29.02 0.8742 29.78 0.9066 31.78 0.9373 30.77 0.9177 32.34 0.9589
[4-3] 28.14 0.8620 28.71 0.8900 30.67 0.9262 29.86 0.9110 31.22 0.9532
[4-4] 25.98 0.8294 26.40 0.8531 27.87 0.8923 27.44 0.8937 28.20 0.9312
[4-5] 23.88 0.7947 24.22 0.8137 25.19 0.8506 24.81 0.8636 25.02 0.8956
[4-6] 22.53 0.7731 22.82 0.7869 23.53 0.8216 23.22 0.8390 23.41 0.8704
[4-7] 21.52 0.7567 21.74 0.7662 22.33 0.8022 22.06 0.8175 22.30 0.8460

Average 25.92 0.8261 26.44 0.8491 27.86 0.8836 27.19 0.8812 28.08 0.9170

The qualitative comparing results are shown in Figures 11–14. Figure 11 shows the
deblurring results on the 54th frame of the SBTI dataset [1-4]. The main subjects of the
SBTI dataset [1-4] consist of a cross pattern and a 4-bar pattern. Unlike the other methods,
which partially removed the blur effect, our proposed method dramatically recover the
blur effect. The shape of the small spot at the edge of the cross-pattern reveals the signal
attenuation characteristics of the blurry thermal image. This signal attenuation effect makes
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the small subject disappear in the blurry image. As shown in other algorithm results, it
is not easy to restore the blurry image with an extreme loss of signal. In this case, the
size of the blur kernel rendered by our proposed method is 20 by 20. Figure 12 shows
the deblurring results on the 49th frame of the SBTI dataset [2-5], and the main subject is
a group of vehicles. In this blurry image, it is difficult to recognize either the number of
vehicles or their shapes. The result of SRN shows that it is almost impossible to recognize a
vehicle in the deblurred image. Further, the other methods still fail to restore the shapes of
vehicles due to the signal attenuation effect. In this dataset, the signal attenuation effect
makes the subject and the background indistinguishable. In contrast, our result shows high
restoration performance enough to recognize the number of vehicles and distinguish their
external shapes. In this case, the size of the blur kernel rendered by our proposed method
is 54 by 54. Figure 13 shows the deblurring results on the 51th frame of the SBTI dataset
[3-4]. The main subject is people. Our method most clearly restores the shape of human
arms and legs than other competing methods. Further, SRN and CDVD methods show
distorted restoration results regarding the tree’s shape in the promenade center. In the
case, the size of the blur kernel rendered by our proposed method is 24 by 24. Figure 14
shows the deblurring results on the 91th frame of the SBTI dataset. It is very difficult to
recognize the number of subjects or their shapes without referring to the ground truth
image. Our proposed method successfully restores the blurry image so that the details
are sufficiently revealed, such as the number of people and the shapes of vehicles. Most
people and vehicles’ edges disappeared in this blurry image due to the signal attenuation
effect. It is challenging to predict the blur kernel in an image where the subject and the
background cannot be distinguished. It is also difficult to show good restoration results
without learnable knowledge, even using a deep learning-based approach. In the case, the
size of the blur kernel rendered by our proposed method is 107 by 107.

(a) Dataset[1-4]52th image

(b) PSNR/SSIM: 28.96/0.9703 (c) PSNR/SSIM: 28.90/0.9653 (d) PSNR/SSIM: 29.01/0.9688

(e) PSNR/SSIM: 28.27/0.9662

Rendered 
blur kernel

(f) PSNR/SSIM: 28.28/0.9737 (g) Ground truth image

Figure 11. Qualitative comparison of deblurring results on the SBTI dataset [1-4]54th. (a) Synthetic
blurry thermal image, (b) SRN [33], (c) SIUN [36], (d) DeblurGAN.v2 [35], (e) CDVD [34], (f) Ours,
(g) GT.
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(a) Dataset[2-5]49th image

(b) PSNR/SSIM: 22.40/0.7791 (c) PSNR/SSIM: 21.79/0.7401 (d) PSNR/SSIM: 23.02/0.8191

(e) PSNR/SSIM: 22.98/0.8509

Rendered 
blur kernel

(f) PSNR/SSIM: 22.98/0.9015 (g) Ground truth image

Figure 12. Qualitative comparison of deblurring results on the SBTI dataset [2-5]49th. (a) Synthetic
blurry thermal image, (b) SRN [33], (c) SIUN [36], (d) DeblurGAN.v2 [35], (e) CDVD [34], (f) Ours,
(g) GT.

(a) Dataset[3-4]51th image

(b) PSNR/SSIM: 26.23/0.8058 (c) PSNR/SSIM: 24.72/0.7374 (d) PSNR/SSIM: 29.45/0.8884

(e) PSNR/SSIM: 29.30/0.8978

Rendered 
blur kernel

(f) PSNR/SSIM: 30.61/0.9408 (g) Ground truth image

Figure 13. Qualitative comparison of deblurring results on the SBTI dataset [3-4]51th. (a) Synthetic
blurry thermal images, (b) SRN [33] (c) SIUN [36], (d) DeblurGAN.v2 [35], (e) CDVD [34], (f) Ours,
(g) GT.
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(a) Dataset[4-4]91th image

(b) PSNR/SSIM: 22.62/0.7937 (c) PSNR/SSIM: 22.49/0.7910 (d) PSNR/SSIM: 22.75/0.8053

(e) PSNR/SSIM: 22.56/0.8357

Rendered 
blur kernel

(f) PSNR/SSIM: 22.60/0.8723 (g) Ground truth image

Figure 14. Qualitative comparison of deblurring results on the SBTI dataset [4-4]91th. (a) Synthetic
blurry thermal image, (b) SRN [33], (c) SIUN [36], (d) DeblurGAN.v2 [35], (e) CDVD [34], (f) Ours,
(g) GT.

5.2. Performance Evaluation on Real Blurry Thermal Images

Furthermore, we conduct a qualitative comparison between our proposed method
and other methods on real blurry images. Since the real blurry images cannot have the
supplementary sharp images as ground truth, only qualitative comparisons are performed.
Figures 15 and 16 show the blurry thermal images of building, construction equipment
and people, collected when the camera rotation speed has been about 30◦/s. Even though
the blur effect is low in these images, the competing algorithm results show a residual
blur effect in their restoration images. In contrast, our proposed method successfully
recovers blurry images, so the shape of the subject is distinguished well. Figures 17 and 18
show the blurry thermal images of vehicles, buildings, and people, collected while the
camera rotation speed has been about 40◦/s. Because of the effect of a motion blur, we
can barely know the shape of the subject in the real blurry images. As can be seen in
Figures 17c and 18e, the shape of a person still has the blur effect in the restoration image.
On the other hand, our proposed method shows the restoration result that has the fully
recognizable shape of the person’s arms and legs and contains the details of the vehicle’s
wheels. Figures 19 and 20 depict the results of images acquired when the camera rotation
speed has been about 80◦/s. Because of the large level of blur effect, it is impossible to
recognize the shape or number of any subject. Although the competing methods reduced
the blur effect, their restoration images are not enough to recognize the details of a subject.
On the other hand, our proposed method recovers the details of subjects better than the
competing methods. In Figure 21, the blurry image was obtained while the camera rotation
speed has been about 100◦/s. The blur effect had been so huge that the contour or presence
of a subject is barely recognizable. However, our method remarkably restores the shape of
a person, and all competing methods failed. Figure 22 is the image data collected at night,
when the camera rotation speed has been 40◦/s. Similar to the above results, our method
restores the shape of a person, while the competing methods do not.
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(a) (b) (c)

(d) (e)

Rendered 
blur kernel

(f)

Figure 15. Qualitative comparison of motion deblurring results on the real blurry thermal image.
(a) Real blurry thermal image acquired with a camera rotating at 31◦/s, (b) SRN [33], (c) SIUN [36],
(d) DeblurGAN.v2 [35], (e) CDVD [34], (f) Ours.

(a) (b) (c)

(d) (e)

Rendered 
blur kernel

(f)

Figure 16. Qualitative comparison of motion deblurring results on the real blurry thermal image.
(a) Real blurry thermal image acquired with a camera rotating at 39◦/s, (b) SRN [33], (c) SIUN [36],
(d) DeblurGAN.v2 [35], (e) CDVD [34], (f) Ours.
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(a) (b) (c)

(d) (e)

Rendered 
blur kernel
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Figure 17. Qualitative comparison of motion deblurring results on the real blurry thermal image.
(a) Real blurry thermal image acquired with a camera rotating at 43◦/s, (b) SRN [33], (c) SIUN [36],
(d) DeblurGAN.v2 [35], (e) CDVD [34], (f) Ours.

(a) (b) (c)

(d) (e)

Rendered 
blur kernel

(f)

Figure 18. Qualitative comparison of motion deblurring results on the real blurry thermal image.
(a) Real blurry thermal image acquired with a camera rotating at 44◦/s, (b) SRN [33], (c) SIUN [36],
(d) DeblurGAN.v2 [35], (e) CDVD [34], (f) Ours.
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(a) (b) (c)

(d) (e)

Rendered 
blur kernel

(f)

Figure 19. Qualitative comparison of motion deblurring results on the real blurry thermal image.
(a) Real blurry thermal image acquired with a camera rotating at 84◦/s, (b) SRN [33], (c) SIUN [36],
(d) DeblurGAN.v2 [35], (e) CDVD [34], (f) Ours.

(a) (b) (c)

(d) (e)

Rendered 
blur kernel

(f)

Figure 20. Qualitative comparison of motion deblurring results on the real blurry thermal image.
(a) Real blurry thermal image acquired with a camera rotating at 85◦/s, (b) SRN [33], (c) SIUN [36],
(d) DeblurGAN.v2 [35], (e) CDVD [34], (f) Ours.
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Figure 21. Qualitative comparison of motion deblurring results on the real blurry thermal image.
(a) Real blurry thermal image acquired with a camera rotating at 100◦/s, (b) SRN [33], (c) SIUN [36],
(d) DeblurGAN.v2 [35], (e) CDVD [34], (f) Ours.

(a) (b) (c)

(d) (e)
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blur kernel

(f)

Figure 22. Qualitative comparison of motion deblurring results on the real blurry thermal image.
(a) Real blurry thermal image acquired with a camera rotating at 40◦/s, (b) SRN [33], (c) SIUN [36],
(d) DeblurGAN.v2 [35], (e) CDVD [34], (f) Ours.

Extensive experimental results show that our proposed method outperforms other
methods. The reason is that our approach is able to estimate more accurate blur kernels
using a physical model and inertial sensor. There are two explanations regarding how
our method can render the exact blur kernel. Firstly, our method leverages the physical
mechanism of a thermal detector for accurate blur kernel rendering. As shown in Figure 2,
the pixel structure of a thermal detector loses its stored thermal energy over time which
appears as the effect of attenuation of an image signal. This attenuation effect causes motion
blur similar to a comet tail shape. As shown in Figures 14 and 17–21, when a small-sized
subject has its temperature similar to the background, the subject is barely distinguished
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from the background due to its attenuation effect of motion blur. It is extremely challenging
to obtain a blur kernel from an intensely blurred image where the subject has almost
disappeared. Further, even with a deep learning-based method, high performance is hardly
achieved without learnable information. In contrast, our method shows high deblurring
performance even for vanishing subjects with a large amount of motion blur. For this
reason, our proposed method, which is designed considering the characteristics of the
thermal detector, is able to show high feasibility compared to other methods in the thermal
image domain. Secondly, accurate blur kernel rendering is possible since our proposed
method is free from the synchronization problem between the gyroscope data length and
the image sensor exposure time. In general, to combine photon detector and gyroscope data,
the synchronization problem between photon detector exposure time and gyroscope sensor
data length must be resolved. A photon detector adjusts the exposure time in real-time
according to the amount of ambient light in a scene. The exposure time range is generally
set from a few microseconds to several seconds. Due to the dynamic change in exposure
time, the length of gyroscope data also needs to be changed simultaneously. In contrast, in
a thermal detector, the concept corresponding to the exposure time of the photon detector
is the thermal time constant. Since the thermal time constant is a fixed value determined
when a thermal detector is fabricated, the length of gyroscope data used for blur kernel
rendering is not changed. Therefore, a thermal detector combined with a gyroscope is more
feasible to render the accurate blur kernel.

6. Conclusions

In this paper, we observed that a thermal detector and a photon detector have different
inherent characteristics, which accordingly cause different motion blur effects. Based on
this observation, we have analyzed the physical and theoretical differences between a
thermal detector and a photon detector in order to precisely model a motion blur effect
in the thermal image. We suggest a novel motion blur model for thermal images by inter-
preting the physical mechanism of a thermal detector. The proposed motion blur model is
leveraged to enable blur kernel rendering to accurate using gyroscope sensor information.
We constructed the first blurry thermal image dataset that contains both synthetic blurred
images and sharp thermal images in the thermal image domain. Finally, extensive quali-
tative and quantitative experiments were conducted to show that our proposed method
outperforms the state-of-the-art methods.
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